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Materials design by evolutionary optimization of
functional groups in metal-organic frameworks
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A genetic algorithm that efficiently optimizes a desired physical or functional property in metal-organic frameworks
(MOFs) by evolving the functional groups within the pores has been developed. The approach has been used to op-
timize the CO2 uptake capacity of 141 experimentally characterized MOFs under conditions relevant for postcombus-
tion CO2 capture. A total search space of 1.65 trillion structures was screened, and 1035 derivatives of 23 different
parent MOFs were identified as having exceptional CO2 uptakes of >3.0 mmol/g (at 0.15 atm and 298 K). Many
well-knownMOF platforms were optimized, with some, such as MIL-47, having their CO2 adsorption increase bymore
than 400%. The structures of the high-performing MOFs are provided as potential targets for synthesis.
INTRODUCTION
Metal-organic frameworks (MOFs) are a novel class of materials com-
posed of metal clusters and polydentate organic linkers or secondary
building units (SBUs) that self-assemble to form crystalline porous
networks (1, 2). MOFs have garnered significant attention for a wide
range of applications, such as gas separation and storage (3, 4), catal-
ysis (5), and proton-conducting membranes (6). The breadth of appli-
cations is largely due to their highly tunable nature. An enormous
array of metal clusters and organic groups can be combined to form
a nearly limitless number of MOFs with diverse functional properties.
These properties can be further tuned by altering the functional
groups within the MOF.

Functionalization has been shown to have a marked effect on the
properties of an MOF. For example, Deng et al. (7) synthesized an
MOF-5 variant with three different functional groups and found it
to have a 400% increase in selectivity for CO2 over CO when com-
pared to the unfunctionalized parent MOF. Using density functional
theory to guide their design, Frysali and co-workers (8) found that the
addition of a chosen functional group increases CO2 adsorption sig-
nificantly in IRMOF-8. There has also been a desire to increase the
complexity of functionalizations (9). For example, Garibay and co-
workers (10) have developed versatile postsynthetic methodologies
and applied them to functionalize IRMOF-3 with five different func-
tional groups (in this work, we consider –H as a distinct functional
group), whereas Deng and co-workers (7) have synthesized MOFs
with nine different functional groups.

Determining the optimal groups to functionalize an MOF for an
application can be challenging and sometimes nonintuitive. For example,
Vaidhyanathan and co-workers (11) synthesized an amine-functionalized
zinc triazole–oxalate MOF and found it to have excellent low-pressure
CO2 uptake. The group then synthesized a related MOF in which
the oxalate anions were replaced with phosphate, thereby giving
more amine groups per metal center. Despite having a similar pore
size, as well as a higher amine density, a significant decrease in CO2

uptake was observed, demonstrating the complexity involved when
tuning an MOF’s properties via functionalization (12). If 40 functional
groups were considered, there would theoretically be 2.56 million
(404) distinct functional group combinations possible. Such a search
space would be impossible to explore experimentally, and an exhaus-
tive computational screening would be challenging for most proper-
ties, particularly if a quantum mechanical calculation is required in the
screening process. One approach that has received attention in
materials discovery is the use of evolutionary processes (13).

