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ABSTRACT: In this work a new ultrafast data collection
strategy for electron diffraction tomography is presented
that allows reducing data acquisition time by one order of
magnitude. This methodology minimizes the radiation
damage of beam-sensitive materials, such as microporous
materials. This method, combined with the precession of
the electron beam, provides high quality data enabling the
determination of very complex structures. Most impor-
tantly, the implementation of this new electron diffraction
methodology is easily affordable in any modern electron
microscope. As a proof of concept, we have solved a new
highly complex zeolitic structure named ITQ-58, with a
very low symmetry (triclinic) and a large unit cell volume
(1874.6 A%), containing 16 silicon and 32 oxygen atoms in
its asymmetric unit, which would be very difficult to solve
with the state of the art techniques.

lectron diffraction tomography (EDT) techniques have

recently experienced a renewed interest due to the
possibility of expanding “single crystal” approach to materials
that occur as very small crystallites or as mixtures of different
phases. When comparing EDT with the widely employed single
crystal X-ray diffraction (SCXRD) technique, the latest is the
preferred technique for structural determination. Indeed,
complete reflection data sets can be obtained with the latter in
a few hours using “in-house” instruments. Moreover, easy
available software packages can lead to the complete structure
determination by employing a plethora of methods (such as
direct methods, simulated annealing, or dual-space methods
among others). However, it often occurs that important
compounds cannot be synthesized with crystal sizes large
enough for using SCXRD technique, or are obtained as complex
mixtures of different phases and/or polymorphs. In those cases,
structural elucidation of these new materials becomes very
challenging.

High-resolution powder X-ray diffraction (HR-PXRD)
techniques typically have been employed for solving the structure
of powder crystalline materials. However, the severe reflection
overlapping makes nearly impossible to achieve a final solution
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for materials having low symmetry and/or very large unit cell
parameters. While better resolution can be achieved with the use
of synchrotron radiation, sometimes those new data are not
enough for eliminating the overlapping, and this technique is not
always of easy and immediate access.

Zeolites are a paradigmatic family of this type of materials since
they normally occur as fine nanopowders with large unit cell
volumes and low symmetries, which result in highly complex
structures that cannot be straightforwardly solved by HR-PXRD.
However, the structural elucidation of zeolitic materials is not
only a thought-provoking academic case but it also has relevant
practical implications. Indeed, many of the most important
applications of zeolites rely on their structure, the channel
aperture, and dimensionality being key parameters that
determine their industrial applications as molecular sieves and
catalysts.

Therefore, it is not surprising that the most advanced EDT
methods have been used for structural elucidation of zeolites in
recent years. Comprehensive reviews on structural determi-
nation of porous solids using electron crystallography have been
recently published, showing the 1mpresswe advances that have
been made in the past decade.'™*

First, automated electron diffraction tomography (ADT) was
proposed for collecting reliable data sets complete enough to
determine the structure of micro- and nanocrystals.”® By
combining ADT with precession electron diffraction (PED)’
dynamical effects were significantly reduced,® providing nearly
kinematical diffraction intensities that can be used as those
obtained in a conventional SCXRD experiment.’

Soon afterward, the rotational electron diffraction (RED) was
developed, improving the sampling of the collected data through
the combination of the crystal tilt angle with the electron beam
tilt angle.'>""

Both methods have permitted the determination of very
complex zeolite structures in the form of nanopowder
samples.'””'® However, one of the main drawbacks for applying
EDT techniques to zeolitic materials is the very high radiation
damage they suffer under the electron beam. Typically, a
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complete EDT data set requires 30—60 min for a complete data
acquisition, and, most of the time, the zeolite crystals suffer a
severe amorphization. A proposed option to reduce the dosing
on the sample consists in combining scanning transmission
electron microscopy (STEM) imaging and nanobeam electron
diffraction (NED)."” Moreover, the stability of the sample under
the electron beam can be further increased by cooling the sample
with liquid N, using a cryo-holder."® Another option to minimize
the radiation damage is the use of highly sensitive direct electron
detection cameras that allow reducing the electron dose on the
sample.'” Very recently, a novel fast data collection methodology
has been proposed in which the crystal is continuously rotated
during sequential pattern acquisition avoiding intermediate stops
for relocation of the crystal.”” By applying this method, the total
collection time is considerably reduced from 30—60 min down to
3—6 min for a data set that makes it possible to determine the
structure of the sample under study.

