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Feedforward and feedback frequency-dependent
interactions in a large-scale laminar network of the
primate cortex
Jorge F. Mejias,1 John D. Murray,2 Henry Kennedy,3,4 Xiao-Jing Wang1,5*

Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding
attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the
underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We
approached this problem using a large-scale computational model of the primate cortex constrained by new
directed and weighted connectivity data. In our model, the interplay between feedforward and feedback
signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralami-
nar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as
providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions
between visual cortical areas, including the observation that feedforward pathways are associated with
enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8
to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent
Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and
suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights
the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit
dynamics and functions.
INTRODUCTION
Inasmuch as the primate cerebral cortex is organized hierarchically,
it is essential to understand interactions between feedforward (FF)
(bottom-up) information processing and feedback (FB) (top-down)
signaling, which may mediate brain predictions about the sensory
world, attention, behavioral context, and control. With the advance
of electrode recording arrays and other techniques, experimental
studies in recent years have not only yielded increasing information
about dynamical interactions between pairs of cortical areas but also
begun to reveal the complex FF and FB signaling flow among many
cortical regions in a large-scale system. Here, motivated by new exper-
imental observations, we built an anatomically based large-scale model
of the primate cortex endowed with a laminar structure, and used it to
elucidate the dynamical interplay between FF and FB signals at the
global brain level.

In the macaque visual cortical system, an anatomical hierarchy is
characterized by specific laminar patterns of FF and FB interareal
projections (1, 2). FF projections tend to originate from supragranular
layers and target layer 4 (1, 2), whereas FB projections largely stem from
infragranular layers and target supra- and infragranular layers while
avoiding layer 4 (1, 2). In addition, the laminar restriction of these projec-
tions increases with the hierarchical distance: If two areas are widely
separated, then the supragranular origin of FF projections is more
pronounced than if the areas are closer to each other in the hierarchy,
and the same holds true for the infragranular origin of FB projections (2).

Hierarchical interactions between visual cortical areas occur in both
FF and FB directions, with FF interactions transmitting sensory
information from lower to higher brain areas and FB interactions
conveying top-down modulation to early sensory areas (3). Recently,
it has been observed that these interactions are characterized by distinct
neural oscillatory patterns: Interactions in the FF direction are associated
with enhanced gamma oscillations (30 to 70 Hz), whereas FB interac-
tions are associated with enhanced alpha or low-beta oscillations (8
to 15 Hz) (3–6). This frequency profile has been observed in macaques
using different recording techniques [frommulticontact electrodes (3) to
electrocorticography grids (5)] andmore recently in humans, usingmag-
netoencephalography (6). It is plausible that these enhanced gamma/
alpha signatures in FF/FB interactions may be related to the laminar
preference of the anatomical projections described above (7). However, it
is unclear what the neural circuit principles are through which oscillatory
dynamics originating within local microcircuits drive the spatially segre-
gated, frequency-specific interactions within dense large-scale networks.

To address this question, we built a large-scale computationalmodel
of laminar cortical microcircuits comprising 30 cortical areas that inter-
act via their long-range cortico-cortical FF and FB pathways. This large-
scale cortical network was built on anatomical interareal connectivity
data from tract-tracing studies (2, 8, 9). The connectivity data that we
present here extend previous studies (2, 10) by including novel data on
the parietal subnetwork [lateral intraparietal (LIP) area], yielding a
large-scale network of 30 cortical areas distributed across the occipital,
temporal, parietal, and frontal lobes. This rich quantitative data set
contains information on the directed strength of interareal projections,
their laminar origin, and the propagation latency obtained from the
wiring distances between areas (11). We incorporated dynamics into
the large-scale cortical circuit by modeling each local circuit with inter-
acting excitatory and inhibitory populations so that supra- and infra-
granular layers differentially exhibit fast (gamma) and slow (alpha-beta)
neural oscillatory dynamics, respectively.

The model spans four spatial scales: intralaminar, interlaminar, in-
terareal, and large-scale levels (see Fig. 1 for a schematic representation).
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At each level, we constrained the circuit using empirical anatomical
data, comparing the computed dynamics with published electrophysio-
logical findings and providing novel and valuable insight into cortical
circuit mechanisms. The parsimonious model is validated by capturing
a wide range of electrophysiological observations, including (i) the pre-
dominance of weakly coherent gamma rhythms in supragranular and
strongly coherent alpha in infragranular layers (12); (ii) the effects of vi-
sual contrast on gamma frequency and power in V1 (13–15); (iii) the
interlaminar entrainment between supragranular gamma power and in-
fragranular alpha phase (16); (iv) the inverse correlation between alpha
power and supragranular firing rates, which associates strong alpha
rhythms with local inhibition (17, 18); and (v) the evidence of enhanced
gamma and alpha signatures in FF and FB interareal interactions (3–5).

With laminar circuit models embedded within each area, and
interacting through the structured interareal connectivity, our main
finding is that the large-scale model captures the laminar-specific FF
and FB interactions on a global scale acrossmany areas. It quantitatively
predicts the emergence of frequency-dependent functional interactions
and its relationship to underlying anatomical connectivity (5, 6). It
provides amechanistic explanation for the emergence of a functional
hierarchy among visual cortical areas, as recently observed inmacaques
(5) and humans (6), and it allows the exploration of the flexible nature of
the cortical hierarchy, which can be altered by behavioral context. Our
work highlights the importance of multiscale approaches in the con-
struction of large-scale brain models.
RESULTS
The model spans four spatial levels of description, as depicted in Fig. 1:
intralaminar, interlaminar, interareal, and large-scale network. Each
level is constrained with anatomical and electrophysiological data,
and forms the basis upon which the next level is built.We report results
of this work across the four levels sequentially.
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Intralaminar level
We first consider the local or intralaminar microcircuit, which is the
lowest level of themodel andmay be identified as a set of neuronswithin
a given cortical area and layer. More precisely, we assume a population
of pyramidal neurons and a population of inhibitory interneurons at this
level. Within and between each population are recurrent and cross con-
nections, respectively (Fig. 2A, top). Local strongly interconnected pop-
ulationsof excitatory and inhibitoryneurons arepresent inboth supra- and
infragranular cortical layers (19), and their dynamics have been exten-
sively studied using diverse computational approaches (20–22). For this
level of description, we simulate each laminar subcircuit with a non-
linear firing rate model, of the Wilson-Cowan type (see Materials and
Methods), which represents the mean activities of a population of ex-
citatory neurons and a population of inhibitory neurons.

