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Twist-induced guidance in coreless photonic crystal
fiber: A helical channel for light
Ramin Beravat, Gordon K. L. Wong,* Michael H. Frosz, Xiao Ming Xi, Philip St.J. Russell

A century ago, Einstein proposed that gravitational forces were the result of the curvature of space-time and
predicted that light rays would deflect when passing a massive celestial object. We report that twisting the
periodically structured “space” within a coreless photonic crystal fiber creates a helical channel where guided
modes can form despite the absence of any discernible core structure. Using a Hamiltonian optics analysis, we
show that the light rays follow closed spiral or oscillatory paths within the helical channel, in close analogy with
the geodesics of motion in a two-dimensional gravitational field. The mode diameter shrinks, and its refractive
index rises, as the twist rate increases. The birefringence, orbital angular momentum, and dispersion of these
unusual modes are explored.
INTRODUCTION
Since the first experimental demonstration of light guidance by
Colladon in 1842 (1), the design of the vastmajority of opticalwaveguides
has scarcely changed:A guiding core is surrounded by a cladding of lower
refractive index, ensuring that the total internal reflection can operate.
In the late 1990s, a new confinement mechanism emerged—the two-
dimensional (2D) photonic band gap (PBG)—which removed the res-
triction that the core index must be higher than the cladding. In every
previouscase,however, ithasbeen tacitlyassumed that theremustbeacore—
a regionwhere the optical properties differ from the surrounding cladding.

Here, we report a new mechanism of light guidance based on a
coreless photonic crystal fiber (PCF) that has been twisted around
its axis during the drawing process (Fig. 1). The resulting helically
curved periodic “space” creates a topological channel within which
light can be robustly trapped, with a confinement strength that scales
with the twist rate. This entirely new form of waveguide relies on the
quadratic increase in optical path length with radius that results from
its helical geometry [a similar effect is used in the travelling wave tube
amplifier to velocity-match an electron beam to a faster microwave
signal travelling on a helical wire (2)]. This creates, at the bottom of
the fundamental passband, a potential well where light is confined by
PBG effects. The guidance phenomenon is highly unusual because
cleaving the twisted fiber and examining its cross section reveals no
core structure at which light could be trapped.

Chiral fibers with cores have been studied since the 1980s, for
example, in connection with circular birefringence (3, 4), current
sensing (5, 6), and elimination of higher-order modes in fiber lasers
using helical off-axis cores (7, 8). Twisted multicore PCFs have
been shown to support helical Bloch waves and to exhibit orbital
angular momentum (OAM) birefringence (9). There have also been
many theoretical studies, for example, of spin-orbit coupling (10, 11)
and Bloch dynamics in helical coupled waveguide arrays (12).
RESULTS AND DISCUSSION
Guidance mechanism
The mechanism underlying this unexpected and intriguing phenom-
enon can be best understood by first considering the optical Bloch
waves in an untwisted coreless PCF. In the fundamental passband
(the one with the highest axial refractive index), the field distribution
of a Blochwave (in an infinitely extendedperiodic cladding) consists of
a graphene-like pattern of coupled field lobes trapped between the hol-
low channels. In the twisted fiber, these lobes are forced to describe
helical paths around the fiber axis, which increases their effective axial
refractive index in proportion to the square of the radius r: Dneff(r) ≈
nSMa

2r2/2, where a = 2p/L is the twist rate, L is the helical pitch, and
nSM is the refractive index of the space-fillingmode in the straight fiber.

