
NMR Identification of the Binding Surfaces Involved in the 
Salmonella and Shigella Type III Secretion Tip-Translocon 
Protein-Protein Interactions

Andrew C. McShan1,#, Kawaljit Kaur1,#, Srirupa Chatterjee2, Kevin M. Knight3, and Roberto 
N. De Guzman1,*

1Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 USA

Abstract

The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including 

Salmonella and Shigella, which together are responsible for millions of deaths worldwide each 

year. The structural component of the T3SS consists of the needle apparatus, which is assembled 

in part by the protein-protein interaction between the tip and the translocon. The atomic detail of 

the interaction between the tip and the translocon proteins is currently unknown. Here, we used 

NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein 

interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed 

α/β domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein 

and the IpaD tip protein interact with each other using similar surfaces identified for the 

Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon 

protein, previously thought to be important for the interaction, had little change on the binding 

surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into 

human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the 

tip-translocon protein-protein interaction and advance our understanding of the assembly of the 

T3SS needle apparatus.
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INTRODUCTION

Many Gram-negative bacteria assemble a protein nanoinjector called the type III secretion 

system (T3SS) to inject virulence factors into the cytoplasm of host cells and initiate 

infectious diseases. This includes the causative agents of food poisoning/typhoid 

(Salmonella Typhimurium/Typhi) and dysentery (Shigella flexneri). Together, these 

pathogens are responsible for millions of deaths worldwide each year, primarily in children 
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under the age of six.1,2 The T3SS is essential for pathogenicity as deletions of its protein 

components render bacteria non-invasive.3 The structural component of the T3SS, the needle 

apparatus, is composed of a base anchored at the bacterial cell membranes, an extracellular 

needle, a tip complex and a translocon.4 The needle is formed by the oligomerization of PrgI 

in Salmonella and MxiH in Shigella and the atomic structure of the polymerized needle has 

been determined for both Salmonella and Shigella.5,6 At the needle tip sits a complex of an 

estimated pentameric copy of SipD in Salmonella 7 and IpaD in Shigella.8,9 The tip complex 

functions as a signal transducer for host cell contact, a platform for the assembly of the 

translocon, and a regulator of secretion of effector proteins.7,10,11 The crystal structures of 

SipD12,13 and IpaD14,15 reveal three domains: an N-terminal α-helical hairpin, a central 

coiled-coil and a mixed α/β region (Fig. 1). The N-terminal α-helical hairpin functions as a 

self-chaperone that prevents self-oligomerization and premature interactions with other 

T3SS proteins, such as the needle.15,16 A current hypothesis is that during assembly at the 

tip of the needle, the N-terminal α-helical hairpin of SipD/IpaD is displaced to allow 

interaction with the needle.15,16

Upon host cell contact, bacteria assemble a ~3 nm wide translocon pore in the host 

membrane to allow the passage of effectors into the host cytoplasm.17–19 The translocon is 

assembled from two transmembrane proteins termed the major and the minor translocon 

protein based on their molecular weights. The major and minor translocon proteins in 

Salmonella are SipB and SipC, respectively; and their counterparts in Shigella are IpaB and 

IpaC, respectively.3,4,17 The translocon proteins also function as effectors.20–22 The 

topology of SipB and IpaB are predicted to contain an N-terminal ectodomain, a 

transmembrane helical region, and a C-terminal amphipathic helix.23–27 The atomic 

structure of the assembled translocon or the full length translocon proteins is currently 

unknown, however, crystal structures of the N-terminal ectodomains of SipB and IpaB 

revealed structurally similar coiled-coil motifs.28 Further, Nguyen et al.29 recently proposed 

a crystallography-derived model of the membrane-insertion and topology of the SipB/IpaB 

counterpart in Aeromonas hydrophila, AopB.

How the translocon proteins interact with the tip protein is poorly understood. Dickenson et 
al.23 reported the interaction between the Shigella IpaD tip protein with the N-terminal 

ectodomain of IpaB (residues 11-226) by FRET and showed that the interaction required the 

presence of the bile salt deoxycholate and that IpaB residues 11–27 were essential for the 

interaction. Results showing that the proximal region of SipD (defined here as the bottom of 

the coiled-coil, Fig. 1, which is pointed towards the T3SS needle) is essential for its 

interaction with the needle protein PrgI16,30 led us to hypothesize that the distal region of 