The local circuits of the supra- and infragranular layers differ in their
connectivity and physiology, leading to their distinct dynamics (19, 23).
For the supragranular circuits, we constrained parameter values so that
populations display a noise-driven gamma (~40 Hz) rhythm (Fig. 2A,
middle), as is commonly observed in layer 2/3 (3, 12, 16, 24). For the
infragranular circuits, we adjusted parameter values so that the oscilla-
tions displayed by the model fall within the alpha (~10 Hz) or low-beta
(~15 to 30 Hz) frequency range (Fig. 2A, bottom) (3, 12).

A simple coupled excitatory-inhibitory system as described here is
useful for studying the response of early visual neurons to incoming
visual stimuli. For instance, recordings of local field potentials show
that increasing the contrast of a visual grating enhances the strength of
gamma activity in macaque V1 for low- and medium-contrast levels
(13, 15). A higher visual contrast has also been associated with higher
frequencies of the gamma activity (14), whereas other factors such as the
stimulus size, the level of masking noise, and the stimulus orientation
likewise have an effect on gamma power and frequency (15).

To test the behavior of the model at the intralaminar level, we simu-
lated the effect of an increase of stimulus contrast on gamma rhythms
for layer 2/3 neurons inV1 and compared the outcome to those observed
experimentally (13). Wemodeled the increase of visual contrast as an in-
crease of the input to the excitatory population, because increases in con-
trast of a stimulus falling within the receptive field of a neuron elicit
increases in firing rate (13). As shown in Fig. 2B, higher contrast val-
ues lead to stronger gamma rhythms, characterized by a higher gamma
peak of the excitatory firing rate power spectrum.Note that, as in the study
byHenrie and Shapley (13), the power spectrum corresponding to spon-
taneous activity (that is, zero input)was subtracted from the curves shown,
thereby removing the power-law appearance of the power spectra but
nevertheless conserving the effects of the input in a principled fashion.
The enhancement of the power spectrum is strongest on the 30- to 60-Hz
gamma band, as in the study by Henrie and Shapley [(13), see their
Fig. 4. The contrast-mediated enhancement of thehigh-gamma (>100Hz)
rhythm observed experimentally is not fully captured by our model.
This is to be expected given that the broadband power at this range
reflects individual spiking activity (25–27), and a rate model will fail to
reproduce this feature. However, this does not constitute a problem
because we are not considering the effects on high-gamma rhythms
(that is, larger than 80 Hz) in this study.

A second effect shown in Fig. 2B is a small but consistent shift of the
gamma peak toward higher frequencies (from 30 to 40 Hz, approxi-
mately) with increasing contrast. Although not observed in the study
by Henrie and Shapley (13), this effect of contrast on gamma frequency
has been consistently found in more recent studies (15, 27), and the
model captures this effect. Figure 2C shows inmore detail the influences
Fig. 1. Scheme of the large-scale model. The scheme shows the four levels
considered: a within-layer local microcircuit consisting of an excitatory (Excit.; in red)
and an inhibitory (Inhib.; in blue) population (upper left), a laminar circuit with two
laminarmodules (corresponding to supra- and infragranular layers, lower left), an inter-
areal circuit with laminar-specific projections (lower right), and a large-scale network of
30 cortical areas based onmacaque anatomical connectivity (upper right). Each level is
anatomically constrained, and its dynamics provide insight into different
electrophysiological observations in macaques. Only the connections at each level
not shown at a lower level are plotted, for clarity.
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of increasing the input to the excitatory population on the peak power
(left) and frequency (right) of the oscillations, for the case of both an
isolated layer 2/3 microcircuit (gamma rhythm, top) and an isolated
layer 5 microcircuit (alpha rhythm, bottom). Note that the power and
frequency curves saturate at high inputs, in line with evidence of non-
linear effects on V1 gamma power for strong contrast (15, 28).

The local circuit presented here displays, therefore, the same in-
creases of power and frequency of neural oscillations with increasing
input that are observed in recent electrophysiological studies of early
Mejias et al. Sci. Adv. 2016;2 : e1601335 16 November 2016
visual areas. This makes the circuit a good starting point to understand
rhythmic interactions in larger neural systems.

Interlaminar level
Having characterized the neural dynamics of an isolated layer, we built a
laminar circuit by considering several layers and adding interlaminar
projections between them. To investigate the interplay between gamma
andalpha/low-beta rhythms,we consider twodistinct laminarmodules, one
for the generation of gamma and one for the generation of alpha rhythms.
Fig. 2. Local circuit model at the intralaminar level. (A) Scheme of the local circuit (top), with the excitatory and inhibitory population in red and blue, respectively,
and examples of the oscillatory activity for an excitatory-inhibitory circuit in layer 2/3 (middle, in green) and layer 5/6 (bottom, in orange). (B) Power spectrum of the
firing rate of an isolated layer 2/3 as a function of input strength to the excitatory population. The spectrum of the spontaneous state (with zero input) has been
subtracted in each case to highlight changes induced by the input (see main text). As the input increases (which resembles the effect of increasing the contrast of a
visual stimulus), the power of gamma rhythms becomes stronger, as in observations by Henrie and Shapley (13). (C) Effect of the input to the excitatory population on
the power spectrum peak (left) and frequency (right) of the oscillations, for an isolated layer 2/3 (top) and an isolated layer 5/6 (bottom).
Fig. 3. Cortical area model at the interlaminar level. (A) Scheme of the interlaminar circuit (left panel); self-connections within a given population are omitted in the
figure for clarity. Interlaminar connections considered in the model correspond to the strongest projections between layer 2/3 and layer 5/6 as found in experimental
studies. Right: Power spectrum of layer 2/3 (top) and layer 5/6 (bottom) in the case of uncoupled, isolated layers (in black, for comparison) and interconnected network
(green and orange, respectively). A background input of I = 8 was fed into the excitatory population of both layers. (B) Bottom: A set of 30 traces of activity in layer 5/6
(in gray) and their average (in blue). The central peak of each trace was aligned at zero before averaging. Top: A periodogram of layer 2/3 showing the averaged power
for a range of frequencies for the same temporal periods as the layer 5/6 traces. We can see the existence of a strong entrainment of gamma power to alpha phase, as
in the experimental findings by Spaak et al. (16). Input was I = 6 for supragranular and I = 8 for infragranular excitatory populations. (C) Effect of injecting external
current to the excitatory population of layer 5/6 on the layer 2/3 gamma power and (dimensionless) firing rate (top left and right, respectively) and on layer 5/6 alpha
power (bottom left). An inverse relationship between supragranular firing rate and alpha power is observed (bottom right), which highlights a possible link of enhanced
alpha rhythms with activity suppression.
3 of 13



SC I ENCE ADVANCES | R E S EARCH ART I C L E
Gamma oscillations aremost prominently found in granular and supragra-
nular layers before propagating to other layers (3, 12, 16), and modeling
work suggests that layers 2/3 and 4 may locally generate gamma rhythms
(22). On the other hand, slower oscillations in the alpha and low-beta fre-
quency range aremost strongly present at infragranular layers, fromwhere
they propagate to other layers (3).We therefore assume two laminarmod-
ules: a supragranularmodule (layer 2/3) that displays gamma rhythms and
an infragranular module (layers 5 and 6) that displays alpha rhythms.

