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The novel p53 target TNFAIP8 variant 2 is increased in
cancer and offsets p53-dependent tumor suppression

Julie M Lowe*", Thuy-Ai Nguyen?, Sara A Grimm?, Kristin A Gabor', Shyamal D Peddada®, Leping Li®, Carl W Anderson?,
Michael A Resnick?, Daniel Menendez>* and Michael B Fessler*'*

Tumor necrosis factor-a-induced protein 8 (TNFAIPS) is a stress-response gene that has been associated with cancer, but no
studies have differentiated among or defined the regulation or function of any of its several recently described expression variants.
We found that TNFAIP8 variant 2 (v2) is overexpressed in multiple human cancers, whereas other variants are commonly
downregulated in cancer (v1) or minimally expressed in cancer or normal tissue (v3-v6). Silencing v2 in cancer cells induces p53-
independent inhibition of DNA synthesis, widespread binding of p53, and induction of target genes and p53-dependent cell cycle
arrest and DNA damage sensitization. Cell cycle arrest induced by v2 silencing requires p53-dependent induction of p21. In
response to the chemotherapeutic agent doxorubicin, p53 regulates v2 through binding to an intragenic enhancer, together
indicating that p53 and v2 engage in complex reciprocal regulation. We propose that TNFAIP8 v2 promotes human cancer by
broadly repressing p53 function, in essence offsetting p53-dependent tumor suppression.
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Tumor necrosis factor-a-induced protein 8 (TNFAIP8) is the
founding member of a recently described family of environ-
mental stress response genes that are induced by TNFa.
TNFAIP8 has been shown to promote or inhibit apoptosis,
depending on cell type and context."? Although little is known
about TNFAIPS, it has recently been found to be over-
expressed in a wide range of human cancers. Some studies
have suggested protumor functions for TNFAIP8, including
enhancement of cell survival, proliferation, and metastasis®®
and resistance to cancer chemotherapeutics in mice.*'°
Nonetheless, nothing is known about how TNFAIP8 influences
responses to DNA damage in cancer cells. Moreover, several
transcript variants from the TNFAIP8 gene were recently
registered in the NCBI reference sequence database, but no
study to date has differentiated among them or defined the
factors that govern their expression.

The tumor suppressor p53 is a transcription factor that
regulates many biological processes through its target gene
network. Some of the well-characterized p53 target genes
including p21/CDKN1A, growth arrest and DNA damage-
inducible 45a (GADD45A) and Bcl-2-like protein 4 (BAX)
together promote senescence, cell cycle arrest, and apopto-
sis, all of which may contribute to the tumor suppressing
functions of p53.""'2 Additional noncanonical tumor-
suppressive pathways from p53 have recently been

identified.’>'® Improved characterization of the p53 DNA-
binding sequence with modern sequencing techniques has
led to the identification of a rapidly expanding list of p53 target
genes.'®'® Continued identification of these genes and
characterization of their mechanisms of regulation and
function will be critical to a full understanding of p53 and for
full realization of opportunities to intervene upon p53 in cancer.

Here, we identify TNFAIP8 variant 2 (v2) as a p53-regulated
gene product that promotes cancer through complex, recipro-
cal regulatory interactions with p53. We show that TNFAIP8 v2
may contribute to both carcinogenesis and chemotherapeutic
resistance by broadly suppressing p53 activity, thus offsetting
p53-dependent tumor suppression.

Results

TNFAIP8 v1 and v2 are differentially expressed in human
cancers. Recent revisions of the human reference sequence
database indicate that TNFAIP8 (chr5: 118604 418—
118 730 138) has six expression (MRNA) variants. The last
exon is common, whereas usage of other exons differs
across variants (Supplementary Figure S1). Several reports
have shown that TNFAIP8 is overexpressed in human
cancers,> 581922 yot none of these publications have used
methods with adequate specificity to discriminate among
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Figure 1  TNFAIP8 variants are differentially expressed in cancer cells. (a) A heat map showing significant changes in variant 1 (v1) and variant 2 (v2) expression levels in
tumors compared with normal tissue of the same origin. *P< 0.05; *P< 0.01. Patient-level tumor/normal tissue pairings (same patient) plus unpaired (different patients) samples
were analyzed to maximize statistical power. Intrapatient paired analysis alone yielded similar results, except that v1 expression was not significantly different in breast carcinoma
and lung adenocarcinoma. (b) Relative levels of TNFAIP8 v1 and v2 mRNA in the indicated cell lines/types normalized to s-actin. THP-1, acute monocytic leukemia; Raji, B-cell

lymphoma; ‘190’ and ‘191" are primary human macrophages from two donors; HSF,

human skin fibroblast. (¢) Compared with v2, v1 includes additional 11 amino acids.