Genetic algorithms (GAs), which are inspired by Darwinian
evolution, have been used in efficient optimization of large and com-
plex search spaces where an exhaustive search would be impractical.
GAs have been used in computational materials science for a range of
applications (14), including ab initio crystal structure prediction (15).
Bao et al. (16, 17) recently developed a GA to optimize an MOF’s
properties and showed optimization for methane deliverable capacity
and surface area. In their work, they used a large precursor library of
commercially available molecules to create new organic linkers, which
are combined with a set of metal SBUs to form MOFs. A GA is used
to optimize the construction of new organic linkers and their combi-
nations with metal SBUs for a given property of the MOF. As pointed
out by the authors, there could be difficulties in synthesizing the
MOFs with the created linkers (16) because there is no guarantee that
the SBUs will self-assemble to form a stable crystalline structure with
the proposed structure. This is often the criticism directed toward hy-
pothetical materials that are proposed in silico. Here, to improve syn-
thetic viability, we have developed a GA that will be used with
experimentally realized structures; this GA focuses only on optimizing
the functionalization of materials. The premise is that modifying
existing stable MOFs where the functional groups can be installed
either in a presynthetic or in a postsynthetic fashion will enhance
the synthetic viability of the predicted materials. We demonstrate
that a specialized GA can efficiently evolve the functional groups in
MOFs to optimize a desired property, such that only a fraction of
the search space needs to be sampled. MOF functionalization GA
(or MOFF-GA, as we will term it here) has tailored mating and
mutation routines, along with GA parameters that have been opti-
mized to recover the highest-performing MOFs in the search space
as potential targets for synthesis. The GA has been validated on a
diverse set of 48 MOFs whose complete search space has been eval-
uated. We further applied MOFF-GA to optimize the CO2 uptake
of 141 experimentally characterized MOFs under conditions relevant
to postcombustion CO2 capture (0.15 atm and 298 K) and have iden-
tified hundreds of potentially high-performing targets for synthesis.

MOFF-GA has 13 GA parameters, such as the population size and
mutation rates that were optimized to give the highest best-find rate
and the number of top 50 MOFs recovered while minimizing the
number of unique MOFs sampled. Three different properties [CO2
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uptake, surface area, and parasitic energy (PE)] computed on an assort-
ment of MOFs were used to optimize the parameters. As a result, we
consider the default MOFF-GA parameters to be fairly generalized and
robust. Full details of the parameterization, implementation, and other
computational details are given in Materials and Methods and the Sup-
plementary Materials. We only highlight a few important features here.
The first challenge of successfully applying a GA to the specific prob-
lem is to define a suitable chromosome representation of the search
space in which desirable traits can be inherited. The chromosome re-
presentation or genome can strongly affect the optimization efficiency.
The functionalizable sites that are equivalent are first identified and
numerically labeled, as shown in Fig. 1A for the organic SBUs of ZBP
[Zn2(1,4-benzenedicarboxylate)2(pyrazine)]. Here, equivalent function-
alization sites are determined from symmetry and refer to those that will
enable the SBUs to be reversed (or rotated) to give a structure with the
same connectivity. This equivalence is used to limit the search space to
structures that are considered more synthetically feasible. The chromo-
some inMOFF-GA is simply the sequence of equivalent functionalization
sites and their associated functional groups. Figure 1B gives an example of
a chromosome for ZBP.When creating a structure, MOFF-GA performs
a partial conformation search to determine whether the functionalization
is sterically feasible. If it is not, then the structure is discarded, thereby
causing the mechanism that created the chromosome to repeat until a
viable structure is made. MOFF-GA contains a unique mutation algo-
rithm that, when a mutation occurs, it will replace the functional group
with a chemically similar functional group. The chemical similarity is
based on electrostatic potential (ESP), van der Waals potential (VdWP),
and steric availability around the functional group (further details are
given inMaterials andMethods and the SupplementaryMaterials). All
structures are geometry-optimized with the universal force field (UFF)
(18) (including cell vectors) to alleviate steric clashes during functional
group insertion. CO2 adsorption properties were determined from
grand canonical Monte Carlo (GCMC) simulations using the UFF
and ab initio–fitted MEPO (MOF electrostatic potential–optimized)–
charge equilibration (QEq) charges (19) for the framework atoms. The
gas adsorption simulations have been shown to accurately reproduce
experimental results, such as CO2 adsorption (11, 12, 20).
RESULTS
To demonstrate a typical GA run, we optimized the four functional
groups in ZBP for CO2 uptake capacity at 0.15 atm and 298 K.
Here, we used 28 common functional groups (table S9); for ZBP’s
4 functional groups, there are theoretically 614,656 combinations
possible. However, only 96,156 combinations were found to be
sterically viable. This number is small enough that the CO2 uptake
of all viable structures has been calculated to validate the GA. It
Collins et al. Sci. Adv. 2016;2 : e1600954 23 November 2016
should be noted that, before the optimization, it is not known which
combinations are sterically viable, and, as a result, the GA is still
searching the complete search space of 614,656 combinations.

