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Prediction of interface structures and energies via
virtual screening
Shin Kiyohara, Hiromi Oda, Tomohiro Miyata, Teruyasu Mizoguchi*

Interfaces markedly affect the properties of materials because of differences in their atomic configurations.
Determining the atomic structure of the interface is therefore one of the most significant tasks in materials research.
However, determining the interface structure usually requires extensive computation. If the interface structure could
be efficiently predicted, our understanding of the mechanisms that give rise to the interface properties would be
significantly facilitated, and this would pave the way for the design of material interfaces. Using a virtual screening
method based on machine learning, we demonstrate a powerful technique to determine interface energies and
structures. On the basis of the results obtained by a nonlinear regression using training data from 4 interfaces,
structures and energies for 13 other interfaces were predicted. Our method achieved an efficiency that is more than
several hundred to several tens of thousand times higher than that of the previously reported methods. Because the
present method uses geometrical factors, such as bond length and atomic density, as descriptors for the regression
analysis, the method presented here is robust and general and is expected to be beneficial to understanding the
nature of any interface.
INTRODUCTION
An interface has a significantly different atomic configuration from
the bulk, which endows the interface with peculiar properties, such
as fast ion transport and preferential deformation (1–7). Thus, one
of the most significant tasks in materials research is determining the
atomic structure of an interface. Theoretical calculations, such as first-
principles calculations based on density functional theory and static
lattice calculations with an empirical potential, have been used to in-
vestigate interface structures, and the central structures determining
the interface properties have been elucidated (8–10).

However, time-consuming calculations are necessary to determine
even one interface structure because of the geometrical freedom of the
interface. Nine degrees of freedom, including five macroscopic and four
microscopic, are present in an interface (11). The number of atomic
configurations to be considered often reaches more than 10,000 in even
the simplified coincidence site lattice (CSL) grain boundary, namely,
the S grain boundary. In a straightforward manner, as schematically
illustrated in Fig. 1A and described in section S1, structure and energy
calculations for all candidates must be performed, and the optimized
configurations and energies of these are obtained (Ei,j in Fig. 1A).
Then, the most stable configuration with the minimal energy (Ei,min

in Fig. 1A) can be determined as the structure and energy of the
interface (12–15). Furthermore, the same “brute force” computation
is necessary to determine other types of interfaces because the interface
structure depends on the type of the interface (SGB1, SGB2, … SGBn
in Fig. 1A). Because this computation is exhaustive, systematic studies
of different types of interfaces are limited to the grain boundaries of
simple metal systems (16–18).

To more efficiently determine the interface structure, a genetic
algorithm method and a random structure–searching algorithm
method have been proposed (19–24). In the genetic algorithmmethod,
atomic structures of grain boundarieswith lower grain boundary energy
are generated with operations of selection, crossover, andmutation, and
the stable grain boundary structures can be determined after a large
number of generations. In the random structure–searching algorithm
method, several hundred random structures are generated by randomly
arranging atoms and ranked according to their energies after geometri-
cal optimization. Although these approaches can efficiently determine
unknown interface structures, more than several hundred trial calcula-
tions are still necessary to determine a single grain boundary structure. If
the structure and energy of an unknown interface could be determined
more efficiently, the investigation of interfaces would be markedly
accelerated. This acceleration would lead to a deeper understanding
of the mechanisms that give rise to interface properties.

Here, a virtual screening technique, which is an effective method in
time-critical problems (25), was applied to determine the structure
and energy of an interface. This virtual screening technique has been
used in drug discovery, in which a prediction model is constructed
using machine learning from a relatively small data set and a large
database consisting of the actual data, and the data predicted by the
prediction model are constructed. Then, the most promising candi-
date drug that will likely have the intended effectiveness is selected
from the constructed large database. We applied this virtual screening
technique to predict the structure and energy of interfaces. We dem-
onstrate here that our virtual screening technique is very powerful and
thus can determine the interface structure and energy.
RESULTS AND DISCUSSION
As a model grain boundary, we selected a series of [001] axis symmet-
ric tilt CSL grain boundaries of face-centered cubic copper in this
study, because numerous experimental and computational studies
have been reported for this system. The CSL grain boundary of a
single-element material has three degrees of freedom, namely, the rigid
body translation of one side of the crystal with respect to the other
side of the crystal in three dimensions.

Our virtual screening method is illustrated in Fig. 1B. A prediction
model, namely, predictor, is constructed via regression analysis of the
training data, in this case, SGB1 and SGB2. Once the predictor is con-
structed, the grain boundary energies can be predicted from the initial
configurations. Then, the candidate configuration that will likely give
the minimal energy, Ei,min (i = 3, 4, … n), can be determined. Next,
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the promising initial configuration is optimized using the structure
and energy calculations. Finally, the accurate energy and stable struc-
ture are obtained (stable SGB3–n in Fig.1B).