SipD (defined here as the upper portion of the coiled-coil and mixed α/β domain, Fig. 1), is 

likely the site of interaction for the translocon. Here, we show results of NMR titrations 

between the tip proteins and the translocon proteins of Salmonella and Shigella. Our results 

show that the tip protein of both Salmonella and Shigella interacts with the N-terminal 

domain of their respective major translocon protein. The regions of the tip proteins involved 

in the interaction, the distal region, are conserved between the two bacteria. Additionally, 

SipD mutations at the distal region resulted in decreased invasion of Salmonella into human 

epithelial cells. Our results suggest a model of protein-protein interaction between the tip 

and the major translocon protein of the T3SS.
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MATERIALS AND METHODS

Protein Expression and Purification

The expression and purification of SipDC244S (residues 39-343 C244S) has been described 

previously.13 IpaD (residues 38-332) and IpaDC322S (residues 38-332 C322S) were 

subcloned into the NdeI/SalI sites of a modified pET-21a expression vector containing an N-

terminal His6 tag followed by a tobacco etch virus (TEV) protease cleavage site. Both tip 

proteins retained a GHM artifact after cleavage with TEV protease. We previously reported 

that the C244S point mutation does not alter the crystal structure of SipD and Salmonella 
harboring the SipDC244S mutation are fully functional in assembling the T3SS and invading 

eukaryotic cells.13 This suggests that Cys to Ser point mutations do not drastically alter the 

structure and function of T3SS tip proteins. SipB11-232, SipB82-312, IpaB9-226 and IpaB74-224 

were subcloned into the NdeI/XhoI sites of pET-22b. The SipB and IpaB constructs retained 

a non-cleavable C-terminal LEH6 tag for protein purification. Unlabeled SipB and IpaB 

proteins were expressed in E. coli BL21(DE3) DNAY cells in 1 liter of Luria Broth media 

containing 30 μg/mL kanamycin and 100 μg/mL carbenicillin. Cells were grown at 37°C 

until an OD600 of ~0.8, induced with isopropyl-β-D-thiogalactopyrandoside (IPTG) (1 mM 

IPTG for SipB and 0.5 mM IPTG for IpaB) and grown overnight at 15°C to a final OD600 of 

~2.6. ILV labeling where the isoleucine Cδ1, the leucine Cδ, and the valine Cγ methyl 

groups are 13C-labeled was used. Uniformly 15N/ILV-labeled tip proteins were expressed in 

1 liter of 1× M9 minimal media at 37°C containing 1 g/L 15NH4Cl. At an OD600 of ~ 0.4 the 

growth medium was supplemented with 60 mg of 2-ketobutyric acid-4-13C (Sigma #571342; 

which labels the isoleucine 13Cδ1 methyl group) and 100 mg of 2-keto-3-(methyl-13C)-

butyric-4-13C acid (Sigma 571334; which labels the leucine 13Cδ and the valine 13Cγ 
methyl groups). For assignment of ILV 13C methyl resonances, perdeuterated 15N/ILV-

labeled SipDC244S was prepared by cell growth in M9 minimal media in 1 liter of D2O 

with 15N- and ILV-labels, and 2 g/L deuterated D-glucose-1,2,3,4,5,6,6-d7 (Cambridge 

Isotope Laboratories #CLM-2062). Protein expression was induced with 1 mM IPTG at an 

OD600 of 0.8 and cell growth was continued overnight at 15°C. Bacterial cells were 

harvested by centrifugation (4000 rpm, 10 min), resuspended with binding buffer (500 mM 

NaCl, 20 mM Tris-HCl, 5 mM imidazole, pH 8.0, 0.1 mM phenylmethanesulfonyl fluoride) 

and sonicated. The cell lysate was centrifuged (13,000 rpm, 10 min) to remove cellular 

debris and 700 μL of 5% polyethyleneimine was added to the supernatant to precipitate the 

nucleic acids and the mixture was centrifuged (13,000 rpm, 10 min). The supernatant was 

loaded into a 10 mL Ni2+-affinity column (Gold Biotechnology), and the column was 

washed with 150 mL binding buffer (500 mM NaCl, 20 mM Tris-HCl, 5 mM imidazole, pH 

8.0), and eluted with 40 mL elution buffer (500 mM NaCl, 20 mM Tris-HCl, 250 mM 

imidazole, pH 8.0). For SipD and IpaD constructs, the eluted fractions were pooled and 

incubated in 0.02% by volume of 0.1 mM recombinant tobacco etch virus (TEV) protease31 

in buffer (50 mM Tris-HCl, pH 8.0, 0.5 mM EDTA, 1 mM DTT, 20 mM NaCl) at room 

temperature overnight. The mixture was purified by Ni2+-affinity chromatography to 

separate the protein (which flowed through the Ni2+ column) from the affinity tag (which 

was retained in the Ni2+ column). Purified proteins were dialyzed into NMR buffer (100 mM 