Figure 2 shows the progress of a typicalMOFF-GA run inwhich the
CO2 uptake capacity is optimized in the MOF ZBP. The average CO2

uptake capacity of the population (size, 113) and the uptake capacity of
the best individual are plotted as a function of the generation. Figure 2
reveals that the fittest individual in the population rapidly increases and
does not improve after seven generations. In this particular run,
MOFF-GA does find the global optimum, which has an exceptional
uptake of 4.2 mmol/g—a 4.8-fold increase over the parent MOF.

Table 1 shows relevant per-run optimization statistics based on
1000 GA runs on ZBP with different random seeds. The “best-find
rate” provides the percentage of GA runs that locate the true global
optimum. The average rank of the top MOF from a GA run is giv-
en as “rank of best,” where the closer to 1 a rank is, the better. The
“number of top 50” refers to the average number of the top 50 MOFs
that the GA can locate in a run. The “structures sampled” gives the
average number of viable structures (and percentage of all possible
viable structures) that are sampled in each run. In practice, GAs are
typically run multiple times (three to five) on the same problem with
different random seeds. If one were to run MOFF-GA five times to
optimize the functional groups of ZBP for CO2 uptake capacity, it
would find the top-ranked structure 99.9% of the time and recover
33 of the top 50 MOFs on average while only sampling a total of
4553 unique structures.

Large surface areas are often desired in nanoporous materials.
Table 1 shows the optimization statistics of ZBP for the purely ge-
ometric property of the volumetric surface area. In this case, the
best-find rate of the GA is not as favorable. We attribute this to
the fact that the optimal solutions can be single large functional
groups, such as propyl ether, or multiple smaller functional groups
having similar areas. Although the best-ride rate is not as favorable,
the average rank and the number of top 50 found are similar to
those found for the CO2 uptake optimization. In pragmatic terms,
finding the single best functionalization is not as important as
finding a number of the top candidates.

Multiproperty fitness functions can also be optimized. To dem-
onstrate this, we optimize the parasitic energy, which gives the ener-
getic cost of CO2 capture under specific adsorption and desorption
conditions (21, 22). It can be defined in terms of the uptake capacities
of CO2 under adsorption (0.15 atm and 298 K) and desorption
Fig. 1. Chromosome representation and mating. (A) The organic SBUs of the
MOF ZBP with the functionalizable positions highlighted. (B) Example chromosome
of ZBP. (C) Schematic of the one-cut mating process.
Fig. 2. MOFF-GA results. Population average and best individual CO2 uptake (at
0.15 atm and 298 K) as a function of the generation during an MOFF-GA run for
the optimization of the MOF ZBP. The generation zero uptake is that of the un-
functionalized MOF.
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conditions (0.7 atm and 413 K), the heats of adsorption, the CO2/N2

adsorption selectivity, and the latent heat capacity of the MOF. All of
these quantities can be evaluated with the same GCMC simulations
used to calculate the CO2 uptake, with the exception of the heat ca-
pacity, which we fix to a typical value of 1.0 kJ/kg∙K. The parasitic
energy can have opposing terms similar to those found in multiobjec-
tive optimizations that must be balanced during the optimization. Spe-
cifically, a high CO2 uptake capacity is often associated with a high
binding energy or heat of adsorption (HoA), and although a high
uptake is good for the parasitic energy, a high HoA is detrimental
to it. Table 1 reveals that the parasitic energy is more challenging
for MOFF-GA to optimize than either the CO2 uptake capacity or
the surface area for ZBP. Nevertheless, the optimization metrics are
still quite favorable, and running MOFF-GA five times would re-
cover the best-performing structure 99.0% of the time and 33 of
the top 50 MOFs on average.