An essential tool for understanding the characteristics of Bloch
waves in periodic structures is the dispersion surface, defined in
our case as a 3D plot of axial refractive index neff versus transverse
wave vector kT at fixed optical frequency w. The group velocity of a
given Bloch wave, which defines its ray direction, points normal to
the dispersion surfaces in the direction of the group velocity dw/dk =
∇kw(k). Cuts through the dispersion surface of the fundamental
(highest neff) passband in the two principal crystallographic direc-
tions (30° apart) yield the dispersion curves in Fig. 2, numerically
calculated from Maxwell’s equations using a full-vectorial plane-
wave expansion (the Brillouin zone width for the purple and blue
curves is 2p/L, where L is the interhole spacing; the second cut-
through, which exhibits Dirac points, is included to confirm that
the shape at the bottom of the passband is paraboloidal). A complete
2D PBG exists for axial refractive indices below the lower passband
edge. In the twisted PCF, the dispersion surfaces rise to higher axial
Fig. 1. The geometry of the twisted coreless PCF. (A) Schematic of a twisted
coreless PCF. The axis of rotation coincides with the hollow channel in the center.
(B) Scanning electron micrograph of the microstructure.
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refractive indices in proportion to a2r2/2 [they also tilt azimuthally
by a small angle f ≈ ar (not illustrated)]. The figure illustrates how
the rays of the Bloch waves (the “Bloch wave rays”) will refract if neff
is kept constant at value nm while the radius increases. The small
change in tilt angle with radius is ignored for simplicity (this does
not strongly affect the argument).

The fundamental space-filling mode resides at the top of the
passband (index nSM), where the curvature is such that, for fixed neff,
the Bloch wave rays refract outward with increasing radius; that is,
the structure acts as an antiguide. This explains the origins of dips
that appear in the transmission spectrum of twisted solid-core PCF
(13, 14), caused by phase matching between the core mode and leaky
azimuthal resonances (carrying OAM) in the cladding.

In the coreless PCF, however, for a fixed axial refractive index
nm, the Bloch wave rays turn parallel to the axis with increasing
radius. At a critical value of radius, given by

r̂ ¼ a�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnm=nLOÞ2 � 1

q
ð1Þ

the bottom of the passband (index nLO) is reached, and the Bloch
waves become evanescent, causing them to be reflected back
toward the axis. Trapped helical ray paths can thus form, creating
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the conditions for the formation of bound modes at values of axial
wave vector where a transverse resonance exists.

The paths taken by Bloch wave rays in graded photonic crystals
can be calculated using Hamiltonian optics, as first explained in
1999 (15). Hamiltonian theory borrows tools from general relativity
and has provided the framework for the newer field of “trans-
formation optics” (16). The governing equations take the form

dx
ds

¼ ∇kH k; xð Þ; dk
ds

¼ ∇xH k; xð Þ ð2Þ

where H(k, x) is the Hamiltonian (the spatially dependent disper-
sion relation), and x = (x, y, z, −ct) and k = (kx, ky, kz, w/c) are,
respectively, the space-time and wavevector-frequency four-vectors,
where w is the optical frequency, c is the speed of light in vacuum,
and t is the time. This equation pair shows that the gradient of the
Hamiltonian in reciprocal space changes the position in space-time,
whereas the gradient in real space ∇x H alters the position in
reciprocal space: real and reciprocal space are thus intertwined. Equa-
tion 2 can also be recast in Newtonian form as follows

d2x
ds2

¼ ∇k∇kH½ �⊗ �∇xHð Þ ¼ 1=m*½ �⊗ F ð3Þ

where [1/m*] is the reciprocal effective mass tensor, and “⊗” denotes a
tensor product. The force F is equal to −∇H, that is, the gradient in
structural properties. Briefly, the curvature of the dispersion surfaces
in reciprocal space creates a photonic effective mass, while the gra-
dient in real space, which is created by the helical twist, creates a
force that deflects the photons. Through the principle of least action
(Fermat’s principle), the Bloch wave rays follow geodesics in the heli-
cally curved space. These geodesics spiral around inside the helically
twisted PCF, trapping the light within a topological channel that we
might call a “wormhole.” Because Bloch waves have much more
complex effective mass tensors than light rays in, for example, curved
thin-film waveguides (17), they open up many new opportunities, as
seen in the current work.