Here, 17 [001] axis symmetric tilt CSLgrain boundaries of copperwere
considered: S5[001]/(210), S5[001]/(310), S13[001]/(230), S17[001]/
(410), S17[001]/(350), S25[001]/(430), S25[001]/(710), S29[001]/(520),
S29[001]/(730), S37[001]/(610), S37[001]/(750), S41[001]/(910),
S41[001]/(540), S53[001]/(720), S53[001]/(950), S61[001]/(11 1 0),
and S125[001]/(11 2 0). Each misorientation angle is listed in Fig. 2.
Approximately 1,000,000 configurations must be considered to obtain
stable structures for these grain boundaries. Namely, calculations must
Kiyohara et al. Sci. Adv. 2016;2 : e1600746 25 November 2016
be performed 1,000,000 times to determine the structures of these
grain boundaries. To construct the predictor, we selected S5[001]/
(210),S5[001]/(310),S17[001]/(350), andS17[001]/(410) as the training
data, corresponding toSGB1 andSGB2 in Fig. 1B. Those grain bound-
aries were selected as the training data from the viewpoint of the var-
iance of their tilt angles and the computational costs for their calculations.
Structure and energy calculations for a total of 150,000 configurations,
corresponding to approximately 15% of all possible configurations, were
performed. The most stable structures for S5[001]/(210), S5[001]/
(310),S17[001]/(350), andS17[001]/(410) are shown in Fig. 3. Although
only the structure from the projection view was previously reported, we
Fig. 1. Comparison of all-candidate calculation method and virtual screening method. Schematic illustration of the method to determine the grain boundary (GB)
structure and energy using the all-candidate calculation method (A) and the virtual screening method (B). Optimized configuration (Opti. config.) is obtained from the
corresponding initial configuration (Ini. config.) via structure and energy calculations, using the first-principles method and the static lattice method.
2 of 7



SC I ENCE ADVANCES | R E S EARCH ART I C L E
can confirm that the calculated structures are almost identical to the
previously reported structures (16, 26), indicating that these training
data are suitable for constructing the predictor.

To predict the grain boundary energies of noncalculated structures,
the selection of descriptors for regression analysis is important. Here,
geometrical data for the “initial atomic configurations” are used as
the descriptors. This choice enables one to predict the grain boundary
energy without performing the structure and energy calculations. The
selected descriptors, such as the minimum bond length, maximum
bond length, and so on, are listed in fig. S2. For the regression analysis,
the nonlinear support vector machine (SVM) method was used, as de-
scribed in Materials and Methods. As shown in section S3, SVM is a
more suitable regression method in the present case as compared with
the linear regression method.

The results of the regression analysis for the training data are
shown in Fig. 4A. Most data lie on the gray line, indicating that the
Kiyohara et al. Sci. Adv. 2016;2 : e1600746 25 November 2016
predicted energies are equal to the accurate energies and that the re-
gression analysis succeeded in correctly constructing the predictor. To
evaluate the accuracy of the constructed predictor, the predictor was
applied to S13[001]/(230) as a test data. The results predicted by the
predictor are shown in Fig. 4B. It is clear that most of the predicted
grain boundary energies lie on the gray line, indicating that the con-
structed predictor is also suitable for the test data. This result implies
that the constructed predictor has the potential to predict the energies
of the grain boundaries before the structure and energy calculations.

Here, we focus on the purple data point marked by the arrow in
Fig. 4B. On the basis of the constructed predictor, the purple data point
was predicted to provide the minimum grain boundary energy. The
virtual screening method and the calculations of all candidates give
the minimum grain boundary energy at the same purple data point.
The predicted grain boundary energy is 0.96 J/m2, which is only 10%
larger than the minimum grain boundary energy obtained by the all-
candidate calculations. It is also noteworthy that the predicted rigid
body translation state (X = 5.0 Å, Y = 1.0 Å, and Z = 0.0 Å) is identical
to the most stable rigid body translation state determined by the all-
candidate calculations. Namely, we succeeded in screening all possible
candidates and selecting the most promising candidate configuration
to accurately provide the most stable structure. By performing the
Fig. 2. Schematic illustration of symmetric tilt CSL grain boundary and the S
values and misorientation angles (q) of grain boundaries.
Fig. 3. Themost stable structures in the trainingdata. The most stable structures
in the training data obtained by the all-candidate calculations: (from top to
bottom) S5[001]/(210), S5[001]/(310), S17[001]/(350), and S17[001]/(410). Previ-
ously reported structures are overlaid with silver circles (16, 26).
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structure and energy calculation once for this rigid body translation
state, we can obtain a grain boundary energy and structure identical
to those obtained by the all-candidate calculations. Namely, the stable
grain boundary structure and energy can be determined with only a
one-time calculation using the present virtual screening method, which
is significantly more efficient than the previously reported methods.