To examine how broadly applicable MOFF-GA is to a variety of
MOFs and different-sized search spaces, we have optimized the
parasitic energy of a diverse set of 48 experimentally characterized
MOFs. The averaged optimization metrics for 25 two-site and 18
three-site MOFs are given in Table 2, whereas the metrics for MOFs
with four or more sites are given individually. The complete search
space for all of these systems has been evaluated (297,125 viable,
19 million in total) for validation purposes.

Two-site MOFs, which have a theoretical search space size of
784, were tested to determine whether the GA would apply to small
search spaces (<1000). Table 2 reveals that the optimization metrics
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are excellent, except that the GA samples 68% of the viable structures
in a single run on average. Thus, it only makes sense to run the GA
once, but this does not result in a significant reduction of sampling
compared to a complete scan. Because the GA parameters were opti-
mized using test sets with large search spaces, we reoptimized the GA
parameters using only two-site MOFs. The optimization metrics with
this alternate set of GA parameters is given in parentheses in Table 2.
With the two-site GA parameters, the number of unique structures
sampled is halved, but there is also a notable reduction in the best-find
rate from 93 to 70%. In some scenarios, it may be of value to apply
MOFF-GA on small search spaces, for example, when optimizing a
property that is very time-consuming to evaluate, such as nonlinear
optical properties that require expensive first-principles calculations.
In such a case, running MOFF-GA once with the two-site parameters
would sample only a third of the search space while still recovering
many of the top candidates (on average 26 of the top 50, with a best
rank of 1.6).

Eighteen unique three-site MOFs, each having a total search
space size of 21,952, have been optimized, the number of viable struc-
tures of which ranged from 1054 to 17,514. On average, a single
MOFF-GA run would sample 23% of the viable structures with a
best-find rate of 76%. Because one typically has an idea of the theore-
tical search space size beforehand, one could run the GA two or three
times for searches whose size is <20,000. Using the averaged statistics,
running the GA twice would sample ~40% of the viable structures but
would have a 95% chance of finding the top performer. Again, in
some usage scenarios, sampling only 40% of the search space would
Table 1. MOFF-GA results for ZBP. Averaged statistic of 1000 GA runs for the functional group optimization of ZBP for different properties. The percentages
under the Structures sampled column are a fraction of the total number of sterically viable structures (96,156).
Property optimized
 Best-find rate (%)
 Rank of best
 Number of top 50
 Structures sampled
 Functional groups of best
CO2 uptake at 0.15 atm CO2 and 298 K
 81
 1.6
 20.9
 1069 (1.1%)
 HCO, H, HCO, CH=CH2
Volumetric surface area
 68
 1.9
 19.8
 1263 (1.31%)
 H,H, OPr, H
Parasitic energy
 67
 2.5
 14.7
 1519 (1.6%)
 NO2, H, OH, HCO
Table 2. MOFF-GA results for parasitic energy. Averaged statistics of 1000 GA runs for the functional group optimization of MOFs for parasitic energy. Viable
structures are the total number of sterically viable structures. The percentage under the Structures sampled column is an average of the fraction of the total
number of viable structures.
MOF
 Sites
 Viable
structures
Best-find
rate (%)
Rank of best
 Number of
top 50
Structures
sampled
Two-site: average of 25 MOFs (alternate GA parameters)
 2
 361
 93 (70)
 1.1 (1.6)
 43.0 (25.8)
 67.8 (32.0%)
Three-site: average of 18 MOFs
 3
 4,149
 76
 1.6
 28.7
 22.9
MEKDUC*
 4
 5,808
 75
 1.6
 29.4
 9.9
UTEXAT* (four of five sites)
 4
 20,825
 84
 1.3
 34.0
 4.3
FUNBEW-Br*
 4
 32,215
 31
 5.9
 8.6
 3.8
UTEXAT*
 5
 33,072
 90
 1.2
 20.3
 2.8
*Cambridge Structural Database identifier.
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result in worthwhile time savings compared to an exhaustive system-
atic search.