Here, we present a new method for ultrafast EDT experiments
in order to minimize the radiation damage on the studied sample
by reducing the time required for the data collection. It is based
on the careful alignment of the goniometer for achieving an
extreme stability of the sample position over a tilting angle of 50°.
Following our data acquisition routine, ultrafast EDT experi-
ments are carried out in time ranges as short as 30 s (see
Supporting Video S1). Integrated with PED technique, the
proposed experimental configuration has been proved to be a
reliable strategy for obtaining good quality data, allowing the
structural determination through standard SCXRD methods. We
have applied this improved EDT method to solve the complex
structure of a new zeolite, named ITQ-58.

The zeolite ITQ-58 was first detected as an impurity during the
synthesis of the zeolite ITQ-52 (IFW) using the butane-1,4-
diylbis[tris(dimethylamino )phosphonium] cation as organic
structure directing agent (OSDA).”" Attempts to obtain zeolite
ITQ-58 were successful using the former OSDA, but also in the
presence of a series of closely related dicationic organic moieties
as shown in Supporting Information. The use of different OSDAs
provides zeolites ITQ-58 with different chemical compositions
and crystal sizes, although the largest crystals do not grow as a
single phase, being always accompanied by impurities of STF
(Supporting Tables S1—S3). Due to the severe peak overlapping,
attempts to solve or even index the structure using PXRD data
were not successful, even using HR-PXRD synchrotron data
collected at the ALBA Light Source.

At that point, we investigated the structure of the zeolite ITQ-
58 through EDT in a JEOL 2100F microscope operating at 200
kV, in parallel microdiffraction mode, and equipped with a
NanoMEGAS-Digistar P1000 for beam precession and a
GATAN Orius SC600A CCD camera. We selected the sample
with the largest crystals (Supporting Figure S7) since it seems to
be the less sensitive to beam damage under the electron beam.
However, this sample was still very sensitive to radiation damage,
and therefore, we paid very special attention to reduce the time
for data collection. With this purpose, the experimental setup was
optimized by adjusting carefully the crystal position to ensure
that it stayed at the diffracting area throughout the whole rotation
of the goniometer. Also, different combinations of the
goniometer angular speed and the CCD configuration were
explored. After achieving the most convenient arrangement (the
complete description is included as Supporting Information), we
were able to collect a data set covering an angular range of 50° in
just 30 s, implying a data collection speed more than 4 times
faster than the fastest one reported up to now in the open

literature."”*° Following this approach, five different data sets of

50° have been collected for five different crystals with a similar
size of a few hundred nanometers each one (the raw measured
data sets and one video reproducing an example of data
acquisition in real time are available as Supporting Information).
The collected data were processed, and the unit cell
corresponding to each crystal was obtained using the program
ADT3D.” Projections of the reconstructed reciprocal space for
one of the data sets are shown in Figure S9. One of the crystals
corresponded to an impurity, the zeolite STF, which had been
already detected from PXRD data during the synthesis process.
The four remaining data sets could be indexed with the same
triclinic unit cell, with lattice parametersa=11.2A,b=12.94,c=
13.7A, a=77.0°, f=76.0°, and y = 74.4°. (Detailed information
on each data set is given in Table S8 of the Supporting
Information).

Structure solution was performed using direct methods as
implemented in the program Sir20 14 First, the structure
solution was attempted without success using each one of the
obtained data sets, probably because of the low coverage
exhibited by each data set (Table S8). To overcome this
difficulty, the four collected data sets were transformed to a
common scale and concatenated to obtain a global data set with a
higher coverage (Table S8). This new data set led to a suitable
solution with the space group PI (No. 2). All of the 16 Si atoms
of the structure were directly located together with 18 O atoms
by employing SIR2014. This partial solution was easily
completed with the remaining 14 O atoms from successive
difference Fourier maps obtained from the EDT data using the
programs SHELX"* and OLEX2.”