Immunoblot of TNFAIP8 and -actin (control) was performed in the indicated cell types. ‘MAC' refers to primary human macrophages. A549 cells were transduced with either
TNFAIP8 shRNA (TP8i) or scrambled control shRNA (scri). Results are representative of three or more independent experiments

TNFAIP8 variants. In order to determine the expression
patterns of the variants in human tumors compared with
normal tissue, we analyzed cataloged RNA-sequencing
(RNA-seq) data from primary human tumor and normal
tissue for 11 cancer types in The Cancer Genome Atlas
(TCGA)(Figure 1a and Supplementary Figure S2A). v1 and
v2 were expressed at appreciable levels in tumor and normal
tissue, whereas expression of the other variants was very low
or undetectable. v2 was upregulated in nearly all tumors,
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whereas v1 was downregulated in most tumors. Taken
together, these results indicate that v1 and v2 are differen-
tially regulated in human tumors and reveal that the
previously reported increase of TNFAIP8 expression in
human cancers is likely due to v2.

v2 is the predominantly expressed TNFAIP8 variant in
cancer cell lines. Using specific RT-PCR primers, we
measured the relative expression of all TNFAIP8 variants



(vi-vB) in a panel of cell types. Although the relative
expression levels of v1 and v2 depend on cell type, these
two are the predominantly expressed variants in U20S
(osteosarcoma), A549 (lung cancer), and Raji (B cell
lymphoma) cells, as well as human primary macrophages
(Supplementary Figures S2B-E). Similar to our findings with
human tumors, most of the cancer cell lines we surveyed had
much higher levels of v2 than v1 (Figure 1b). There was no
detectable v1 in A549 and H1299 cells. On the other hand,
Raji cells and human skin fibroblasts have vi1~v2, and
human macrophages express vi>v2. TNFAIP8 v1 has
additional 11 amino acids that v2 lacks, conferring a
difference in molecular weight. The relative expression of
vl and v2 proteins (Figure 1c) is consistent with mRNA
expression in several cell types. Cytochemistry in A549 cells
also shows upregulation of v2 (along with p53) in response to
doxorubicin (DOX) and indicates strong nuclear as well as
cytoplasmic staining (Supplementary Figure S2F).

TNFAIP8 v2 is induced by DOX in a p53-dependent
manner. Nutlin-3, a small-molecule p53 activator, signifi-
cantly induced v2 along with the classical p53 target p21 in
A549 cells (Figure 2a). Given this and our finding that DOX,
another well-known p53-activating agent, induces v2, we
investigated whether p53 regulates v2 expression. U20S and
A549 cells stably expressing either a scramble (scri) or
p53-directed shRNA (p53i)'” were exposed to DOX. DOX
upregulated p53 and induced v2 mRNA in a p53-dependent
manner in both lines (Figures 2b—d). Consistent with mRNA,
v2 protein was induced in U20S cells and the induction was
blunted by two different p53-directed short hairpin RNAs
(shRNAs; Figure 2e). Similarly, expression of v2 and p21 was
significantly induced in p53-proficient (‘p53+’) but not
p53-deleted (‘p53-’) HCT116 colon carcinoma cells
(Figure 2f). However, whereas both genes were induced by
DOX within 12 h in p53+ HCT116 cells and U20S cells, only
p21 was induced by 6 h, indicating that v2 induction may
occur later than p21 (Figure 2g). In the absence of DOX, no
difference in v2 expression was detected between p53+ and
p53— HCT116 cells or between p53-silenced and control
U20S cells, suggesting no requirement for p53 in basal
expression of v2 in cancer cells (Figures 2e—q).