The benefit of applying the GA becomes readily apparent with
four-site and larger search spaces. Table 2 shows the optimization
metrics for four- and five-site MOFs for which we have performed
a full scan of the search space. If we were to include ZBP (Table 1),
the number of viable structures would range from 5808 to 96,156.
The optimization statistics are generally very good, and applying
MOFF-GA five times will only sample a fraction of the total search
space while having a high probability of recovering the top-
performing structures. Even with the MOF FUNBEW-Br, which
had the lowest optimization statistics found in this study, the
application of the GA would be beneficial. Specifically, if one were
to apply MOFF-GA five times, one would still recover the top-
performing structure 84% of the time, although only 16% of the
entire viable search space would be sampled. In addition, after five
GA runs, on average, one would recover 27 of the top 50 structures,
providing many targets for synthesis.

MOFF-GA has been applied to optimize the CO2 uptake capac-
ity of an additional 93 experimentally characterized MOFs, includ-
ing several MOFs whose search space is too large to evaluate
completely (>1.7 × 107). Including the 48 MOFs used to validate
MOFF-GA, we plot in Fig. 3 the optimized CO2 uptake of 141
MOFs compared to the CO2 uptake of the unfunctionalized parent
structure. Although a small fraction of MOFs see little to no im-
provement (mostly small-pore MOFs), there is, on average, a 3.7-
fold (1.14 mmol/g) increase in CO2 uptake upon functional group
optimization. We highlight a few well-known MOFs, such as MIL-
47 and HKUST-1, which show considerable improvement. With
the addition of one functional group, the uptake of MIL-47 in-
creases by 2.74 mmol/g. In addition, 1035 functionalized structures
from 23 different parent MOFs were predicted to have a CO2

uptake capacity of more than 3 mmol/g at 0.15 atm and 298 K. This
is deemed high-performing under these conditions, especially
considering that none of the parent MOFs have open metal sites,
which can enhance the CO2 uptake through chemisorption (but al-
so make them prone to water degradation). The aldehyde (–HCO)
functional group and not the amine group was the most common
Collins et al. Sci. Adv. 2016;2 : e1600954 23 November 2016
substituent in the MOFs with uptakes >3 mmol/g. Moreover, of
these high-performing MOFs, 85% have only one to three different
nonhydrogen functional groups, which enhances the prospect that
the MOFs identified could be synthesized. At this point, the prac-
tical application of MOFF-GA involves constructing a hypothetical
structure and computing the properties. Consequently, the screening
results are vulnerable to issues similar to those of other large-scale
virtual screening studies in that the structures predicted may be im-
possible to synthesize or may be structurally different from those
made in the laboratory (23, 24). However, because the structures iden-
tified in this work are derived from experimentally characterized
MOFs, they may be more synthetically accessible compared to purely
hypothetical MOFs.
DISCUSSION
Functionalization has always been considered a principal avenue
for improving the functional properties of MOFs. Here, we have
developed a customized GA to identify the most favorable functio-
nalizations of a parent MOF to optimize a desired functional and/or
physical property. MOFF-GA, as we term it, has been validated on
a diverse set of 48 MOFs with a range of search space sizes. We
demonstrate that MOFF-GA can locate the best structures while
sampling only a small fraction of the search space. MOFF-GA is
particularly powerful when applied to large search spaces but can
still be beneficial when applied to small search spaces (<1000), par-
ticularly if the property being optimized is time-consuming to eval-
uate. The CO2 uptakes of 141 experimentally characterized parent
MOFs have been optimized, resulting in 1035 functionalized deriv-
atives of these MOFs being identified with exceptional uptakes of
>3 mmol/g at 0.15 atm and 298 K. All of these structures are
provided in the Supplementary Materials to allow researchers to
browse and identify potential synthetic targets. In total, the CO2