NaCl, 20 mM sodium phosphate, pH 7.4 and 10% D2O) and concentrated using Amicon 

Ultra 3K (Millipore) filtration columns. Protein concentrations were measured by A280.
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NMR Spectroscopy

NMR data were collected using a Bruker Avance 800 MHz spectrometer equipped with a 

cryogenic triple resonance probe and were processed using NMRPipe32 and analyzed using 

NMRView.33 Two-dimensional 1H-15N TROSY spectra were acquired at 30°C using ~0.4 

mM of 15N/ILV SipDC244S dissolved in NMR buffer with and without unlabeled SipB11-232 

or SipB82-312. Two-dimensional 1H-15N-TROSY spectra were acquired at 30°C using ~0.2 

mM 15N/ILV IpaD or 15N/ILV IpaDC322S dissolved in NMR buffer with and without 

unlabeled IpaB9-226 or IpaB74-224. Two IpaD constructs were used in the NMR titrations 

reported herein. Native IpaD has a cysteine residue at position 322, thus the NMR buffer 

also contained 5 mM dithiothreitol (DTT), whereas samples with IpaDC322S did not require 

DTT in the NMR buffer. The similarity of the 2D 1H-15N TROSY spectra of IpaD and 

IpaDC322S (Fig. S1) indicated that the C322S mutation did not drastically alter the tertiary 

structure of IpaD. IpaDC322S was a better-behaved sample in solution with sharper NMR 

peaks and the sample was more stable over time, hence, IpaDC322S was used in some of the 

titrations reported herein. The previously reported amide resonance assignments of SipD34 

and IpaD35 were used in the NMR analysis. Residues perturbed during the titrations were 

mapped onto the crystal structure of SipD (PDB ID 3NZZ)13 or IpaD (PDB ID 2J0O).15

Two-dimensional 1H-13C HSQC spectra were acquired for SipDC244S ILV-labeled samples 

with and without SipB. The ILV 13C-methyl resonances of SipDC244S were assigned 

following the method of Xiao et al.36 Briefly, 500 μL of ~0.9 mM perdeuterated 15N/ILV 

SipDC244S in NMR buffer was lyophilized and resuspended in 100% D2O. A 

3D 1H-13C-13C HMQC-NOESY-HMQC dataset was acquired using 8 scans with 2048 

complex points (1H), 80 complex points (13C) and 100 complex points (NOE 13C) with a 

300 ms mixing time and a recycle delay of 2 s. Sweep widths were 10.0 ppm for 1H centered 

at 4.69 ppm and 20.0 ppm for 13C centered at 19.0 ppm. To aid in the ILV assignment, 

twelve isoleucine to leucine point mutations were introduced into SipDC244S using 

Quikchange (Stratagene). The Ile-to-Leu SipDC244S mutants were expressed in M9 media 

and labeled at the isoleucine 13Cδ1 methyl group and 2D 1H-13C HSQC spectra were 

acquired to identify the 13Cδ1 methyl peak. The rest of the leucine and valine 13C-methyl 

peaks were assigned from nuclear Overhauser effects (NOEs) from the 3D dataset in 

combination with distance information from the crystal structure of SipD (PDB ID 3NZZ).13

Salmonella Invasion Assay

A Salmonella invasion assay was used to test the effect of mutations at the distal end of 

SipD on the ability of Salmonella typhimurium to invade a cultured human intestinal 

epithelial cell line (Henle-407 cells, American Type Culture Collection CCL-6) as described 

previously.13 Wild type (SL1344) and sipD− knockout strains of Salmonella typhimurium 
were used. Single, double, or triple point mutations were introduced by Quikchange kit 

(Stratagene) in the plasmid pRK2-SipD,13 which harbored full length sipD. Percent 

invasiveness was calculated relative to the sipD− knockout strain complemented with the 

wild type SipD in pRK2-SipD. Error bars were determined from triplicate experiments.
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Immunoblotting

Salmonella typhimurium strains with the sipD− knockout and pRK2-SipD (with wild type 

and mutant SipD) were grown in 15 mL of LB broth containing 0.3 M NaCl and 1 mM 

IPTG. Cell growth was continued at 37°C at 80 rpm until the OD600 reached 0.9. Bacterial 

cells were harvested by centrifugation at 4000 rpm for 20 minutes then passed through a 