p53 binds to the TNFAIP8 gene. In order to characterize
p53 regulation of DOX-induced v2, we searched p53
chromatin immunoprecipitation sequencing (ChlP-seq) data
from U20S cells treated with DOX'” for p53 binding near
TNFAIP8. A large peak was found in the first intron of
v2 distant from the v1 or v2 start sites (Figure 3a). A scan for
potential p53 response elements (REs)?*2* confirmed that
this site encompasses a p53RE predicted to be functional'®
(coordinates are chr5: 119323 861-119 323880 in latest
human genome annotation, ‘GRCh38/hg38’, Figure 3a).
Binding of p53 to this site was validated with p53 ChIP-
PCR in U20S cells, with binding to the p21 promoter region
serving as a positive control (Figure 3b). Analysis of
published p53 ChlIP-seq data sets revealed that, remarkably,
p53 binds to the same TNFAIPS8 intronic region in a very wide
range of cell types in response to various p53-activating
agents (Supplementary Table S1).
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Having identified a p53-binding site, we further character-
ized p53 regulation of TNFAIP8 using U20S cells as a model
system. We cloned a ~600bp region encompassing the
p53RE upstream of a luciferase reporter. An empty vector, the
v2 p53RE vector, or a positive control vector with confirmed
functional p53REs, each upstream of a luciferase reporter
construct, were individually transfected into U20S cells stably
expressing either a scrambled or p53-directed shRNA
(Figure 3c). Treatment with DOX significantly enhanced
luciferase activity (v2 p53RE and p53+ only) in scramble
shRNA cells. Both basal and DOX-induced luciferase were
significantly reduced in p53-depleted cells. These results
confirm that the p53RE in the v2 intron is functional as this
region confers p53-dependent transactivation ability.

The intronic p53-binding region in TNFAIP8 is an
enhancer. The p53-binding region lies within the first intron
of v2. However, it is ~50 kb downstream from the v2 promoter
region and ~30 kb upstream from the v1 promoter region,
suggesting that it may possibly be an intragenic enhancer. To
address this possibility, we analyzed it for enhancer-like
chromatin marks. Chromatin marks characteristic of enhan-
cers include high histone H3 mono-methylation on lysine 4
(‘H3K4me1’), high histone H3 acetylation on lysine 27
(‘H3K27ac’) and low histone H3 tri-methylation on lysine 4
(‘H3K4me3'). These contrast with characteristic promoter
chromatin marks (low H3K4me1, high H3K27ac, high
H3K4me3).2> Using ChIP-PCR, we measured these marks
in U20S cells in the intronic p53-binding region and, for
comparison purposes, in the v2 promoter region (V2P). As
shown in Figure 3d, regardless of DOX treatment, v2 p53RE
has significantly higher H3K4me1 and lower H3K4me3
compared with V2P. Both sites show moderate levels of
H3K27ac. Thus, the v2 p53RE region has marks character-
istic of an enhancer.

To further validate v2 p53RE as an intragenic enhancer,
three-dimensional chromatin looping assays using EcoRl
restriction of fixed chromatin followed by PCR using primers
designed to survey the region were performed to test whether
v2 p53RE physically interacts with V2P despite being ~50 kb
removed. Activated p53 has been shown to act on preexisting
chromatin loops.2® The primer pair ‘“1/4’ yielded significant
amplification (Figure 3e), indicating ligation between restricted
ends of sites 1 and 4 and the physical interaction between the
v2 promoter and the v2 p53RE region through chromatin
looping. These data, together with the presence of enhancer-
like chromatin marks and transactivation capacity of v2
p53RE, suggest that p53 regulates DOX-induced v2 expres-
sion through binding to the v2 p53RE intragenic enhancer
region.