Here, on the basis of the constructed predictor, we predict the
structures and energies of 12 other [001] axis symmetric tilt CSL grain
boundaries: S25[001]/(430), S25[001]/(710), S29[001]/(520), S29[001]/
(730), S37[001]/(610), S37[001]/(750), S41[001]/(910), S41[001]/(540),
S53[001]/(720), S53[001]/(950), S61[001]/(11 1 0), and S125[001]/
(11 2 0). As demonstrated for the test data (Fig. 4B) and schematically
illustrated in Fig. 1B, the candidate configuration that provides themost
stable structure was determined using the predictor, and the accurate
grain boundary structure and energy were obtained by the one-time
Kiyohara et al. Sci. Adv. 2016;2 : e1600746 25 November 2016
structure and energy calculations of this candidate configuration. Figure
5A shows the results of the predicted grain boundary energies and a
comparison with previously reported grain boundary energies (17, 27).
On the basis of previous studies, the grain boundary energy exhibits a
convex profile in relation to the misorientation angle q. The energy
gradually increases with an increasing misorientation angle, reaching
~1.0 J/m2 at 45°, and the energy then decreases at much higher mis-
orientation angles. A detailed inspection reveals small cusps, namely,
energy drops, at 16.26°, 28.07°, 36.87°, 53.13°, and 67.38°, corresponding
to S25[001]/(710), S17[001]/(410), S5[001]/(310), S5[001]/(210), and
S13[001]/(230), respectively.

The predicted grain boundary energies of all grain boundaries ob-
tained using the predictor are shown in Fig. 5A. Although the absolute
value is not identical to that in previous studies owing to the difference
in the empirical potential used, the overall profile of the grain boundary
Fig. 4. Result of regression analysis and calculated stable structures. Predicted grain boundary energies and accurate grain boundary energies for the training data
(A) and the test data (B). (C) The most stable structure of S13[001]/(230) obtained by the all-candidate calculations and (D) the structure predicted by the virtual
screening method. Yellow lines represent the position of the grain boundary.
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energy, displaying a convex shape with a maximum at 45°, is in agree-
ment with previous reports (17, 27). Notably, small cusps at 16.26° and
67.38° are also reproduced by the prediction model (other cusps at
28.07°, 36.87°, and 53.13° were used for training). All atomic
structures of the predicted grain boundaries are shown in fig. S4, and
the results for S37[001]/(750) are compared with those of a previous
report (26) in Fig. 5B. It is important to note that S37[001]/(750) is a
type of low-symmetry grain boundary, and onemust perform structure
and energy calculations for the 69,053 possible configurations of 596
atom supercells in the all-candidate calculations. However, by using
the present virtual screening method, the most stable structure fit to
the previous report (26) can be obtained via a single calculation.

The abovementioned results demonstrate that the presented virtual
screening method based on machine learning is sufficiently robust and
powerful for predicting the stable interface structure and energy from
initial atomic configurations. The success of this method implies that
the initial atomic configuration is correlated to the grain boundary
energy, and its correlation is studied bymachine learning. It was already
confirmed that the present method is applicable to other grain bound-
aries ofmetallicmaterials. To apply thismethod to ionicmaterials, such
as oxides, it is expected that other descriptors on Coulomb interactions
should be added. However, we would like to emphasize that the
presented virtual screening method is not an “element-dependent”
Kiyohara et al. Sci. Adv. 2016;2 : e1600746 25 November 2016
method and, thus, is generally applicable to the interfaces of any
material system by selecting the suitable descriptors.