To couple the modules of both layers for parsimony, we consider a
subset of strong anatomical projections in each direction as a first
approximation of the interlaminar circuit. Our hypothesis is that, in
the context of gamma-alpha rhythm interactions, the dynamics of the
circuit may be described reasonably well by uniquely considering these
strong projections, although further details add more richness and
complexity to the interlaminar dynamics.

Anatomical studies indicate that, in the supragranular-to-infragranular
direction, there is a predominant excitatory projection from layer 3 py-
ramidal neurons to layer 5 pyramidal neurons, which is consistently
stronger than most other interlaminar projections (19, 23). In the
infragranular-to-supragranular direction, there is a particularly strong
projection from layer 5 pyramidal neurons to layer 2/3 interneurons
(29, 30). Comparative studies have confirmed these two projections
as the strongest ones between layers 2/3 and 5, with strong projections
from layer 6 pyramidal neurons to layer 4 inhibitory cells (which later
project to layer 2/3 pyramidal cells), further supporting the inhibitory
role of infragranular-to-supragranular projections (31, 32). Therefore,
we set these two projections (L2/3E to L5E and L5E to L2/3I) as our
main interlaminar connections in the model, as shown in Fig. 3A (left).
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As a result of the interlaminar coupling, rhythms spread across layers
and the oscillatory dynamics in both supra- and infragranular layers
present a more dynamically rich profile, compared to the isolated layers.
As Fig. 3A (right) shows, the power spectrum of layer 2/3 activity now
displays a strong alpha component as a consequence of the oscillatory
input coming from layer 5/6. However, the effect of layer 2/3 activity on
the dynamics of layer 5/6 is slightly different. Because of the intrinsically
slower dynamics of layer 5/6, the fast fluctuations due to the weak gamma
rhythmare partially filtered, and the input from layer 2/3 to layer 5/6 is a
quasi-constant term that shifts the alpha peak toward higher frequencies.

The alpha-modulated input arriving at layer 2/3 from layer 5/6 also
has a powerful impact, leading to the entrainment of gamma and
alpha rhythms (Fig. 3B). Here, the slow oscillatory input from layer
5/6 modulates the power of gamma oscillations in layer 2/3, leading
to a phase-amplitude coupling (PAC) between layer 2/3 gamma and
layer 5/6 alpha rhythms. This PAC phenomenon has been observed
in multielectrode recordings in macaques [(16), see their Fig. 2] and
constitutes a validation of our model at the interlaminar level.

To further characterize the behavior of the multilaminar circuit, we
studied the effects of external input on its dynamics. The case of an
external constant input to layer 5/6 is particularly interesting (Fig. 3C).
A constant input arriving at the excitatory population of layer 5/6 has
twomain effects on layer 2/3, due to inputs to the inhibitory neurons in
layer 2/3: a decrease in gamma power and a decrease in mean firing
rate of layer 2/3 pyramidal cells (top panels in Fig. 3C). In addition, the
input to layer 5/6 enhances the infragranular alpha rhythm (bottom left
panel), as observed for the isolated layer case in Fig. 2. This reveals a sig-
nificant negative correlation between supragranular mean firing rate and
Fig. 4. Microstimulation at the interareal level. (A) Scheme of the interareal projections between two areas (V1 and V4); the anatomical hierarchy ascends from left
to right. We inject a current of I = 15 at both supra- and infragranular excitatory populations of V1 and measure at V4. In addition to this input, a background current to
excitatory populations in supragranular (I = 2) and infragranular (I = 4) layers in both V1 and V4 is injected to guarantee a minimum level of activity. (B and C) Power
spectrum at V4 measured at layer 2/3 (B) and layer 5/6 (C), for resting and stimulation conditions. Insets show the peak value of the power spectrum at supragranular (B)
and infragranular (C) layers for the same resting and stimulation conditions. A large increase in gamma power is found, as in the microstimulation experiments by van
Kerkoerle et al. (3). (D) Same as (A), but injecting a current of I = 15 at all excitatory populations of V4 and recording in V1. In addition, a background current of I = 1 to all
excitatory areas in V1 and V4 is injected to guarantee a minimum of activity. (E and F) Power spectrum at V1 layer 2/3 (E) and layer 5/6 (F) for resting and stimulation
conditions. Inset shows the peak value of the power spectrum for these conditions. A large increase in alpha power and a decrease in gamma power were found, in
agreement with experimental observations. For (B) and (F), the blue curve corresponds to an isolated area receiving the same input as in the stimulation case, but without
its rhythmic component (see main text for details). n.s., not significant. ***P < 0.001.
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alpha power (bottom right panel), which strongly supports the idea that
alpha rhythms reflect local inhibition of areas not involved in a partic-
ular cognitive task (18). In summary, our laminarmodel of cortical area
consisting of two laminar modules (for supra- and infragranular) con-
strained by anatomical data displays PAC between gamma and alpha
rhythms, as observed experimentally, and provides insight into a pos-
sible relationship between alpha rhythms and activity suppression.

Interareal level
Extending our description to the interareal level involves characterizing
the anatomical projections linking the microcircuits of two or more
cortical areas. Here, we assume two areas with a clearly defined hierar-
chical relationship (for example, areas V1 andV4). FF projections along
the visual hierarchy stem from supragranular layers and preferentially
target layer 4, which, in turn, projects to layer 2/3 within that area (1, 2).
In our model, this is approximated as a projection from layer 2/3
pyramidal neurons in V1 to layer 2/3 pyramidal neurons inV4. By con-
trast, FB projections originate from infragranular layers (predominantly
from layer 6) and target supra- and infragranular layers while avoiding
layer 4 (1, 2). Recent findings indicate that FB projections from these
layers are more diffuse than FF projections in terms of their targets
(2). In our model, we assume that the FB projection stems from layer
5/6 pyramidal neurons in V4 and targets all four populations in V1
(excitatory and inhibitory; layers 2/3 and 5/6).Wemake connections to
pyramidal cells in layer 5/6 comparatively stronger than those targeting
pyramidal cells at layer 2/3, in line with anatomical data (2) and recent
experimental data suggesting that top-down signals selectively activate
infragranular layers in humans (33). This interareal circuit motif is
displayed in Fig. 4 (A and D).