0.45 μm pore-size filter. Proteins from the cultured supernatants were precipitated by 

incubating with 10% (v/v) trichloroacetic acid at 4°C for 1 hour and recovered by 

centrifugation at 4000 pm for 40 minutes. Pellets were resuspended in 2 mL 10% (v/v) SDS 

and 8 mL ice-cold acetone then incubated overnight at −20°C. After centrifugation at 4000 

pm for 40 minutes, the pellets were dried and resuspended in 100 μL 8M Urea and 100 μL 

2× SDS-loading dye. Proteins from whole-cell lysates (cell pellets) were resuspended in 1 

mL 1× PBS and recovered by centrifugation at 13000 rpm for 15 minutes. The pellets were 

resuspended in 50 μL 1× PBS and 50 μL 2× SDS-loading dye. For immunoblotting, proteins 

were separated by SDS-PAGE and transferred to a PVDF membrane for 1.5 hours at 70 mA 

using an ECL Semi-Dry Blotter (Amersham Biosciences). After transfer, the membrane was 

incubated in 5% (v/v) non-fat dry milk with shaking for 1 hr at room temperature and then 

incubated with the primary antibody solution (1% non-fat dry milk, 0.1% Tween-20, 1× 

TBS, rat anti-SipD IgG antibody) with shaking at 4°C overnight. Following this incubation 

step, the membrane was rinsed three times with wash buffer (0.1% Tween-20, 1× TBS pH 

7.4). Membrane was then incubated in the secondary antibody solution (anti-rat IgG 

antibody conjugated to Alexa Fluor-680 in wash buffer) for 1 hr at room temperature with 

shaking. The membrane was then rinsed three times with wash buffer. The blot was analyzed 

using an ODYSSEY Infrared Imaging System (LI-COR Biosciences).

RESULTS

The N-terminal domain of SipB interacts with the distal region of SipD

We used NMR methods to identify the surfaces involved in the tip-translocon interaction by 

titrating the Salmonella SipB11-232 translocon protein into 15N/ILV labeled SipDC244S and 

monitoring the titrations by acquiring 2D 1H-15N TROSY spectra. Results of NMR titrations 

showed a concentration dependent decrease in intensities of many SipDC244S peaks (Fig. 

1A) indicating complex formation to be primarily in the intermediate exchange NMR time 

scale. In addition, some SipDC244S residues, such as N211 (Fig. 1A), G220 and K302, and 

showed changes in the chemical shift with increasing concentrations of SipB11-232 

indicating these residues were in fast exchange NMR time scale. Importantly, there were 

also many peaks, such as A99, G176, S270, that did not undergo signal broadening, even at 

a SipDC244S:SipB11-232 ratio of 1:2, indicating that complex formation did not result in 

protein aggregation, which would have broadened out all the peaks of SipDC244S. To 

identify the SipDC244S residues that were perturbed the most by SipB11-232, the peak 

intensity ratio (I1:1/I1:0) was calculated for each non-overlapped SipDC244S peak at a 

SipDC244S:SipB11-232 molar ratio of 1:1 (Fig. 1B). Residues with peak intensity ratios lower 

than the average intensity minus one standard deviation were mapped onto the structure of 

SipD (Fig. 1C). SipDC244S residues that were affected the most by SipB11-232 were 

primarily hydrophobic (L78, L116, A132, L150, G151, V156, L178, L240, L248, and L326) 

and some polar (S114, N211, N316) residues. The affected residues clustered in the distal 
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region of SipD (Fig. 1C), suggesting that this region of SipD is involved in the interaction 

with SipB.

The extreme N-terminal 11-27 residues of IpaB were previously reported to be essential for 

the interaction with IpaD.23 Residues 11-27 of IpaB are homologous to residues 13–34 of 

SipB, and this region is present in the SipB11-232 construct used in the NMR titration with 

SipD shown above (Fig. 1). To test if residues 11–34 of SipB are essential in the interaction 

with SipD, we used another construct, SipB82-312, that lacked the N-terminal 13–34 residues 

for titrations with SipDC244S and additionally contained residues 233–312, which are 

predicted to contain an additional α-helix. Titration of 15N/ILV SipDC244S with unlabeled 

SipB82-312 resulted in decreased peak intensities of specific SipDC244S peaks (Fig. S2A) 

indicating that SipB82-312 interacted with SipDC244S despite lacking the N-terminal 13–34 

residues. Plot of the peak intensity ratios of (I1:1/I1:0) of the SipDC244S:SipB82-312 complex 

at 1:1 molar ratio (Fig. S2B) and mapping the results on the structure of SipD showed that 

the affected residues of SipB82-312 were located at the distal end of SipD (Fig. S2C). Again, 

many of the residues that were affected were hydrophobic or polar residues, such as L150, 

L194, V225, Y252 and Q297. There were some differences in the residues affected between 

the two different SipB constructs, however some residues were affected in both experiments, 

such as L150, D190 and N211 (Fig. 1B & Fig. S2B). These data suggested that SipDC244S 

interacted with the N-terminal domain of SipB and that removal of the extreme N-terminal 

residues (11 to 81) of SipB did not significantly alter the affected SipD surface. Notably, we 

additionally attempted a titration between 15N/ILV SipDC244S and SipB11-312, but the NMR 

data was not acquired because sample precipitation was observed even at a SipDC244S: 

SipB11-312 molar ratio of 1:1.