TNFAIP8 v2 silencing induces widespread p53 binding
and p53 target induction. Given our finding that v2 is
upregulated across several human cancers and that basal
v2 expression in cancer cell lines is p53 independent, we
hypothesized that v2 might promote cancer cell survival
through suppressing p53 activities. Several prior examples of
reciprocal p53 target regulatory loops have been described.?®
In order to address this, we transiently expressed TNFAIP8-
directed shRNA (‘TP8i’) versus scramble shRNA (‘scri’) in
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Figure 2 p53 regulates DOX-induced TNFAIP8 v2. (a) v2 and p21 mRNA expression in A459 cells after nutlin-3 or DMSO (vehicle) treatment (24 h). (b) v2 and p21
expression after DOX treatment in A549 cells stably expressing scramble shRNA (‘scri’) or p53 shRNA (‘p53i'). Fold change is displayed as the ratio of DOX-treated over
nontreated (NT) cells. (¢) Immunoblotting of p53 and actin (loading control) in parental (* —’), scri, and p53i A549 cells following no treatment (NT) or DOX. (d) DOX-induced v2
mRNA expression in U20S cells stably expressing scri or p53i. () v2 and p53 protein levels are shown in untreated and DOX-treated U20S cells stably expressing scramble
control shRNA (‘cont’) or two different p53-directed shRNAs (‘p53i-55' and ‘p53i-56). (f) v2 and p21 mRNA expression in untreated or DOX-treated p53-proficient and p53-null
HCT116 cells. (g) v2 and p21 mRNA expression was measured with Nanostring technology in indicated cell types, untreated (‘NT’) or treated with DOX for durations shown.

Results are representative of three or more independent experiments. *P<0.05

(v1-null) A549 cells (Figure 4a). Unexpectedly, we found that
p53 protein levels in nuclear extracts and whole-cell lysates
were decreased in v2-depleted cells (Figure 4b). We
reasoned that one possible explanation might be that p53
was relocalized to chromatin and therefore insoluble in the
extraction buffer. To address this, we isolated chromatin-
bound nuclear protein and, using specific antibodies,
measured both total p53 and acetylated p53, as acetylation
is associated with p53 activation and enhanced binding to
p53REs.?” Both total and acetylated p53 were indeed
increased in the chromatin-bound nuclear fraction in
v2-depleted cells, suggesting that v2 silencing regulates
p53 by promoting its acetylation and localization to chromatin
(Figure 4c). ChIP assays also revealed that p53 enrichment
at the promoter regions of multiple established p53 target
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genes was significantly greater in v2-depleted cells than in
control cells (Figure 4d).

We verified that some target genes displaying increased
p53 binding also had increased expression in TP8i cells
(Figures 4e and f). A second TNFAIP8-directed shRNA, which
depleted v2 by ~37%, resulted in similar expression changes
(Supplementary Figures S3A and B). Not all genes displaying
increased p53 binding upon v2 silencing had a corresponding
change in mRNA expression (e.g., MDM2, DDB2; data not
shown). This is consistent with past reports that mRNA
expression of p53 target genes may be regulated by
mechanisms beyond binding.'”” As v2 depletion led to
enhanced p53 activity, we predicted that overexpression of
v2 may inhibit p53 activity. v2 overexpression indeed
decreased p53 binding to several targets (Figures 4g and h).
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showing the 6 EcoRl sites that were used for a three-dimensional chromosome looping assay, as they relate to the v2 promoter region and the intronic p53RE. PCR was
performed using the indicated primer pairs in untreated U20S cells. Results are representative of three or more independent experiments. “P<0.05

Collectively, these findings suggest that TNFAIP8 v2 exerts
complex regulation of p53 function in cancer cells, where it
restrains p53 from activating select nuclear genes.

TNFAIP8 v2 depletion inhibits DNA synthesis and leads
to cell cycle arrest. To date, no study has defined variant-
specific functions for TNFAIP8 in cancer. As we found that
v2 was overexpressed in cancers and appears to suppress
p53, we hypothesized that v2 might promote cancer cell
growth. To address this, v2 silencing was performed in A549
cells stably expressing either p53-directed shRNA (‘p53i’) or
a scramble shRNA (‘p53+’)(Figure 5a) and DNA synthesis
examined using 5-bromo-2’-deoxyuridine (BrdU) incorpora-
tion. As shown in Figure 5b, p53+ and p53i cells with
scramble shRNA displayed considerable BrdU staining
intensity. In stark contrast, v2-depleted p53+ cells showed
low BrdU staining. Quantification of BrdU intensity revealed a
significant difference between TP8i and control cells in both

the p53+ and p53i background (Figure 5c). As the effect of v2
depletion on DNA synthesis was less in p53i than p53+ cells
(37% versus 68% reduction; P<0.05), we conclude that DNA
synthesis arrest in TP8i cells is at least partially p53
dependent, but can nonetheless proceed in p53-deficient
cells. Interestingly, there was no significant difference in the
percentage of TP8i and Scri cells that were BrdU positive
(Supplementary Figure S3C), indicating that DNA synthesis
is initiated in v2-depleted cells but unable to progress.