Interareal interactions in the visual areas have been recently studied
in the context of visual attention (3–5). Of particular interest for
informing circuit mechanisms, van Kerkoerle et al. (3) used micro-
stimulation to reveal an enhancement of gamma/alpha power in FF/FB
interactions. Using amodel of twomultilaminar areas, we can study these
interactions and explore the underlying mechanisms involved.

We first simulated a purely FF communication (Fig. 4A): An injec-
tion of current into excitatory cells in V1 produced a highly significant
increase in gamma power in layer 2/3 of V4 (Fig. 4B) and a small, non-
significant decrease in alpha power in layer 5/6 of V4 (Fig. 4C). These
effects closely resemble the results of van Kerkoerle et al. [(3), see their
Fig. 8A] and support the notion that strong gamma rhythms reflect FF
communication. According to our model, this gamma increase is ex-
plained by two factors: (i) The extra input arriving at V4 layer 2/3 leads
to a mean-driven increase in gamma power similar to that observed in
the local circuit (see also Fig. 2B), and (ii) the gammamodulation of the
arriving input further enhances the intrinsic V4 gamma rhythm via in-
terareal synchronization. By consideringV4 as an isolatedmultilaminar
area and injecting into its layer 2/3 a constant input equivalent to the
one received fromV1 in the two-area case, we can compare both effects
(Fig. 4B). This reveals that a constant input enhancing the noise-driven
gamma rhythmalone accounts for amajor part of the observed increase
in gamma power, although the effect, exclusively due to interareal gam-
ma synchronization (that is, the difference between the blue and bright
green curves in Fig. 4B), makes a substantial contribution.

To simulate a purely FB communication, we injected current into
excitatory cells in V4 and measured responses in V1 (Fig. 4D). This
led to a drastic decrease in V1 layer 2/3 gamma power and a strong
and significant increase in V1 layer 5/6 alpha power (Fig. 4, E and F).
This behavior can be observed in the experimental microstimulation
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experiment of van Kerkoerle et al. [(3), see their Fig. 8E] and suggests
that strong alpha oscillations are associated with FB interactions
(along with gamma rhythm suppression). This mechanistic explana-
tion combines several factors: The alpha-modulated input arriving from
V4 increases the alpha power in V1 layer 5/6 via (i) a larger average input
(as in Fig. 2C) and (ii) the synchronization of both areas in the alpha range.
As for FF, we can isolate area V1 and inject the equivalent constant input.
This shows that the increase of alpha power due to factor (i) ismuch larger
than the increase due to (ii). The decrease of gammapower is also observed
experimentally in the study by van Kerkoerle et al. (3) and agrees with our
findings at the interlaminar level (Fig. 3C). This decrease is explainedby the
net inhibitory effect that V1 layer 5/6 exerts on V1 layer 2/3 plus the FB
fromV4 to layer 2/3 inhibitory cells, which overcomes the small excitatory
contribution fromV4 FB toV1 layer 2/3. Other possible scenarios, such as
a strong FB connection projecting to supragranular layers, can also be
considered in the model (see fig. S1), and they provide interesting in-
sights into the context of top-down attention signals (see Discussion).

The last scenario that we consider here is bidirectional communica-
tion, that is, stimulating both areas V1 and V4 and analyzing the
frequency-specific profile of the signals in each direction (Fig. 5A). The
recorded signal for a given area is defined as a weighted combination of
activity in layers 2/3 and 5/6, mimicking depth electrode recording (see
SupplementaryMethods for details). By computing the spectral coherence
between activity at V1 andV4, we observe two clear peaks located at the
alpha/low-beta and gamma ranges (Fig. 5B), in agreement with exper-
imental recordings by vanKerkoerle et al. [(3), see their Fig. 7B] and by
Bastos et al. [(5), see their Fig. 3D].We can further obtain information
Fig. 5. Frequency-specific FF and FB interactions. (A) We now inject current
and record the activity of both areas (V1 and V4). An input current of I = 8 was in-
jected in all excitatory populations of the circuit. (B) Spectral coherence between V1
and V4 activity highlights the existence of two peaks at the alpha and gamma range,
respectively. (C) Spectral pairwise GC in the V1-to-V4 (green) and V4-to-V1 (orange)
directions, showing that each of the peaks found in (B) corresponds to a particular
direction of influence, suggesting that frequency-dependent GC analysis could be
used to deduce FF versus FB signaling directionality between areas for which the
hierarchical positions are not known anatomically. (D) The DAI profile of the func-
tional connection, which is obtained by normalizing the difference between the
two GC profiles in (C), can be used to characterize a directed functional connec-
tion between two cortical areas.
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on directionality of signal flow by computing a frequency-dependent
Granger causality (GC) analysis on both FF and FB directions. The
results (Fig. 5C) show excellent agreement with experimental obser-
vations by vanKerkoerle et al. [(3), see their Fig. 7D] and by Bastos et al.
[(5), see their Fig. 3B], supporting the notion that enhanced gamma and
alpha/low-beta rhythms are associated with FF and FB communication,
respectively. This result can also be easily quantified by defining, as in
the study by Bastos et al. (5), the directed asymmetry index (DAI) be-
tween two areas as the (normalized) difference between spectral GC
fluxes, that is

DAIV1→V4 fð Þ ¼ GCV1→V4ðf Þ � GCV4→V1ðf Þ
GCV1→V4ðf Þ þ GCV4→V1ðf Þ ð1Þ

Note that DAIV1→V4(f) = −DAIV4→V1(f). The DAI profile, which
defines a frequency-specific directed functional connection, is shown
for the example areas V1 and V4 in Fig. 5D.

In summary, our model of two interconnected cortical areas reveals
frequency-dependent signatures in each direction, as observed exper-
imentally. Because of a paucity of available data, we adjusted in the
model the relative weights of connections from a FB projection onto
the supra- and infragranular layers.We found that the projection should
predominantly target the infragranular population in order to repro-
duce the recent electrophysiological observations on the frequency-
dependent FF versus FB signaling. Combined with the connection from
infragranular pyramidal cells to supragranular interneurons, this result
suggests a net inhibitory influence of top-down signals, which can po-
tentially be compared with a bottom-up signal via FF excitation in the
supragranular circuit.