Assignment of ILV 13C methyl resonances of SipD

Side-chain specific isotope-labeling techniques, such as the 13C methyl groups of isoleucine, 

leucine and valine (or ILV labeling), are utilized for NMR spectroscopy of high molecular 

weight proteins. Although ILV probes are useful in studying protein structures and dynamics 

because of their sharp NMR resonances and high sensitivity,37 they have been sparsely used 

in studies of the T3SS tip proteins because of the current lack of ILV assignments for this 

protein family. The 1H-13C HSQC spectra of 15N/ILV SipDC244S showed 114 of 114 

predicted methyl ILV resonances (Fig. S3). We report here that all the ILV 13C methyl 

resonances of SipDC244S were assigned (Fig. S3) through a combination of site-directed 

mutagenesis of isoleucine to leucine (Fig. S4) and through-space 1H-1H nuclear Overhauser 

effects (NOEs) observed using 3D HMQC-NOESY of perdeuterated ILV SipDC244S and 

distance information from the previously reported crystal structure of SipD (Fig. S5).13 

These are currently the only available ILV assignments for any T3SS tip protein and should 

facilitate further studies of molecular interactions of SipD.

Titrations of ILV labeled SipD with SipB11-232

The simultaneous labeling of SipDC244S with 15N and ILV allowed the titration with 

SipB11-232 to be monitored firstly by 2D 1H-15N HSQC to query the effect of the interaction 

on the 15N amides of SipDC244S, the results of which are shown above (Fig. 1), and secondly 

by 2D 1H-13C HSQC to query the effect of SipB11-232 on the ILV methyl resonances of 
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SipDC244S. Like the results of the amide titrations (Fig. 1), most of the affected ILV 

resonances showed decreased peak intensities with a few residues showed chemical shift 

deviations, such as I46 (Fig. 2A) and I129. To identify which SipDC244S ILV peaks were 

perturbed upon complex formation with SipB11-232, the (I1:1/I1:0) peak intensity ratio was 

plotted as a difference from peak intensity ratio of 1, which signified no change in the peak 

intensity upon complex formation (Fig. 2B). In agreement with the results of the amide 

titrations (Fig. 1C), the affected ILV methyl residues clustered at the distal end of SipD (Fig. 

2C). Importantly, there were residues that were affected in ILV methyl titrations that were 

also affected in the amide titrations, such as V156, L178, V225, L240 (Fig. 1B & Fig. 2B). 

Unlike the 15N titrations, we observed the appearance of new slow-exchange methyl ILV 

peaks in the SipDC244S 1H-13C HSQC spectra upon titration with SipB11-232 (Fig. 2A, 

arrows). The new peaks could be due to a conformational change in the side-chain methyls 

that was not observed in the 15N titrations. Together, the results of ILV methyl and amide 

titrations are in agreement that the distal region of SipD is the primary surface involved in 

the interaction with the N-terminal ectodomain of SipB.

The N-terminal domain of IpaB interacts with the distal end of IpaD

To compare the above results obtained for Salmonella on the interaction between the tip 

protein and the major translocon protein of Shigella, 15N/ILV labeled IpaD was titrated with 

unlabeled N-terminal domain of IpaB (residues 9-226). Results of NMR titrations monitored 

by 2D 1H-15N TROSY showed that, similar to the Salmonella SipD and SipB interaction, 

stepwise addition of unlabeled IpaB9-226 to IpaDC322S resulted in an IpaB9-226 concentration 

dependent decrease in peak intensities of specific IpaDC322S amide peaks (Fig. 3A). 

Importantly, there were residues that did not undergo signal broadening, even at an 

IpaDC322S:IpaB9-226 ratio of 1:2 indicating complex formation did not result in protein 

aggregation. The intensity ratio (I1:1/I1:0) for each non-overlapped IpaDC322S residue at an 

IpaDC322S:IpaB9-226 ratio of 1:1 was plotted to identify the tip residues that were perturbed 

the most upon addition of IpaB9-226 (Fig. 3B) and mapped onto the crystal structure of IpaD 

(Fig. 3C). Similar to the results observed for the Salmonella tip-translocon interaction, the 

affected residues clustered in the distal region of IpaD. IpaDC322S residues that were 

perturbed the most by IpaB9-226 were primarily hydrophobic, such as Y160, V298 and I307, 

or polar residues, such as N58, E120 and K205 (Fig. 3B).