Given that v2-depleted cells displayed defective DNA
synthesis, we next analyzed the cell cycle profile. Cell cycle
analysis using 7-aminoactinomycin D (7AAD) revealed a
stalling in S phase of v2-depleted cells compared with controls
(Figure 5d and Supplementary Figure S3D). Despite our
finding that the DNA synthesis defect caused by v2 depletion
occurs in both p53+ and p53i cells, v2-depleted p53i cells did
not arrest in the S phase, indicating a requirement for p53 in
the S-phase arrest (Figure 5d).

Cell Death and Differentiation
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expression vector ('v2'). Results are representative of three or more independent experiments. *P<0.05

GADD45A and CDKN1A (p21), both of which regulate cell
cycle arrest®®?® and are induced by p53, were significantly
upregulated in v2-depleted cells compared with controls in a
p53+, but not p53i, background (Figure 4d and Supplementary
Figure S3B), suggesting they may contribute to the p53-
dependent S-phase arrest in v2-depleted cells. On the other
hand, proliferating cell nuclear antigen (PCNA), which is
required for progression of DNA replication,*® was significantly
reduced in TP8i cells in both the p53+ and p53i settings
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(Figure 5e). As PCNA is dispensable for initiation of DNA
replication but required for progression,®® our finding that
PCNA is decreased in v2-depleted cells irrespective of p53
status is consistent with our finding of a defect in the
progression but not initiation of DNA synthesis in both p53+
and p53i v2-depleted cells (Figures 5b and c).

Cyclins D1, E1, and E2 are all required for transition from G1
to S phase, after which the expression of these cyclins must be
decreased to maintain the proliferation signal and progress
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Figure 5 TNFAIP8 v2 depletion stalls DNA replication and induces p53-dependent cell cycle arrest. (a) TNFAIP8 v2 mRNA levels were quantified in p53+ and p53-silenced
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or more independent experiments. *P< 0.05

through S phase.®'™*® We hypothesized that expression of
these cyclins might be increased in v2-depleted cells given the
observed S-phase arrest (Figure 5d). Consistent with our
prediction, cyclins D1, E1, and E2 were all significantly
increased in v2-depleted cells (Figure 5f). Unlike the case for
cyclins E1 and E2, cyclin D1 induction in TP8i cells appeared
to be p53 dependent. This finding is consistent with previous

reports describing p53 enhancement of cyclin D1 expression
and subsequent growth arrest.3*3°

To test whether the S-phase arrest induced by v2 depletion
was specific for A549 cells, we performed similar experiments
in U20S, MCF-7 (breast cancer), and HCT116 cells, all of
which, like A549 cells, predominantly express v2 and little v1.
As with A549 cells, v2 depletion in all cell lines significantly
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upregulated p21 (Supplementary Figures S4A-C) and
impaired proliferation (not depicted). However, the percentage
of cells in G1 was significantly increased in v2-depleted U20S
and MCF-7 cells, whereas v2-depleted HCT116 cells exhib-
ited an increase in G2/M, indicating an arrest in G1 and G2/M,
respectively (Supplementary Figures S4D-F and S5). Taken
together, all cancer cell lines surveyed displayed upregulation
of p21 with v2 depletion, but, interestingly, exhibited a variety
of types of cell cycle arrest.

Cell cycle arrest in v2-depleted cells is primarily due to
p21. Our results in A549 cells indicated that v2 depletion
leads to defective DNA replication progression, potentially
through downregulated PCNA and S-phase stalling. How-
ever, in an effort to identify gene networks in a more unbiased
manner that might account for these findings, gene expres-
sion was profiled in A549 cells using Nanostring technology.
Of 770 genes in the Nanostring PanCancer Codeset, 221
(28.7%) were significantly altered in expression in response
to v2 silencing. Ingenuity Pathway Analysis revealed that the
highest scoring network of genes with significant expression
changes upon v2 silencing in p53+ cells was that associated
with cell proliferation and cell cycle, and that this network
centered upon CDKN1A (i.e., p21) (Supplementary
Figure S6). In order to address whether p21 orchestrates
the p53-dependent cell cycle arrest induced by v2 depletion,
we introduced scrambled or pooled p21-directed siRNA into
TP8i and scri, p53+ A549 cells (Figure 5g). p21 silencing
prevented the S-phase arrest in v2-depleted cells (Figure 5h),
confirming p21 as a major p53-responsive driver of the
defective cell growth of TP8i cells.