Finally, we consider the efficiency of the presented virtual screening
method in finding themost stable grain boundary structure. The virtual
screening method requires only one calculation for each boundary,
whereas the all-candidate calculation method requires 850,000 calcula-
tions in total to determine the most stable structure among all of the
abovementioned boundaries. The presented method significantly de-
creases the number of calculations to 13 because the candidate rigid
body translation state is determined by the virtual screening method,
and only a single calculation is necessary for each type of grain bound-
ary. Namely, our method can achieve an efficiency that is 65,400 times
higher than the brute force method. Moreover, the efficiency is much
higher if the intended grain boundary has a higher S value. This high
efficiency is greatly beneficial when the individual computational cost
increases, such as for the use of a first-principles calculationor for amore
complex grain boundary. In any case, our virtual screening method
markedly enhances the speed in determining an interface structure.
CONCLUSIONS
In summary, we attempted to predict the structures and energies of
grain boundaries using a virtual screening method based on machine
learning. Geometrical factors of the initial configuration, such as the
shortest bond length and local atomic density, were selected as the de-
scriptors, and regression analysis was performed for the grain boundary
energy using the nonlinear supporting vector machine. The prediction
model, namely, predictor, was constructed using the grain boundary
energy and structure information for four types of grain boundaries.
The constructed predictor was then applied to 13 other grain bound-
aries. The present virtual screening technique successfully predicted en-
ergies and structures for these 13 grain boundaries. We demonstrated
here that the virtual screening technique can achieve an efficiency that is
more than several hundred to several tens of thousand times higher
than the previously reported strategies.

Most notably, the descriptors acquired “before” the calculation were
successfully used to describe the grain boundary energy, which is ob-
tained “after” the calculation. Our study demonstrates that the initial
configuration is correlated with the grain boundary energy. Further-
more, the correlations between the “before” and “after” calculations
can be studied bymachine learning and incorporated into the predictor.
This finding implies that the presentmethod has the potential to predict
muchmore complex grain boundaries, such as those with much higher
S values, randomgrain boundaries, or even heterointerfaces.Webelieve
that our method will enhance our comprehensive understanding of
interface phenomena in any material system.
MATERIALS AND METHODS
Computational methodology
With the all-candidate calculations, determining stable structures re-
quires the calculation of various configurations in which one grain has
been translated into three directions relative to the basis position, such as
by using mirror symmetry, under periodic boundary conditions. Here,
the samemethod was used to construct a data space for regression anal-
ysis. Lattice static calculations were performed with the conjugated gra-
dientmethod using theGULP code (28). Let us consider the x and z axes
as vectors on the grain boundary plane, with the z axis corresponding
to the [001] tilt axis, and the y axis as a normal vector to the grain
Fig. 5. Predicted 13 grain boundary energies and a stable structure of S37[001]/
(750). (A) Grain boundary energies as a function of the misorientation angle. Red
and purple circles are obtained by the present method and all-candidate calcula-
tions, respectively, and open and filled black circles are obtained from previous
studies. (B) Predicted stable structures for S37[001]/(750) in this study (orange
circles) and in a previous report (silver circles) (26).
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boundary plane. Rigid body translations into the x and z directions
were conducted with a translational step size of 0.1 Å. Translations
into the y direction had step sizes ranging from 1.0 to 1.5 Å in incre-
ments of 0.1 Å. Consequently, the number of initial configurations n
was calculated as

n ¼ Lx
0:1

� Lz
0:1

� 6

where Lx and Lz are lattice parameters of the supercells in the x and z
directions, respectively. The number of configurations to the y direction
corresponds to 6 (1.0 to 1.5). To prevent the grain boundary structures
from transforming into the bulk structure, atoms located farthest from
the grain boundaries were fixed, and the volume of cells was also fixed.
The embedded-atom method potentials were used as empirical poten-
tials (29). The grain boundary energies were estimated by the following
formula

EGB ¼ Etot � Ebulk
2A

whereEtot is the total energy of the supercell with grain boundaries,Ebulk
is the total energy of the supercell without grain boundaries, andA is the
grain boundary area.

Here, the following 17 [001] axis symmetric tilt CSL grain boundaries
of face-centered cubic Cu were investigated: S5[001]/(210), S5[001]/
(310), S13[001]/(230), S17[001]/(410), S17[001]/(350), S25[001]/
(430), S25[001]/(710), S29[001]/(520), S29[001]/(730), S37[001]/
(610), S37[001]/(750), S41[001]/(910), S41[001]/(540), S53[001]/
(720), S53[001]/(950), S61[001]/(11 1 0), and S125[001]/(11 2 0). Each
grain boundary contains 44 to 1004 atoms. By considering the geomet-
rical freedom of the three-dimensional rigid body translations, approx-
imately 1,000,000 configurations must be considered.

Support vector regression analysis
Support vector regression (SVR) is a nonlinear regression analysis based
on a SVM(30), which is a discriminant function using a kernel function.
The loss function for ordinary regression analysis are sums of the
squares of error, whereas that of SVR is an e-insentisive error function
and it benefits robust and sparse description. Furthermore, the kernel
trick, which introduces kernel functions, enables fewer computations.