To test if the N-terminal region of IpaB (residues 11 to 27) was essential for the interaction 

between IpaD and IpaB as reported previously,23 we titrated a shorter IpaB construct lacking 

the N-terminal region, IpaB74-224, into IpaD. Titration of 15N/ILV IpaD with unlabeled 

IpaB74-224 resulted in a concentration dependent decrease in peak intensity of many IpaD 

NMR peaks (Fig. S6A), indicating that IpaB interacted with IpaD despite lacking the N-

terminal residues 11–27. Analysis of the peak intensity ratio (I1:1/I1:0) of IpaD:IpaB74-224 

complex at 1:1 molar ratio (Fig. S6B) showed that complex formation with IpaB74-224 

affected a cluster of IpaD residues at the distal region (Fig. S6C). Many of the IpaD residues 

that were affected were hydrophobic or charged polar residues, including R55, H131, I145, 

L195, Q239, M250 and L297 (Fig. S6B). There were some differences in the residues 

affected between the two different IpaB constructs, however many residues were affected in 

both experiments, such as E120, K205, S238, L260 and V298 (Fig. 3B & Fig. S6B). 
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Together, these data suggest that, like the Salmonella homologs, IpaD interacts with the N-

terminal domain of IpaB and that removal of the extreme N-terminal residues of IpaB did 

not alter its interaction with IpaD.

The bile salt deoxycholate was reported to be essential for the interaction between IpaD and 

IpaB.23 To test this, we titrated 15N labeled IpaDC322S with unlabeled and IpaB9-226 in the 

presence of 0.4 mM deoxycholate. Like the titration in the absence of deoxycholate (Fig. 3), 

we observed a concentration dependent decrease in the peak intensity of IpaDC322S NMR 

peaks (Fig. S7A). Analysis of the peak intensity ratio of IpaDC322S:IpaB9-226 complex in the 

presence of deoxycholate complex at a 1:1:2 molar ratio (Fig. S7B) showed that the affected 

IpaDC322S residues were primarily clustered at the distal region (Fig. S7C), similar to the 

results of the IpaDC322S:IpaB9-226 complex in the absence of deoxycholate (Fig. 3C). IpaD 

residues that were affected in both the absence and presence of deoxycholate included Q148, 

Y160, Q220, W226 and I307 (Fig. 3B & Fig. S7B). Together, this suggests that 

deoxycholate did not largely alter the affected IpaD and IpaB interaction surface or modulate 

the protein affinity as observed by NMR.

Mutations in the distal end of SipD reduce invasion of Salmonella into human epithelial 
cells

To correlate the biological relevance of our NMR titration results, we tested the effect of 

mutations along the distal region of SipD on the ability of Salmonella to invade human 

intestinal epithelial Henle-407 cells using a previously reported Salmonella invasion assay.13 

Deletion of the sipD gene rendered Salmonella completely non-invasive (Fig. 4A). However, 

invasiveness could be rescued by complementing the sipD− null Salmonella strain with a 

plasmid expressing exogenous wild-type sipD (Fig. 4B). To test the significance of the distal 

end of SipD in invasion, point mutations were introduced into the mixed α/β region of the 

SipD rescue plasmid (Fig. 4B) and incorporated into the sipD− strain. Point mutations either 

moderately reduced invasion (N196D and V191D) or had no effect (L271D and L280D) 

(Fig. 4A). Because protein-protein interactions often occur across large surfaces,38 double or 

triple mutations in SipD were constructed (Fig. 4B). The double and triple mutations 

dramatically reduced the invasiveness of Salmonella (Fig. 4A). All mutant recombinant 

SipD showed similar protein fold to wild-type SipD based on circular dichroism (data not 

shown). Immunoblotting using anti-SipD antibodies of whole-cell lysates and supernatant 

showed that all the twelve SipD contructs used in the invasion assay were expressed in 

Salmonella, except for one triple mutant, N196D+V265D+L271D (Fig. S8). Thus, the 

decreased invasiveness of the SipD mutants (Fig. 4) could be ascribed to loss of function, 

except for one triple mutant, N196D+V265D+L271D, which was due to lost of protein 

expression (Fig. S8). These results suggest that the distal region of SipD is required for 

invasion and mutations that alter the surface of this region render Salmonella non-invasive.