To illustrate how the Hamiltonian formalism can be applied in
this case, we approximate the lower edge of the dispersion surface
(Fig. 2) to a paraboloid, permitting H to be written in the form

H ¼ �kz þ ð1þ a2r2=2ÞwnLO=cþ Aðk2x þ k2yÞ ¼ 0 ð4Þ

where A is a constant with the units of length. Substituting H into
Eq. 2 and using the approximation a2r2 << 1 (valid for our exper-
imental parameters) yields the following equations

∂ðx; y; z;�ctÞ=∂s ≈ ð2Akx; 2Aky; � 1; nLOÞ
∂ kx; ky; kz; w=c
� �

=∂s ¼ � a2nLOw
c

x; y; 0; 0ð Þ ð5Þ

which show that s = (z0 − z) = −ct/nLO and both kz = wnm/c and w
are constant. They also show that the Bloch wave rays will oscillate
harmonically within the potential well formed by the twist

ð€x;€yÞ ¼ �ðx; yÞða22wcA=nLOÞ ¼ �ðx; yÞW2 ð6Þ
Fig. 2. Cuts through the dispersion surfaces of the highest-index passband
in the two principal azimuthal directions (30° apart), numerically calculated
at a wavelength of 818 nm for the coreless PCF used in the experiments. kT is
the wave vector component normal to the fiber axis, and L is the interhole
spacing. The marked Brillouin zone is valid for the purple and blue curves. The
dark yellow curves are for the cut-through at 30° to these curves and feature Dirac
points (DPs); they are included to show that the shape at the bottom of the
passband is approximately paraboloidal. The structure supports a full 2D PBG
for axial wave vectors below the bottom of the first passband. On-axis in the
twisted PCF (r = 0), and everywhere in the untwisted PCF, the passband is as
marked, lying between regions of cutoff (neff > nSM) and PBG (neff < nLO). Close
to the bottom and top of the passband, the contours of constant neff are very
close to perfect circles. As the twist rate a increases, the entire dispersion surface
lifts to higher values of index in proportion to a2r2 [the diagram will also tilt by an
angle f ≈ ar (not illustrated)]. For the marked value of modal index nm, light prop-
agates (A → B → C) for radii up to a certain maximum value, r̂ , beyond which
point nm enters the PBG and the Bloch waves become evanescent. This causes
Bloch wave rays to turn around and return to the axis (C → B′ → A′), creating the
conditions for bound modes to form at values of nm, satisfying a separate
resonance condition. The resulting path in real space is sketched on the right
(note that it will be slightly distorted from a perfect sinusoid because the disper-
sion surface is not exactly a paraboloid).
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if A > 0, that is, provided the “nose” of the dispersion surface points
downward toward lower values of neff (Fig. 2). The general solution
of Eq. 6 is

x
�
z
� ¼ x0 cos½ðz � z0ÞWnLO=c�

y
�
z
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2 � x20

q
cos½ðz � z0ÞWnLO=cþ f�

which shows that, depending on the relative phase f and the value
of x0 < r̂, the Bloch wave rays will describe sinusoidal, ellipsoidal,
or helical paths. Eigenmodes will form at specific values of nm, co-
inciding with a separate phase-dependent resonance condition,
which can be derived using an approach similar to the zigzag model
of Kogelnik and Weber (18).

Experimental setup and initial results
The coreless fused-silica PCFs were fabricated using the con-
ventional two-stage stack-and-draw technique. A permanent twist
was imposed by spinning the preform during fiber drawing (9). A
scanning electron micrograph of the PCF microstructure is shown
in Fig. 1. It consists of a regular hexagonal array of hollow channels
with a diameter of ~2.2 mm, spaced by ~5.7 mm (air-filling fraction,
~13%). The outer fiber diameter is ~220 mm, and the axis of rota-
tion coincides (within fabrication tolerances) with the center of the
middle hollow channel.

To investigate the guidance properties of the twisted PCFs, we
launched linearly polarized light from a diode laser at a wavelength
of 818 nm into samples (a few tens of centimeters long) with three
different twist rates: 1.26, 2.2, and p rad/mm. Launch efficiencies of
more than 20% could be readily achieved using a 16× objective lens.
A clean near-field modal pattern was observed at the output face of
the fibers, imaged using a 30× objective lens and a charge-coupled
device (CCD) camera (Fig. 3). Higher twist rates caused the mode
field diameter (MFD) to shrink while at the same time increasing
the stability of guidance against external perturbations. Figure 3 shows
a comparison between the measured mode profiles and those obtained
by solving Maxwell’s equations in a helicoidal frame using the full-
vectorial finite-element method (14). The agreement is excellent.