Large-scale level
To develop our interareal system into a large-scale model, we make use
of anatomical connectivity data from an ongoing tract-tracing study in
macaques (2, 8, 11). In brief, a retrograde tracer injected into a given tar-
get area labels neurons in multiple source areas that directly project to
the target area. The proportion of labeled neurons in a given source area
defines a weight index as the fraction of labeled neurons (FLN) from
that source to the target area. In addition, the number of labeled neurons
located in the supragranular layer of a given source area (over the total
number of labeled neurons in that area) defines the lamination index
SLN (for fraction of supragranular layered neurons for a given pathway
from source to target area). Source areas that are lower (higher) than the
target area in the anatomical hierarchy tend to have a progressively
higher (lower) SLN. That is, the lower (higher) the source area relative
to the target area, the higher (lower) the SLN values of the source-to-
target projection (see Fig. 6A). For instance, purely FF or FB projec-
tions have SLN values of 1 and 0, respectively. By repeating the process
using other anatomical areas as target areas, we obtained an anatomical
connectivity data set with weighted directed connections and laminar
specificity (figs. S2 and S3). Elsewhere, we have shown that SLN cap-
tures the hierarchical distance so that individual SLN values allocate in-
dividual areas in the appropriate ranking according to the Felleman and
Van Essen 1991 model (1, 2).

Here, we use the recently acquired anatomical connectivity data set
(2). In addition, we have performed additional injections to expand the
connectivity data and include the parietal area LIP in the connectivity
data set. The new connectivity, displayed as a three-dimensional (3D)
network in Fig. 6B, has 30 cortical areas with a graph density of around
Mejias et al. Sci. Adv. 2016;2 : e1601335 16 November 2016
66% (10). To extend our interarealmodel to a large-scale one, we set amul-
tilaminar circuit at each node of this anatomical network and use (i) FLN
values as an estimate of the weight or strength of the interareal connec-
tions, (ii) the estimated wiring distances between injection sites to model
axonal propagation delays between cortical areas (fig. S4), and (iii) the
SLNvalues as ameasure of hierarchical distance between areas.Note that,
following previous studies (2, 34), the anatomical hierarchy of the
network can be obtained by using a generalized linearmodel (see fig. S5).

To simulate an increased intensity of the visual stimulus, we increase
the level of constant current arriving at V1 layer 2/3 neurons and inves-
tigate the resulting interactions among cortical areas and their rhythmic
activity. Figure 6 (C and D) shows the alpha and gamma peak power
observed in the model, for a subset of cortical areas (V1, V2, V4, TEO,
8m, 8l, DP, and 7A; their anatomical relations are shown in fig. S6),
whose interactions have been analyzed in the context of visual atten-
tion (5). We observe a relative increase in the alpha rhythms in areas of
the ventral stream (V4 and TEO). We also find an especially strong
gamma rhythm in early visual areas (V1 and V2) due to sensory input,
in agreement with observations of sensory-driven gamma rhythm en-
hancements being prominent in early visual cortex (6). To charac-
terize the frequency-specific interactions between areas, we compute
spectral pairwise conditional GC profiles between the subset of areas, as
in the study by Bastos et al. (5). For all area pairs, we observe a relation-
ship between FF/FB interactions and gamma/alpha rhythms (fig. S7)
similar to that found earlier with our two-area model (Fig. 5C).

Although this large-scale network assumes that FB projections pref-
erentially target excitatory neurons in layer 5/6 rather than those in layer
2/3, other configurations can also be investigated with our model. It is
possible to assume, for instance, that shorter FB projections preferen-
tially target infragranular layers, whereas longer FB projections tend to
target supragranular layers (2, 35). This allows the exploration of pos-
sible gamma enhancements in visual areas due to top-down signals
from the frontal eye field (FEF) (fig. S8) (36–38). In the following,
and for the sake of simplicity, we will restrict our study to the case
inwhich FB projections of all lengths target infragranular layers pref-
erentially, because distance-dependent ruleswill only affect a small sub-
set of FB projections and our large-scale simulation results are not
strongly affected by these considerations.

From the spectral GC for all areas as displayed in fig. S7, we obtain
the spectral DAI profile for each area pair (as in our two-area model),
which defines a directed spectral functional connectivity. By computing
for each frequency, the correlation between these functional connec-
tions and the SLNdata (which provide information about the direction-
ality of the anatomical projections), we find a clear pattern: SLN and
DAI are positively correlated in the gamma range and negatively
correlated in the alpha/low-beta range (Fig. 6E). This agrees with recent
experimental findings (5), and it serves as a quantitative demonstration
that the strong gamma/alpha signature of FF/FB interactions holds at
the level of a dense, large-scale network. To further quantify this corre-
lation, we define the multifrequency DAI (mDAI) per area pair as the
averaged DAI for both gamma and alpha ranges, that is

mDAI ¼ DAIðgÞ � DAIðaÞ
2

ð2Þ

where the negative sign in the second term accounts for the negative
correlation of SLN and DAI in the alpha range (see Supplementary
Methods). Using this quantity, we obtain a highly significant correlation
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coefficient (Fig. 6F) between anatomical projections and functional in-
teractions, in accordance with experimental findings (5).

The laminar pattern of anatomical FF and FB projections is the
defining feature of the global anatomical hierarchy of visual areas
(1, 2). Because our model displays a strong correlation between ana-
tomical projections and functional interactions, it is interesting to test
whether the model predicts the emergence of a similar hierarchy at the
functional level, as recently observed in vivo (5, 6). We follow the same
procedure as in the study by Bastos et al. (5) to define the hierarchical
distance between area pairs from mDAI values (see Supplementary
Methods), and after simulating the full large-scale model and comput-
ing its mDAI values, we observe the emergence of a clear functional
hierarchy among visual areas, as shown in Fig. 6G. As in the experi-
mental functional hierarchy (5), early visual areas lie at the bottom of
the hierarchy, followed by areas of the FEF (8l and 8m) and with
extrastriate visual areas of the ventral and dorsal functional streams at
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the top. Areas within the same functional streams are clustered around
similar hierarchical values (Fig. 6H), in agreement with the study by
Bastos et al. (5). These results show that the spectral functional inter-
actions, as well as the formation of a functional hierarchy observed
experimentally, can be explained within a computational framework
of locally generated rhythms propagated through a multilaminar
network structure.