DISCUSSION

The interaction of the tip protein and the major translocon protein is essential for the 

assembly of the T3SS needle apparatus. Dickenson et al.23 showed by FRET and 

fluorescence polarization that the Shigella IpaD tip protein interacts with the N-terminal 
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ectodomain of the IpaB major translocon protein. Here, we used NMR methods to identify 

that the surfaces of the tip protein at the distal region, which includes the upper portion of 

the coiled-coil and the mixed α/β domain (Fig. 5C), are the sites of protein-protein 

interaction with the major translocon protein. The surfaces involved in the interaction are 

similar between SipD and SipB in Salmonella (Fig. 1 & Fig. 2) and IpaD and IpaB in 

Shigella (Fig. 3). Results of both amide (Fig. 1 & Fig. 3) and ILV titrations (Fig. 2) showed 

similar surfaces are involved in the interactions. Furthermore, in Salmonella the SipD 

residues affected were primarily hydrophobic and some uncharged polar residues (Fig. 1C), 

while in Shigella the IpaD residues affected were primarily charged polar and some 

hydrophobic residues (Fig. 3C). Changes in the NMR peaks brought about by protein-

protein interaction were primarily in the intermediate exchange time scale, suggesting 

dissociation constant near the μM range (Fig. 1 & Fig. 3), which is in agreement with the 

reported Kd in the low μM range obtained by fluorescence spectroscopy.23 Our results are in 

agreement with the proposed interaction surface for the tip and the major translocon protein 

identified by paramagnetic relaxation enhancement.39 Additional data presented here show 

the role of deoxycholate and of the extreme N-terminal residues of the major translocon 

proteins in the interaction with the tip proteins; provides ILV methyl assignments of SipD; 

and provides biological invasion assay to test the proposed model of the tip-translocon 

interaction.

In contrast to the previous report that the bile salt deoxycholate is required for the IpaD-

IpaB1-226 interaction,23 we observed IpaD-IpaB interaction in the absence of deoxycholate 

for the NMR titrations of IpaD-IpaB9-226 (Fig. 3) and IpaD-IpaB74-224 (Fig. S6). Bile salts 

such as deoxycholate are secreted in the intestinal tract as part of the digestive system and 

they affect the type III secretion of the enteric bacteria Shigella40,41 and Salmonella.42,43 

Deoxycholate binds to IpaD35,41 and SipD41,44, and is hypothesized to function as an 

environmental sensor for the T3SS by inducing conformational change in IpaD that leads to 

latter steps in the assembly of the translocon.35 It has been proposed that the interaction of 

deoxycholate with IpaD induces a conformational change at the distal region of IpaD which 

then promotes binding to IpaB.23 We suspect that the difference in the results of 

fluorescence and NMR methods in observing IpaD-IpaB interaction with respect to the 

absence of deoxycholate lie in the concentrations of proteins used in the titrations. NMR 

requires 2–3 orders of magnitude more concentrated protein samples compared to 

fluorescence spectroscopy. Fluorescence polarization used 80 nM of fluorescein-labeled 

IpaB titrated with up to 10 μM of IpaD,23 whereas our NMR experiments used 0.2 mM IpaD 

titrated with up to 0.4 mM IpaB. Notably, we observed that the IpaD surface affected upon 

titration with IpaB was similar in the absence (Fig. 3C) and in the presence of 0.4 mM 

deoxycholate , or a 1:1:2 ratio of IpaD to IpaB to deoxycholate (Fig. S7C). Increasing the 

concentration of deoxycholate up to 1 mM, the concentration used by Dickenson et al.,23 

resulted in sample precipitation.

Our results combined with previous data showing that the bottom of the coiled-coil of the tip 

protein is the site of protein-protein interactions with the needle protein16 leads to a model 

of the needle-tip-translocon interface. We propose a model of the needle-tip-translocon 

interface (Fig. 5) where the distal region of SipD interacts with the N-terminal ectodomain 

of SipB and the proximal end of SipD interacts with the needle PrgI. The in vivo 
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stoichiometry of the tip and translocon complex is poorly understood. However, one current 

hypothesis is that the tip complex either forms a homopentameric complex with five IpaD or 

heteropentameric complex consisting of one copy of IpaB and four copies of IpaD.9 

Similarly, the Salmonella system is hypothesized to be composed to five SipD copies 

interacting with five PrgI needle subunits.16 Our NMR results that the major translocon 

protein interacts with the distal region of the tip protein agree with the recent model of the 