TNFAIP8 v2 depletion enhances damage-induced apop-
tosis. We next evaluated the impact of v2 on the response of
cancer cells to chemotherapeutic challenge. As shown in
Figures 6a and b, DOX induced a dramatic, nearly ninefold
higher frequency of apoptosis (51% versus 6%) in
v2-depleted cells than in controls. The increased apoptosis
appears to be at least partially p53 dependent (Figure 6b).
Similar results were seen with the nongenotoxic agent
staurosporine®® (Figure 6¢ and Supplementary Figure S7).
TP8i cells also showed significantly higher activation of the
executioner caspases 3/7 in response to both DOX and
staurosporine in a p53+, but not p53i, background
(Figure 6d). Depletion of v2 thus sensitizes cancer cells to
p53-dependent DOX- and staurosporine-induced apoptosis.
These results suggest that TNFAIP8 v2 is an anti-apoptotic
regulator in response to chemotherapeutics, attenuating
chemotherapeutic efficacy by reducing p53-dependent death.

Discussion

We identify TNFAIP8 v2 as a gene product that is upregulated
in a wide array of human cancers and show that, in the
absence of exogenous stress, TNFAIP8 v2 engages in
complex, reciprocal regulatory interactions with p53 that may
contribute to both tumorigenesis and chemotherapeutic
resistance of tumors (Figure 7). Our v2-silencing studies in
steady-state A549 cells suggest that v2 acts to support DNA
synthesis and may repress p53-dependent cell cycle arrest by
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suppressing acetylation of p53 and induction of p53 targets, in
particular, p21. Among defective DNA synthesis and cell cycle
arrest (the major outcomes of v2 silencing in steady-state
A549 cells), only the former is substantially p53 independent.
Given that replication stress is a well-known trigger for p53
activation,®” we speculate that the sequence of events
triggered by v2 silencing in A549 cells may be as follows:
failed DNA synthesis, p53 activation, and then p53-dependent
cell cycle arrest. On the other hand, v2 depletion in U20S,
HCT116, and MCF-7 cells does not cause DNA synthesis
failure, but instead induces G1 or G2/M arrest, thus indicating
that the mechanism of v2 in cancer is cell-type specific. Finally,
in the context of genotoxic stress, such as after cancer
chemotherapeutic exposure, p53 is increased and induces v2
through binding to an intragenic enhancer region. In turn, v2
negatively feeds back upon p53, suppressing p53-mediated
apoptosis and promoting tumor resistance.

The precise molecular mechanisms by which v2 regulates
p53 activation and PCNA induction remain unclear, and
warrant future investigation. Of interest, TNFAIP8 has been
proposed to be a scaffolding protein, and both p53 and PCNA
were previously identified as potential TNFAIP8-binding
partners.* It is thus intriguing to consider the possibility that
v2 binding may possibly regulate access of acetylases and/or
deacetylases to p53. TNFAIP8 could also conceivably
regulate the activity of a signaling protein or transcription
factor (other than p53 (Figure 5e)) that regulates PCNA
expression.

Our data suggest that v2 may be regulated by transcription
factors other than p53. Induction of TNFAIP8 by TNFa appears
to be dependent on NF-kB.® Regulation of TNFAIP8 by factors
other than p53 may be especially importantin cancer cells as it
is well known that a large portion of tumors have mutated
p53.%8 As NF-kB is constitutively activated in many cancers,>®
it may drive v2 expression in cancer cells with mutated p53. On
the other hand, some cancer-associated p53 mutants exhibit
alterations in target gene regulation;>*%® thus, it is possible
that mutated p53 may have an enhanced ability to induce v2 in
tumors. Regardless, we show that v2 can influence responses
to chemotherapeutic agents even under conditions of reduced
p53 and that v2 silencing arrests DNA replication even in
cancer cells depleted of p53.