In the upper panel of Fig. 4A, the calculated modal refractive index
and loss are plotted against twist rate for a coreless PCF with six hex-
agonal layers of hollow channels. The loss reaches a value of ~1.5 dB/m
at a = 1.5 rad/mm. Numerically adding more layers of hollow chan-
nels reduces the propagation loss without significantly altering the
mode pattern, indicating that the solid-glass outer cladding does not
play a significant role in the guidance mechanism. The lower panel of
the figure compares the measured and calculated effective MFD
(MFDeff) (19). The saturation in MFD as a approaches zero is caused
by the finite dimensions of the photonic crystal (see the caption of
Fig. 4A). It is also intriguing that the MFD falls while the refractive
index rises, which is highly unusual behavior for a waveguide.

Optical activity
Because the helical hollow channels force the light to follow a
curved path, the twist-induced mode is optically active (20); that
is, it has circular birefringence, which is defined by BC = nRC –
nLC, where nRC and nLC are the effective refractive indices of the
RC and LC polarized modes. The experimental values of BC at
818 nm were measured using the cutback technique for six differ-
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ent twist rates from –p to +p rad/mm. The results are plotted in
Fig. 4C, along with the results of numerical modeling (solid blue
curve). There is good agreement between the theory and the exper-
iment. The falloff in the magnitude of BC at shorter twist periods is
caused by the decreasing mode diameter.

Anomalous cornering
Unlike in conventional step-index fibers, where the guided mode
shifts outward away from the bend (“normal cornering”), the
twist-guided mode shifts inward toward the bend (“anomalous
cornering”) as a result of the downward-pointing lower passband
edge (Fig. 5A). Hamiltonian optics shows that there is a pleasing
link with centrifugal effects in mechanics, the difference being that,
in the twisted coreless PCF, the mode has negative effective mass
(caused by the opposite sign of the dispersion surface curvature);
thus, it moves in the opposite direction. Related effects have been
reported in all-solid bandgap PCFs (21). To explore this, near-field
distributions were directly measured at the output face for different
bend radii at a wavelength of 703 nm. A PCF with a twist rate of
1.26 rad/mm was used, with its plastic coating removed. The fiber
was bent through 180° at a constant radius of curvature R. Just after
the bend, the near-field pattern was imaged using a CCD camera and
30× objective lens. The centroid of the light pattern was determined by
image processing.