First, consider a data set {(x1,y1),…, (xn,yn)}, where xi is a vector of
descriptors and yi is a response variable. In e-SVR, the response and
loss function are respectively described by

f ðxÞ ¼ wTfðxÞ þ b

and

C∑
n

i¼1
Ee yi; f ðxiÞð Þ þ 1

2
‖w‖2

wherew is theweight vector, b is a bias parameter,C is the regularization
parameter, f(x) is the function that maps x to feature space, and f(x) is
the response function. In the loss function, the first term is the sum of
Kiyohara et al. Sci. Adv. 2016;2 : e1600746 25 November 2016
errors between predicted values and accurate ones, and the second term
is a regularization term to prevent overfitting.

Ee (yn, f(x)) is denoted as

Ee yi; f ðxiÞð Þ ¼ 0 jyi � f ðxiÞj < 0
jyi � f ðxiÞj � e jyi � f ðxiÞj ≥ 0

�

Then, by introducing nonnegative slack variables xi and x*i, the
above optimization problem is reduced to the following problem

min
w;x;x* C∑

n

i¼1
Ee xi þ x*i
� �þ 1

2
‖w‖2

subject to

( f ðxiÞ ≤ yi þ eþ xi
f ðxiÞ ≥ yi � e� x*i

xi; x
*
i ≥ 0

This optimization problem can be solved analytically as a dual pro-
blem by introducing the Lagrange function, similar to the following
problem

min
a;a*

1
2
ða� a*ÞTK a� a*

� �þ e∑
n

i¼1
ðai þ a*i Þ þ ∑

n

i¼1
yiðai � a*i Þ

subject to

(
∑
n

i¼1
ðai � a*i Þ ¼ 0

0 ≤ ai;a*i ≤ C

where a and a* are the Lagrange multipliers and K is a kernel
matrix that consists of the kernel function k(xi, x).

As a result, the response function or, in other words, the prediction
model is written as

f ðxÞ ¼ ∑
n

i
ð�ai þ a*i Þ kðxi; xÞ þ b

in which ai is a Lagrange coefficient and kmeans kernel function (now
Gaussian-type function). This kernel function is made by the group of
descriptor-vectors. Lagrange coefficients are 0 if the descriptor-vectors
are not categorized to be the support vectors.

Here, the most stable structures and metastable structures of S5[001]/
(210),S5[001]/(310),S17[001]/(410), andS17[001]/(350)were considered
for the construction of the prediction model. We selected those grain
boundaries as the training data from the viewpoint of the variance of tilt
angles and the computational costs for their calculations. The result ob-
tained when only S5[001]/(210) and S17[001]/(350) were used as the
training data is shown in section S5. Because this selection is not suitable,
the constructed model cannot be applied to the test data (fig. S5B).

The best parameters were selected from the following combinations:
the margins of tolerance were 0.001, 0.01, 0.05, and 0.1; the penalty
factors were 10, 100, 1000, and 10,000; and the variance values were
10−2, 10−3, 10−4, and 10−5, namely, a total of 64 patterns. As a result,
a margin of tolerance of 0.01, a penalty factor of 1000, and a variance
of 10−4 were used for SVR parameters. Section S2 shows the descriptors
used in performing the SVR. In addition to these descriptors, their
square, inverse, exponential, and exponential inverse were considered.
As a result, 83 descriptors were obtained, which were standardized to
align their average and variance to 0 and 1, respectively. Section S6
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shows the training and test data for the following parameters: margin of
tolerance, 0.001; penalty factor, 100; and variance, 10−2. As shown in
section S6, the regression gives better results than that shown in Fig.
4A. However, the constructed predictor using these parameters does
not work for the test data (fig. S6B).

This regression analysis focused on the relationships between the
grain boundary energy and the initial atomic configuration before the
structure and energy calculations. To perform this regression analysis
more accurately, a smaller atomic relaxation during the calculation is
preferable. From the calculated data, 800 results were screened for the
SVR analysis.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/11/e1600746/DC1
section S1. The most straightforward method to determine the structure and energy of single
grain boundary.
section S2. Descriptors used for the regression analysis in this study.
section S3. The results obtained through the linear regression method.
section S4. Predictions for 12 grain boundary structures using the virtual screening method.
section S5. Effect of the training data selection.
section S6. Effect of the parameters for the regression analysis.
fig. S1. Plot of the calculated grain boundary energies by the all-candidate calculation method.
fig. S2. Descriptors for the SVR analysis.
fig. S3. Predicted grain boundary energies through linear regression method.
fig. S4. Predictions for 12 grain boundary structures using the virtual screening method.
fig. S5. Predicted grain boundary energies with two of four kinds of grain boundary as the
training data.
fig. S6. Predicted grain boundary energies under over-fitting.
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