uptake of 581,278 unique structures has been calculated to screen
a search space of more than 1.64 trillion structures. More than 20
well-known MOFs were optimized for CO2 uptake, with MIL-47
reaching nearly a capacity of 4 mmol/g upon functionalization. Al-
though some of these structures may be challenging or even im-
possible to synthesize, the approach yields many high-performing
structures, which can then be examined by researchers to identify
the best potential synthetic targets. MOFF-GA demonstrates an ef-
ficient method for predictive high-performance materials design
that should be applicable not only to MOFs but also to the func-
tionalization of other classes of materials, such as covalent organic
frameworks and porous polymer networks (25). We also note that
properties aside from those evaluated in this work can also be in-
cluded in the fitness function and optimized as long as they can be
accurately computed, including the synthetic accessibility (26).
MATERIALS AND METHODS
Our GA followed most of the same procedures as other GAs. An
initial set of individuals were randomly created; the number of
members of the set is known as the population. A set of individuals
at a given time is known as a generation. All individuals in the gen-
eration were evaluated for their fitness, such as CO2 uptake. The next
generation was constructed from the previous one with mating and
mutation mechanisms. Our GA used elitism, which carried forward
a fraction of the top-performing individuals from one generation into
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the next generation with no modification. The fraction of top per-
formers carried forward is known as the elite. The population size
and the elite fraction are adjustable parameters of the optimization
algorithm.

Another challenge in applying a GA involved developing mating
and mutation schemes that allowed the desirable traits to be passed
onto subsequent generations while still allowing for a broad sampling
of the search space. In MOFF-GA, the mating scheme used consisted
of cutting the chromosome of each parent at the same point and
combining opposite sides of the chromosome from each parent to
form the child chromosome. The cut position was determined ran-
domly, and the process is shown schematically in Fig. 1C. A similar
two-cut mating scheme was also used.

After mating occurred to create a new generation, each individ-
ual had a chance, governed by the mutation rate parameter, to under-
go a mutation. Two mutation mechanisms were used in MOFF-GA.
The first was a swap mutation, where two randomly chosen functional
groups of a chromosome were exchanged. The second mutation
involved randomly replacing one group with either a similar (that
is, methyl for ethyl) or a dissimilar functional group, where the use
of a similar or dissimilar group was chosen randomly according to
the similarity probability parameter. The higher the similarity prob-
ability, the more likely a chemically similar functional group will be
chosen. Chemical similarity was determined by three properties: the
ESP, the VdWP, and steric hindrance. For all functional groups, the
groups were aligned as if attached to a benzene ring, and all of
the properties were calculated on identical three-dimensional grids.
ESPs were calculated using QEq atomic charges on the functional
group with a point charge probe. The VdWPs were calculated using
a Lennard-Jones potential and a carbon probe. Steric hindrance was
decided with a binary output using the VdWP. If the VdWP at a grid
point was 0 or greater, it was set as sterically unavailable and as-
signed a value of 1. If the VdWP was below 0, it was sterically avail-
able and assigned a value of 0. To calculate the similarity between
two functional groups, we used a continuous Tanimoto coefficient
(27), which returns a score from 0 (maximum dissimilarity) to 1 (the
same) for any pair of groups. The value of each property at each grid
point was used to evaluate the Tanimoto coefficient. For each pair of
functional groups, the calculated Tanimoto coefficient was used to
determine whether the pair was similar or dissimilar using a sim-
ilarity threshold parameter.