Measurements were made for eight different radii (±7.5, ±8.75,
±10, and ±11.25 cm) without changing the sample or recleaving the
end-face. The modal patterns in bent twisted PCF were calculated
Fig. 3. Experimental (upper) and calculated (middle) axial Poynting vector dis-
tributions at awavelengthof 818nm for twist rates 1.26, 2.20, and p rad/mm. The
locations of the hollow channels are marked with white circles. The two lower plots
show the calculated axial Poynting vector (left) and phase (right) distributions at
the bottom of the passband in the untwisted case, when there is no bound mode.
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Fig. 4. Optical properties of the modes guided in twisted coreless PCF. (A) Upper: Calculated refractive indices (left axis) and propagation losses (right axis) for the
left circular (LC) (dashed curves) and right circular (RC) (solid curves) polarized modes, plotted against twist rate a. Lower: Measured (data points) and calculated (curves)
MFDeff in a coreless PCF with six hexagonal layers of hollow channels (normalized to the interhole spacing L), plotted against a at a wavelength of 818 nm. LC (blue
dashed line) and RC (red dashed line) polarized modes gave identical results. The saturation in MFDeff at small a (gray-shaded area) is an artifact of the finite size of the
photonic crystal. In a 10-layer structure, it saturates at a higher value (dotted gray curve). Note the highly anomalous inverse relationship between MFDeff and refractive
index. (B) Experimental (data points) and theoretical (curve) group velocity dispersion of the twist-induced mode, together with the experimental far-field pattern, for
a = 1.26 rad/mm. Note that the calculated dispersion of the fundamental space-filling mode (dashed line) is quite different, confirming that the modes form at the
bottom of the passband. (C) Experimental (data points) and theoretical (curve) circular birefringence BC as a function of a at 818 nm (left axis). Normalized intensities of
the −3 (dashed) and +3 (dash-dotted) harmonics of the mode with OAM order ℓ in the first ring of the fiber as a function of a (right axis).
Fig. 5. Anomalous bend-effects in twisted coreless PCF. (A) A bend toward the left creates a linear gradient in refractive index, lower on the left and higher on the
right of center. Light is cut off from propagating in the blue-shaded areas. Compared to the case of a normal graded index waveguide (upper), the mode shifts
anomalously to the inside of the bend in the twist-induced case (lower). (B) Measured (upper) and calculated (lower) axial Poynting vector distribution at a wavelength
of 703 nm for a twist rate of a = 1.26 rad/mm and a bend radius of 8.75 cm. The cross hairs mark the center of the fiber, and the circles mark the hollow channels.
(C) Upper: Experimental (circles) and theoretical (solid curves) spatial shift of the mode field profile at 703 nm versus bending radius for the twisted PCF with a = 1.26 rad/mm.
The theoretical shift (dashed curves) for a = p rad/mm is included for comparison. Lower: Difference in phase indices between straight and bent fiber plotted against radius of
curvature for a = 1.26 and p rad/mm. The optical path length decreases as the curvature increases.
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numerically by combining finite-element modeling in the helicoidal
frame with conformal mapping techniques (22). Experimental and
theoretical near-field Poynting vector distributions show good
qualitative agreement (Fig. 5B). The shift of the modal centroid,
plotted in Fig. 5C for experiment and theory, confirms that the mode
pattern does move anomalously toward the inner side of the bend.
The mode is more resistant to these bend-related effects at higher
twist rates (dashed curves). In a step-index fiber, the results would
lie in quadrants I and III. Because the mode shifts toward the inner
side of the bend, its effective path length decreases; that is, its effec-
tive index falls (lower panel of Fig. 5C).
CONCLUSIONS
A coreless PCF can be induced to robustly guide light if it is con-
tinuously twisted along its length, forming a helical structure. The
effect is a consequence of helically twisting the uniform periodic
array of hollow channels inside the fiber. This creates spiraling geo-
desics that trap rays of light (given by the local group velocity of the
photonic Bloch waves) without need for any core structure. The
effective area of these highly unusual modes decreases with the
twist rate; thus, by varying a along the fiber (perhaps by postpro-
cessing), it would be possible to create fibers whose MFD changes
radically with propagation distance. This would be of interest in
sensing: One could, for example, simply reduce the twist rate to
close to zero at the sensing location to allow the modal field to ex-
tend out to the edge of the cladding. This effect could also be used
for delivery of high-power laser light: During transmission, the
mode area could be kept large by a low twist rate and then focused
to a smaller mode area close to the end by increasing the twist rate.
Another interesting feature is the combination of a large mode area
with anomalous dispersion (difficult to achieve in conventional
fibers), suggesting applications in nonlinear optics, for example,
fundamental solitons with peak powers much higher than are
conventionally possible. The ability of twisted fibers to provide
OAM (9) and circular birefringence (23) suggests that yet more
possibilities may emerge from this unique and unexpected guid-
ance mechanism.
MATERIALS AND METHODS
The uniaxial bending of the fiber was taken into account in finite-
element modeling by transforming the refractive index profile n(x, y)
to an equivalent refractive index profile neq(x, y) (22) given by

neqðx; yÞ ¼ nðx; yÞ expðx=RÞ ð7Þ

where R is the radius of curvature. The stress-optical effect caused by
the local strain of the fiber in the curved region was also included by
replacingRwith an effective radius of curvature Reff = 1.40R (24). The
transverse refractive index profile in the model was rotated to match
the end-face of the fiber in the bending experiments.
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