Our findings point to the presence of a negative feedback
loop between TNFAIP8 v2 and p53 in the context of stress and
DNA damage signaling. The feedback of TNFAIP8 upon p53
could be similar to the p53-Wip1 feedback loop*® and serve as
a mechanism by which p53 signaling is brought back to
prestress levels when damage is repaired. Our findings that v2
is a late-responding p53 target gene (Figure 2g) fit with this
hypothesis that v2 could have a role in homeostatic regulation.
We speculate that elevated v2 expression supports cancer cell
proliferation and survival and that it may also promote
chemotherapy resistance.

Therapeutic inhibition of v2 in conjunction with
DNA-damaging anticancer drugs used in the clinic might
provide synergy by removing restraint upon p53 tumor
suppressive function. We speculate that v2 suppression of
p53 signaling in noncancerous cells (harboring wild-type p53)
may also protect healthy tissue during chemotherapy.*' Thus,
targeting v2 inhibition specifically to cancer cells, for example,
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Figure 7 Proposed scheme of interactions of TNFAIP8 v2 with p53 in cancer.
Under basal conditions in A549 cancer cells, v2 promotes DNA replication, possibly
by maintaining PCNA levels, and inhibits cell cycle arrest through restraining p53-
dependent expression of p53 target genes including p21. Failed downregulation of
cyclins may also contribute to S-phase stalling. In response to DNA damage (e.g.,
DOX), p53 promotes v2 induction. v2, in turn, suppresses p53-dependent pro-
apoptotic responses. In this manner, basal overexpression of TNFAIP8 v2 may
promote tumorigenesis (by facilitating DNA replication and preventing cell cycle
arrest), whereas p53-induced v2 in the setting of DNA-damaging agents may also
promote resistance to cancer therapy (by suppressing apoptosis)

with nanocarriers, antibody—drug conjugates, or other
approaches,*>*% may maintain v2/p53-dependent protection
of normal cells while sensitizing tumor cells to DNA-damaging
drugs. Furthermore, as sensitization of cancer cells to therapy
by v2 depletion appears to require p53, inhibition of v2 along
with administration of small molecules that activate wild-type
p53 or revert mutant p53 to function like wild-type p53 (e.g.,
nutlin-3, RITA, PK7088%4~%%) may also be beneficial for cancer
treatment.

In summary, we identify variant 2 of TNFAIP8 as an
oncogenic gene product that appears to be required for
several hallmark features of cancer cells, including sustained
proliferative signaling, evasion of growth suppressors, and
resistance to cell death.*” Mechanistically, our results highlight
that v2 participates in reciprocal regulation with p53 and exerts
broad suppression of p53 functions. We propose that
TNFAIP8 v2 may be a fruitful target for therapeutic develop-
ment in cancer.

Materials and Methods

Reagents and cell lines. U20S, A549, THP-1, HCT-116, and Raji cell lines
were cultured as described by American Tissue Culture Collection (Manassas, VA,
USA). Human monocyte-derived macrophages were cultured as previously
described, in accordance with a NIEHS IRB-approved protocol.® Human skin
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fibroblasts were cultured as previously described.*® DOX, staurosporine, and nutlin-
3 (Sigma-Aldrich, St. Louis, MO, USA) were used at 0.3 ug/ml, 2.5 uM, or 10 uM,
respectively.

Lentiviral transduction and plasmid transfection. A549 cells stably
expressing scramble or p53-directed shRNA were established as previously
described.'” Cells were transduced with either lentiviral scramble shRNA or a
validated TNFAIP8-directed shRNA (Cat. no. SHCLND-NM_014350, TRC:
TRCN0000116159, Sigma-Aldrich; 24 h). After 48 h, the cells were treated or
assayed. For v2 overexpression, empty (pCMV-entry, Origene, Rockville, MD, USA)
or v2 expression vector (RC220669, Origene) were transiently transfected using
Lipofectamine 3000 (ThermoFisher Scientific, Waltham, MA, USA; 24 h).

TCGA data analysis. The results are in whole or part based upon data
generated by the TCGA Research Network: http://cancergenome.nih.gov/. Isoform-
level normalized RSEM scores for TNFAIP8 transcripts (uc003ksi, uc003ksg)
available as of 1 October 2014 were extracted from bulk download data files: https://
tcga-data.nci.nih.gov/tcga/. Transcript quantification scores were collected (number
of intrapatient tumor/normal tissue-matched samples): bladder urothelial carcinoma
(N=19), lung adenocarcinoma (N=57), renal papillary cell carcinoma (N=30),
kidney chromophobe cancer (N=25), prostate adenocarcinoma (N=45), lung
squamous cell carcinoma (N=50), renal clear cell carcinoma (N=72), head and
neck squamous cell carcinoma (N=40), breast cancer (N=110), hepatocellular
carcinoma (N=50), and colon adenocarcinoma (N=22).