Shigella tip-translocon complex derived by electron microscopy and cross-linking of IpaD 

and IpaB.9 Our results are also in agreement with a recently published topology of the 

assembled major translocon protein AopB (a homolog of SipB and IpaB) from Aeromonas 
hydrophila.29 Nguyen et al.29 show that both the N and C-termini of AopB are 

extracellularly exposed when the translocon is assembled and therefore the N-terminal 

ectodomain of the major translocon protein is available for interaction with the tip protein.29

CONCLUSIONS

We report here that the major translocon protein interacts with the distal surface of the tip 

protein in both Salmonella and Shigella. Mutations along the distal surface of the tip protein 

reduced the ability of Salmonella to invade intestinal epithelial cells, confirming the 

biological relevance of the distal surface of the tip protein. We also report the ILV methyl 

assignments of SipD and utilized the assignments in our interaction study to complement 

amide experiments (Fig. 2). Further structural studies are needed to determine which surface 

of the major translocon protein is affected upon interaction with the tip protein, whether the 

minor translocon protein is involved in the interaction with the tip and to build an atomic 

detail model of the assembled tip-translocon interface.

Data Deposition

NMR assignment of SipDC244S ILV methyl resonances have been deposited into the 

BioMagResBank with the accession number 26739.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Amide titrations of SipDC244S with SipB11-232. (A) Overlay of four 1H-15N TROSY spectra 

of 15N/ILV SipDC244S with increasing concentrations of unlabeled SipB11-232. (B) Plot of 

ratio of peak intensities of complex (I1:1) vs free (I1:0) for the SipDC244S:SipB11-232 

complex at 1.1:1.0 molar ratio shown with the average peak intensity ratio (dashed gray line) 

and one standard deviation from the average (1σ, dashed red line). (C) Residues (colored 

red) with peak intensity ratio (I1:1/I1:0) lower than 1σ were mapped onto the crystal structure 

of SipD [colored green (N-terminal hairpin), gray (coiled-coil), and orange (mixed α/β 
domain)].
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Figure 2. 
ILV titrations of SipDC244S with SipB11-232. (A) Overlay of four 1H-13C HSQC spectra 

of 15N/ILV SipDC244S with increasing concentrations of unlabeled SipB11-232. (B) Plot of 

peak intensities subtracted from one (1 − I1:1/I1:0) of the SipDC244S:SipB11-232 complex at 

molar ratio of 1.1:1.0 shown with the average value (dashed gray line) and one standard 

deviation from the average (1σ, dashed red line). (C) Residues (colored red) with (1 − I1:1/

I1:0) value higher than 1σ were mapped onto the crystal structure of SipD [colored green (N-

terminal hairpin), gray (coiled-coil), and orange (mixed α/β domain)].
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Figure 3. 
Amide titrations of IpaDC322S with IpaB9-226. (A) Overlay of four 1H-15N TROSY spectra 

of 15N/ILV IpaDC322S with increasing concentrations of unlabeled IpaB9-226. (B) Plot of 

ratio of peak intensities of complex (I1:1) vs free (I1:0) for the IpaDC322S:IpaB9-226 complex 

at 1.1:1.0 molar ratio shown with the average peak intensity ratio (dashed gray line) and one 

standard deviation from the average (1σ, dashed red line). (C) Residues (colored red) with 

peak intensity ratio (I1:1/I1:0) lower than 1σ were mapped onto the crystal structure of IpaD 

[colored green (N-terminal hairpin), gray (coiled-coil), and orange (mixed α/β domain)].
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Figure 4. 
Mutations in the distal region of SipD decrease invasion of Salmonella. (A) Deletion of sipD 
(ΔsipD) renders Salmonella non-invasive to Henle-407 human intestinal epithelial cells. 

Invasion was rescued by complementing with a plasmid containing wild-type sipD. Point 

mutations in the mixed α/β domain of SipD reduced invasion (N196D and V191D) or had 

no effect (L271D and L280D). Double and triple mutations decreased invasion even further. 

(B) The residues chosen for mutation are shown in red on the structure of SipD.
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Figure 5. 
Proposed model of the needle, tip and translocon interface. (A) Membrane topology of SipB 

showing the N-terminal domain (NTD). (B) Structure of the SipB N-terminal domain (82–

226) with predicted secondary structure of regions of unknown structure present in our SipB 

constructs. (C) Model for the interaction hubs on the tip protein SipD, where the N-terminal 

domain of the translocon SipB interacts with the mixed α/β domain and the needle PrgI in 

interacts with the bottom of the coiled-coiled. The model of the Shigella IpaD and IpaB is 

expected to be homologous.
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