As an interesting example of the predictive power of our large-scale
model, we use it to investigate a complex phenomenon observed during
visual attention tasks. It has been reported that, contrary to the anatom-
ical hierarchy, the functional hierarchy is not fixed. More precisely,
Bastos et al. (5) found that the positions of visual areas in the functional
hierarchy are highly dynamic and switch locations in a context-dependent
fashion. The ranking of areas in the functionally defined hierarchy in
the pre-cue period of the task differs significantly from that obtained
in the post-cue period, when top-down modulations from higher areas
Fig. 6. Large-scale cortical network and functional hierarchy. (A) Illustration of the anatomical tract-tracing technique used to obtain the anatomical large-scale
network and, in particular, the fraction of supragranular labeled neurons (or SLNs, see main text for details). A high (low) value of SLN for a given projection indicates
that the source area is lower (higher) than the target area (the injected area) in the anatomical hierarchy. (B) 3D plot of the macaque anatomical network obtained (only
projections with FLN of >0.005 are plotted, for clarity), with all 30 areas in their spatial positions. Connection strength is indicated by line width. (C and D) alpha (C) and
gamma (D) power for eight selected cortical areas of interest (V1, V2, V4, DP, 8m, 8l, TEO, and 7A). (E) Correlation between SLN and DAI, as a function of frequency. The
correlation is positive in the gamma range and negative in the alpha range, indicating a prevalent involvement of these rhythms in FF and FB interactions, respectively.
(F) Correlation between SLN and the combined DAI across gamma (30 to 70 Hz) and alpha/low-beta (6 to 18 Hz) frequency ranges (named mDAI, see text for details).
(G) Functional hierarchy emerging from the frequency-specific interactions in the network and computed using the mDAI values as in Bastos et al. (5). (H) Areas
belonging to the same type (early visual, ventral, dorsal, or frontal; indicated by color box) tend to be clustered in the same way as in the experimental observations.
For all panels, visual input was simulated with an input current I = 8 to the supragranular excitatory population of V1, and in addition to this input, a background current
of I = 6 to all excitatory populations in the network was also considered.
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are expected to heavily influence visual areas at the bottom of the hier-
archy. These “hierarchical jumps” were especially noticeable in FEF
areas, 8l and 8m, and their origin and implications are as yet unknown.

To provide a mechanistic explanation for jumps in functional hier-
archy, we first analyze a simple network of amultilaminar area pair with
a well-defined anatomical hierarchical relationship (Fig. 7A). In this
scenario, the functional hierarchical distance between both areas is
given by the mDAI value of the pair, which can be decomposed into
the DAI in the gamma and alpha ranges (see Eq. 2). Considering the
spectral DAI in the ascending anatomical direction, the more positive
theDAI in the gamma range (and themore negative in the alpha range),
the larger the hierarchical distance. Because external input to specific
layersmodifies the gamma and/or alpha power in a given area, it is plau-
sible that a laminar-specific input could affect the frequency-specific
interactions between areas and therefore their hierarchical distance.
To test this hypothesis, we measured the frequency-specific interac-
tions between both areas for three types of laminar input patterns to
the lower area: (i) a small input to layer 2/3 and a large input to layer 5/6,
(ii) an equal input to both layer 2/3 and layer 5/6, and (iii) a large input
to layer 2/3 and a small input to layer 5/6. Changes in the laminar-
specific inputs have a substantial impact on the DAI profile, increasing
the DAI in the gamma range (and therefore the FF interactions) with
Mejias et al. Sci. Adv. 2016;2 : e1601335 16 November 2016
increases in the supragranular-to-infragranular input ratio (Fig. 7B).
These gamma enhancements are due to the combined effect of the in-
crease in direct excitation to layer 2/3 and the decrease of interlaminar
inhibition from layer 5/6. Increases of DAI in the gamma range imply a
higher mDAI value of the area pair (Fig. 7C), leading to an increase in
the hierarchical distance for this simple network.

Extending this analysis to the full 30-area network is not a straight-
forward process, because cortical areas tend to interact in a nontrivial
fashion, and changing the laminar specificity of the input to one area
influences interactions with several areas simultaneously. However,
we can test our hypothesis in a concrete case that is of particular interest.
According to the FLN data (see fig. S2), areas 8l and 8m are strongly
connected to each other, whereas their projections to and from other
areas are weaker. This provides a useful test bed for translating our
findings from the case of two isolated areas to the full cortical network.
In terms of laminar origin, projections between areas 8l and 8m are ap-
proximately horizontal (that is, SLN is about 0.5 in both directions; see
fig. S6). Furthermore, both areas display a high hierarchical mobility
according to experimental observations (5), so the pair 8l-8m is a suit-
able candidate for observing hierarchical jumps in our model.

Because 8l is lower than 8m in the functional hierarchy (for both the
model and the experimental findings), we simulate the large-scale
Fig. 7. Mechanistic explanation for the experimentally observed hierarchical jumps. (A) Scheme of the simple two-area circuit considered (we use the same
parameters as for the two-area microstimulation protocol); the area on the left, which is lower in the anatomical hierarchy, receives laminar-specific input. (B) The gamma
component of the DAI increases as the input to layer 2/3 exceeds input to layer 5/6 for the lower area (ascending curves correspond to input to L2/3E increasing from I = 4
to 6 to 8, and input to L5/6E decreasing from I= 8 to 6 to 4). In the higher area, excitatory populations receive a fixed I= 6background current. (C) Increases in the hierarchy rank of
the higher area as a consequence of the laminar-specific input in (B). The laminar specificity S, defined as the difference between the input to L2/3E and to L5/6E, goes from−4 to 0
to 4 in this example. (D) We follow the same procedure but now injecting laminar-specific current into area 8l within the full 30-area network. (E and F) Changes in alpha (E) and
gamma (F) band power as a consequence of the injection of laminar-specific input. Lines in gray correspond to the same input injected at both layers (that is, no laminar-specific
input), whereas colored lines correspond to a laminar specificity of S= 8. (G) The spectral DAI profile from 8l to 8m increases in the gamma range as a consequence of the laminar-
specific input (gray curve, S = 0; blue curve, S = 8). (H) A hierarchical jump of area 8m is observed, as in the two-area case (gray points, S = 0; blue points, S = 8). (I) We find a robust
increase of the hierarchical jump distance with the strength of the laminar specificity of the input. Other parameters and background currents are as in Fig. 6.
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network of 30 areas with a highly laminar-specific input to area 8l (strong
for layer 2/3, weak for layer 5/6; see Fig. 7D) and compare the DAI pro-
files and functional hierarchy with the original simulation (for which
the input to 8l does not have laminar specificity). This laminar-specific
input elevates the gamma power and decreases alpha power in area 8l,
as expected (Fig. 7, E and F). Furthermore, Fig. 7G shows an important
effect in the spectral DAI between 8l and 8m in this situation: The DAI
from 8l to 8m is stronger in the gamma range, as in the two-area case
(although, because of the interactions of other areas, the profile is more
complex in this case). Themain effect in the functional hierarchy (Fig. 7H)
is an elevation of area 8m, which effectively increases the hierarchical
distance between 8mand 8l as expected and induces a hierarchical jump
of area 8m, as experimentally observed in the study by Bastos et al. (5).
To further test this effect, we repeat the process for several degrees of lam-
inar specificity of the 8l input, andwe observe in Fig. 7I a clear increase in
the hierarchical distance between 8m and 8l as the laminar specificity of
the input increases (stronger for layer 2/3 and weaker for layer 5/6).