During the optimization process, once the top-performing indi-
vidual had remained constant for a set number of generations (cur-
rently three), MOFF-GA entered a stagnation phase. During the
stagnation phase, MOFF-GA used three methods to create new in-
dividuals: mutating the best, random creation, and normal mating.
When mutating the best, individuals were created, which differed
from the best performer by one functional group only. All combina-
tions of these individuals were created randomly over stagnant genera-
tions and tested for their performance. A fraction of the population of
each generation, determined by the best mutated parameter, was re-
served for these individuals. Random creation, during the stagnation,
added completely randomly made individuals for each generation of
the stagnation phase. The amount of randomly created individuals for
each generation was set by the random mutated parameter. The re-
maining populations were created using the normal mating scheme.

MOFF-GA has two convergence criteria that must be met before
the optimization is stopped: First, the top-performing individual must
remain the same for a certain number of generations (currently five),
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and second, all individuals created in the aforementioned stagnation
phase, which differ by only one functional group from the top per-
former, must be tested. Once these two criteria are met, MOFF-GA
is considered complete. Full details of MOFF-GA are given in the
Supplementary Materials, along with a full description of all 13 GA
parameters, their optimized values, and details of how the param-
eters were optimized.

Gas adsorption calculations were performed using an in-house
GCMC code based on the DL_POLY 2 molecular dynamics package
(28). Nonbonding interactions were calculated with a Lennard-Jones
potential using parameters for the framework atoms taken directly
from the UFF (18) with Lorentz-Berthelot mixing rules for cross-
terms. Electrostatics were based on partial atomic charges calculated
by QEq using the MEPO-QEq parameters (19), which were fit to re-
produce the ESP obtained from REPEAT atomic partial charges (29).
The CO2 molecules were modeled using the force field developed by
García-Sánchez et al. (30), and the N2 molecules were modeled using
the TraPPE force field parameters (31).

All GCMC simulations consisted of 30,000 cycles of equilibra-
tion and 30,000 cycles of production. One cycle consisted of n trial
moves, where n is equal to the number of guest molecules in the
system at that time. All simulations included random insertion, de-
letion, and translation moves of molecules with equal probabilities.
Atoms in the framework were held fixed at their crystallographic
positions. A Lennard-Jones cutoff distance of 12.5 Å was used
for all simulations, and a supercell was constructed for each structure
that satisfied the minimum image criterion. The ideal gas law was
assumed when computing the chemical potential in GCMC simula-
tions. Surface area calculation was performed using a helium probe
(1.0 Å) in the Zeo++ software package (32).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/11/e1600954/DC1
Details of the GA
GA parameters
Parameter optimization
MOFF-GA parameter values
Structure preparation and construction
Molecular simulations
Parasitic energy
Top-performing structures
fig. S1. Example of the application of a functional group code to the unfunctionalized SBU of
the parent MOF.
fig. S2. Schematic of the one-cut mating process.
fig. S3. Schematic of the two-cut mating process.
fig. S4. Schematic of swapping mutation.
fig. S5. Fitted transformation function (blue dotted line) used in GAPI (genetic algorithm
performance indicator) for the best-find rate.
fig. S6. Fitted transformation function (blue dotted line) used in GAPI for the top 50 performers
recovered.
fig. S7. Fitted transformation function (blue dotted line) used in GAPI for unique MOFs tested
for large search space (three or more sites) MOFs.
fig. S8. Fitted transformation function (blue dotted line) used in GAPI for unique MOFs tested
for two-site MOFs.
fig. S9. Linker symmetry.
table S1. Scaling functions used for fitness.
table S2. Description of the MOFF-GA optimization parameters.
table S3. Values used to fit transformation function (eq. S2) of performance properties.
table S4. Fitted values used in eq. S2 for each performance properties. R2 values are calculated
using table S3 values.
table S5. Sterically viable structures for training MOFs.
table S6. Parameters used by MOFF-GA that were optimized.
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table S7. Terms used in parasitic energy with a brief description.
table S8. Functionalized MOFs with CO2 uptake greater than 3 mmol/g with the corresponding
functional groups.
table S9. Details of functional group codes and their associated structure.
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