Real-time PCR. RNA was reverse transcribed using the cDNA Reverse
transcription kit (Applied Biosystems, Waltham, MA, USA) and used as template for
SYBR green and TagMan expression assays according to the manufacturer’s
guidelines (Applied Biosystems). Primers and primer/probe sets are described in
Supplementary Table S1.

ChiIP-seq and PCR. The p53 ChIP-seq and PCR were as previously
described'” (Supplementary Table S2). Briefly, the chromatin was fixed
(1% formaldehyde for 10 min, then neutralized with 0.125 mM glycine), and nuclei
were harvested in Farnham lysis buffer (5 mM PIPES, pH 8.0, 85 mM KCl, 0.5%
NP-40). The chromatin was extracted with RIPA buffer (1% NP-40, 0.5% sodium
deoxycholate, 0.1% SDS in PBS) and sheared by sonication (three 15 min cycles of
30 s on, 30 s off). DNA was isolated after immunoprecipitation with either a mouse
IgG (negative control, Santa Cruz) or p53 antibody (DO-1, Santa Cruz, Dallas, TX,
USA). For ChIP-PCR, specific primers (Supplementary Table S2) were used in
SYBR green PCR assays according to the manufacturers protocol (Applied
Biosystems). Sequencing (ChIP-seq) was performed as previously described.'”

Immunoblotting and immunofluorescence. Immunofluorescence and
immunoblotting was performed as previously described.® Whole-cell extracts,
nuclear extracts, and chromatin-bound extracts were isolated with RIPA buffer
(50 mM Tris, pH 8, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% deoxycholic acid),
the NE-PER kit (ThermoFisher Scientific), and the subcellular protein fractionation
kit for cultured cells (ThermoFisher Scientific), respectively. For immunofluores-
cence, cells were cultured on coverslips and fixed and permeabilized with
4% formaldehyde and 0.1% Triton X-100, followed by probing with antibodies for
proteins of interest. Antibodies are in the Supplementary Information.

Promoter cloning and reporter assays. Cloning into the pGL4.26 firefly
luciferase reporter vector (Promega, Madison, WI, USA) and assay of Renilla
luciferase-normalized (pRL-SV40 Renilla luciferase control vector, Promega) activity
were performed as previously reported with the dual-luciferase reporter assay per
the manufacturer’s protocol (Promega).®® Cloning and primer details are described
in Supplementary Information.

Three-dimensional chromatin capture assay (3C assay). An
established protocol was followed.3' Briefly, chromatin was crosslinked with
formaldehyde, neutralized with glycine, harvested with lysis buffer (10 mM Tris-HCI
(pH 8.0), 10 mM NaCl, 0.2% NP-40,) digested with EcoRl, ligated at 3 ng/ul DNA
with T4 ligase, and analyzed by PCR (Supplementary Table S1).

BrdU assay and cell cycle analysis. Cells were pulsed with BrdU (10 M,
30 min) and processed according to the manufacturer (BD Biosciences/
Pharmingen, San Jose, CA, USA). Fluorescence was measured with a LSRIl
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Flow Cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) after gating on
single cells.

Annexin V and caspase activation assays. The manufacturer’s
protocols were followed: Annexin V-FITC kit (Cat. no. 4830-01-K, Trevigen,
Gaithersburg, MD, USA) and Caspase-Glo 3/7 assay (Cat. no. G8090, Promega).

Nanostring assay. Expression of genes in the PanCancer pathways panel
and a custom codeset were measured as per the manufacturer (NanoString
Technologies, Seattle, WA, USA) with nCounter Digital Analyzer and nSolver (v2.5)
software. Additional details regarding analysis are in the Supplementary
Information.

Statistical analysis. Data were graphed and analyzed with GraphPad Prism
software (La Jolla, CA, USA). Student’s ttest was used for statistical analysis.
P<0.05 was defined as significant.
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