These results indicate a strong prediction of our large-scale model:
Jumps observed in the dynamic functional hierarchymay reflect a change
in the laminar specificity of the input to cortical areas. Such a change
in the laminar pattern of the input could be due, for instance, to context-
dependent influences fromhigher cortical areas, known to be important
in attention and other cognitive tasks.
DISCUSSION
The brain is characterized by interconnectivity and dynamics across
multiple scales. Perhaps no recent experimental finding better high-
lights the challenge raised by this multiscale complexity than the
layer-specific, and frequency-dependent, interplay between FF and FB
signaling streams across the large-scale primate cortical circuit (3–6). To
uncover the circuit mechanism behind these frequency-dependent
processes, and to understand their implications for large-scale commu-
nication, we have built a multiscale model of the macaque brain
covering both slow (alpha) and fast (gamma) neural oscillatory dy-
namics and four spatial levels of description constrained by the known
anatomy. The spatial levels range from local homogeneous populations
to laminar circuits, interareal interactions, and large-scale cortical net-
works based on precise anatomical macaque connectivity data. The par-
simoniousmodel can explain awide rangeofmacaque electrophysiological
observations, including the effects of visual contrast onV1gamma rhythms
(13, 14), the interlaminar PACbetween gamma and alpha rhythms (4, 16),
the relationship between alpha power and local inhibition (18), gamma/
alpha signatures of FF/FB interareal interactions (3, 5), and correlations
between anatomical and functional networks (5). Notably, using the
same analysis as in the experimental studies, our model captures the
emergence of a dynamic functional hierarchy in the visual cortex (5, 6).

The model makes a number of experimentally testable predictions. At
the interlaminar level, we suggest that the PAC between gamma and alpha
rhythms is mediated by projections from layer 5/6 pyramidal neurons to
layer 2/3 interneurons. This sets a clear infragranular-to-supragranular
direction of themodulation [as tentatively discussed by Spaak et al. (16)]
and highlights a key role of layer 2/3 interneurons in PAC. Physiological
experiments have identified an inhibitory subgroup (including chandelier
cells and irregular-spiking basket cells) as the recipient of strong projec-
tions from layer 5 pyramidal neurons (29, 30). Our model suggests that
this subgroupof interneuronswill play an important role inPACbetween
supragranular gamma and infragranular alpha rhythms, a prediction
that could be experimentally tested.
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The relevance of layer 2/3 interneurons on PAC is expected to
have important implications at the functional level. Because enhanced
gamma rhythms are associatedwith a strong drive to higher-order areas
(3, 5), modulating the PAC could lead to a modulation of the temporal
windows of elevated gamma synchrony. Therefore, top-down signals
targeting layer 2/3 interneurons (which are compatible with the un-
specific FB projections considered in our model) could act as a top-
down gating mechanism, controlling the length and occurrence of the
temporal windows for communication (39).

At the interareal level, our model provides insight into the mechanisms
that subserve cortico-cortical communication (40). For FF communication,
we have identified two mechanisms that may contribute to the experimen-
tallyobservedenhancementofgammapower(3,5): (i)mean-drivenenhance-
ment of oscillations and (ii) interareal synchronization. Both mechanisms
contribute to the observed gamma rhythm enhancement, but due to the
existence of the mean-driven enhancement mechanism, a tight synchroni-
zation between areas is not necessary to explain the experimental observa-
tions.Gammarhythms tend tobeveryweakly coherent, andacommunication
mechanism purely based on interareal gamma synchronization could
pose certain problems (14, 41) [but see the study by Fries (40)]. However,
the presence of a certain level of interareal synchronization clearly en-
hances the gamma power associated to FF interactions, and its effect
is stronger than the contributions of synchronization to FB interactions.

Although point-to-point FB projections between supragranular
layers (2) are not explicitly incorporated into the model, interareal
projections between supragranular layers in the FB direction will be
present in the model once we incorporate the anatomical data into
the framework. For instance, a projection with an SLN value of 0.2 will
be mainly a FB projection, but because the SLN value is larger than
zero, the projection will have a (comparatively weak) supragranular-to-
supragranular component to reflect the small fraction of supragranular
neurons anatomically identified for that specific projection. Because
weak but nonzero values of SLN are common in our anatomical data
set, this tends to be the norm rather than the exception, and the effect
is the appearance of small peaks of GC at gamma ranges for projections
that are generally considered as FB (fig. S7). This could also explain
the existence of gamma rhythms associated with particular FB path-
ways, such as top-down input from FEF, which lead to an increase of
gamma rhythms in early visual areas (see also further considerations in
the next subsection) (36–38, 42). However, amore careful consideration
of point-to-point FB projections from supragranular layers is beyond
the scope of this work, because it would involve extending the model
of cortical area to include spatial extension and lateral connectivitywith-
in nearby neurons. This extension will be considered in future studies.

The anatomical connectivity data used at the large-scale level
contains detailed information about 30 cortical areas of the macaque
brain (2, 8). Other brain areas, including thalamic and other subcortical
structures, are currently missing from the data set and have therefore
not been explicitly considered in the present model. Although it is
not uncommon to assume, as we do in this study, a stereotypical tha-
lamic input to canonical cortical microcircuits (8), the absence of an
explicit thalamic model may be seen here as an opportunity to con-
ceptually explore the role of thalamus in cortico-cortical communi-
cation. For instance, a strong sustained input to all areas is needed in
our model to guarantee that both gamma and alpha rhythms are sus-
tained in the cortex, and such an inputwouldmost likely be provided by
the thalamus. In addition, thalamic input could also be partly respon-
sible for modulating the interactions between cortical populations, and
therefore influencing the PAC between cortical layers, for instance.
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One could assume that dynamic thalamo-cortical interactions, or
other mechanisms such as bursting, are necessary to generate cortical
rhythms, as is commonly assumed for alpha oscillations (43, 44). Al-
though considering more detailed mechanisms of alpha rhythms is
an appealing future direction in this context [and several modeling stu-
dies constitute a solid starting point in that direction; see previous stu-
dies (43–45)], it is unlikely that these mechanisms would significantly
alter the general conclusions of the present work. This is because, al-
though further detail can be added into the rhythm generator, model
predictions on power and frequency modulations induced by external
input are consistent with the experimental observations. As a conse-
quence, the transmission of signals between cortical areas and themod-
ulation of these signals will accurately reflect the electrophysiological
evidence available, independently of the particular mechanism for
rhythm generation assumed for the model.