To validate the model achieved through the EDT analysis, the
structure of the zeolite ITQ-58 was refined by the Rietveld
method with the program FullProf* using the XRPD pattern of
the calcined sample of pure ITQ-58 with medium crystal size (0.3
X 0.5 X 0.5 um?) (Figure S7). The refined XRPD patterns are
shown in Figure 1, and the projections along the main
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Figure 1. Rietveld refinement of the X-ray diffraction pattern of calcined
ITQ-58. Red data points show the observed XRPD pattern; the black
line along these points is the calculated XRPD pattern, with the
difference profile at the bottom in blue. The green vertical tick marks
below the pattern give the positions of the Bragg reflections. The inset
shows the detail corresponding to the 26 range from 25° to 50°, with the
scale of intensities multiplied by S. Residual values: R, = 0.086, R, =
0.027, Ry = 0.037, and R = 0.030. Wavelength corresponding to Cu
Ka,,.
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crystallographic axes are shown in Figure 2. After the refinement,
the residual values were R, = 0.086, R,,;, = 0.027, Ry = 0.037, and
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Figure 2. Projection of the structure of ITQ-58 along the main
crystallographic axes (blue, Si; red, O).

R =0.030. The refined structures from EDT and XRPD data are
in good agreement as shown in Supporting Information.

Then, the structure of ITQ-58 can be described using four
basic cages: [4°5*], [4°5%6'], [5*67] ,and the large [4'25'%6'28%]
cavity, formed by two [4°5°6°8%10"] cages connected through the
10R (Figure 3).

Two [4%5*], two [4%5%6'], and one [5*6%] cages connect
conforming a basic block (Figure 4a). These blocks are
connected to their neighbors by sharing 4R rings faces, forming
chains along the ¢ direction (Figure 4b). Then, the different
chains are connected to their neighbors forming layers in the bc
plane, with formation of series of three 6R and one 4R (Figure
4c). Finally, the layers are interconnected forming 4R, giving rise
to the formation of the tridimensional structure with large
cavities (Figure 4d).

The access to the large cavities passes through 8R apertures.
Each cavity is accessible through two 8R with a pore aperture of
4.0 X 3.3 A and two distorted 8R with a pore aperture of 5.9 X 2.5
A.

Figure 3. Basic cages of ITQ-58. (a) [435*], (b) [4°5%6'], (c) [5%6*], and
(d) [4'25"26"28%]. The openings of the half cavity [4°5°6°8210"] are
highlighted (e) (the large inner 10R in light blue and the two 8R opening
windows in yellow). O atoms have been removed for clarity.

a)

Figure 4. Construction of the structure of ITQ-58. (a) Two [4°5%]
(blue), two [4°5%6'] (green), and one [5%6*] (yellow) cages connect
forming a basic block. (b) The previous blocks connect to each other
sharing a 4R forming chains along c. (c) Each chain connects to the
adjacent ones in the bc plane forming layers. 4R and 6R are formed in the
process. (d) Layers stack along the a direction forming the complete 3D
structure.

The crystallographic pore apertures and cavity volume are in
good agreement with those estimated from the N, and Ar
adsorption isotherms (see Figure S6 and subsequent discussion
in Supporting Information).

Also, in order to determine the distribution of B in the different
sites, the T-sites were refined as mixed Si/B positions. The
refinement shows a preferential occupation of B in certain T sites.
T1, T2, T3, T4, T6, T7, T8, T11, T13, and T14 are purely
siliceous, while B can be found in TS (0.97 Si, 0.03 B), T9 (0.92
Si, 0.08 B), T12 (0.90 Si, 0.10 B), T16 (0.87 Si, 0.13 B), T1S
(0.70 Si, 0.30 B), and especially in T10 (0.60 Si, 0.40 B).

Finally, it is worth mentioning that it was also possible to
determine the framework structure of the zeolite STF by
applying the previously described analysis to the EDT data set
corresponding to the impurity. A partial model with all the five
independent Si atoms and seven O atoms was initially obtained,
and it could be completed localizing the three missing O atoms
through the corresponding difference Fourier map. This
indicates that the data collection strategy proposed in this
work is not restricted to a single example, but it could be of
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general application, and that the data obtained following this
approach are accurate enough to solve unknown structures
employing currently well-established methods and using easy
accessible laboratory instruments.

As summary, in this work we have demonstrated that a
modification of precession-assisted electron diffraction tomog-
raphy data collection allows acquiring ED data in an extremely
fast mode to minimize the radiation damage of the sample. The
quality of these ED data is good enough for solving very complex
and unknown structures using well-established methods. The
implementation of this new ultrafast data collection approach is
affordable in any electron microscope, and it could pave the way
for solving structures beyond inorganic solids. In combination
with ultrahigh sensitive direct electron detection cameras that
allow low electron dosing and cryogenic temperatures for further
stabilization of the sample, this ultrafast electron diffraction
tomography could facilitate the structural determination of
pharmaceutical compounds or even proteins.
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