In relation to the nature of the slow oscillations, is it still not clear
whether FB interactions are mostly mediated by alpha or (low) beta
rhythms. Bastos et al. (5) identified FB interactions in the low-beta range,
whereas van Kerkoerle et al. (3) and Buffalo et al. (4) consistently
found FB interactions in the alpha range. Our model assumes a generic
low-frequency oscillation (in the range partially overlapping that of
alpha and/or low beta) associated with FB interactions, so the relative
importance of each rhythm in FB interactions cannot be inferred from
the model at its current state—further assumptions about the rhythm
generator would be needed to provide insight into this issue. Theta
rhythms, which have also been associated with FF interactions [although
not as prominently as with gamma rhythms (5)], could also be considered
in this context, because it is possible that multiple rhythms could con-
tribute to communication in each direction: theta and gamma for FF
interactions, and alpha and beta for FB ones.

Laminar targets of interareal projections
Synaptic connections at different levels of the model have been
established according to known anatomical patterns (2, 8, 19, 23).
Full mapping of the model connections with anatomy is not presently
possible, in part due to simplifications needed for a computationally
tractable large-scale cortical model and to the current limitations in
the anatomical literature. In particular, although the laminar origin
of interareal projections is quantitatively measured for each pair of
areas in our network (2), the laminar target of these projections can
only be grossly estimated from other anatomical studies (1, 2, 46).
We have assumed, for example, that FF connections arriving to a
given area exclusively target their supragranular laminar module,
based on the anatomical evidence that layer 4 is the major target of
FF projections (1, 2, 46). There is anatomical evidence that, in interareal
pathways, supragranular layers target supragranular layers and infra-
granular layers target infragranular layers (2, 35), which supports this
assumption. There is also evidence suggesting that FF projections could
also aim at infragranular layers as secondary targets (47). This novel FF
pathway would not substantially affect our modeling results, because
the addition of such a secondary target for FF projections could be
incorporated, as a first approximation, as a small increase in the strengths
of the FF projection to layer 2/3 and the interlaminar projection from
layer 2/3 to layer 5/6.

The case of the laminar target of FB projections is arguably more
interesting. It is thought that FB projections preferentially target supra-
and infragranular layers while avoiding layer 4 (2, 35). However, the
precise weight of the FB input to infragranular layers in early areas is
not known. In ourmodel, we set connections to pyramidal cells in layer
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5/6 comparatively stronger than those targeting pyramidal cells at layer
2/3, motivated by anatomical studies (2, 35). As a result, FB projections
in our model are net excitatory for layer 5/6 and net inhibitory for layer
2/3 (due to FB projections to interneurons in layer 2/3 plus the FB-
activated local ascending inhibition from layer 5/6). Such a connectivity
pattern would be consistent with a predictive coding framework, be-
cause top-down signals would provide the strong inhibitory input to
layer 2/3 necessary to suppress any predicted signals (48, 49). In such
a framework, only ascending information that could not be predicted
and matched by the top-down input would form prediction errors
that can move forward in the hierarchy through subsequent supragra-
nular layers. This important role of strong inhibitory top-down signals
in predictive coding, which has been previously discussed (49, 50),
would, in principle, be consistent with the general framework of our
model. However, the current version of our model cannot explicitly
study predictive coding tasks, because the intra-areal modeling level
lacks the sort of selectivity dynamics needed for these tasks. Further
implementations, based, for instance, on recentmodel implementations
of dynamical causal modeling (51, 52), which is a natural language for
predictive coding, could be developed and included in our large-scale
framework in future studies.

Despite the general net inhibitory effect of FB projections, the exis-
tence of top-down excitatory interactions (46) may potentially play an
important role in other contexts, such as in selective attention (53, 54).
As discussed by Bastos et al. (49), predictive coding and selective atten-
tion are not mutually exclusive, and the potentiation of behaviorally re-
levant bottom-up signals through top-down attentionalmodulation is also
an important function in a predictive coding scenario. FB projections
that can provide a net excitatory contribution to supragranular layers
have been anatomically identified (2, 46), and our two-areamodel can shed
light as to its potential role in selective attention. In particular, by consid-
ering the existence of net excitatory FBprojections to layer 2/3 (and leaving
the FB projections to pyramidal neurons of layer 5/6 as a comparatively
weaker projection), ourmodel predicts a decrease of infragranular alpha
power and an enhancement of gamma rhythms and supragranular firing
rate induced by top-down signals (see fig. S1). In this case, top-down input
to layer 2/3 significantly enhances gamma power by increasing the level
of excitation in the circuit, with interareal synchronization playing only
aminor role. These results agreewith attention-relatedV4activity recorded
from macaque, where similar gamma/alpha signatures are observed in
receptive fields covering the attended visual stimulus (53, 55).

It is not a straightforward task to introduce these net excitatory FB
projections to layer 2/3 in our model, because quantitative anatomical
data about the laminar targets of interareal projections are not available.
However, we can hypothesize about how to incorporate these projec-
tions in a simplifiedmanner. For instance, anatomical studies show that
short-range FB projections tend to target infragranular layers, whereas
long-range FB projections preferentially target supragranular layers
(2, 35, 56). In a set of simulations, we have assumed a simplemonotonic
relationship between FB projection distance and targeted layer (fig.
S8A). This implies that short-range FB projections in our model (such
as the FB from V2 to V1) would mainly target infragranular layers,
whereas long-range FB projections (such as 8l to V4) would preferen-
tially target supragranular layers.With such a distribution of FB laminar
targets, a strong top-down input coming from frontal areas, such as FEF
area 8l, leads to an increase in the firing rate and gamma power of early
visual areas (see fig. S8, B and C). This agrees with experimental evidence
showing that FEF stimulation leads to stronger responses and enhanced
gamma interactions in visual areas (36–38, 42), and with recent studies
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showing that top-down attention signals from prefrontal to visual areas
enhance gamma rhythms (57) and suppress alpha rhythms (4). As with
the case of predictive coding, carefulmodelization of top-down attention-
al signals demands amore detailed large-scale model (with selective neu-
ral populations) than the one presented here, and therefore, this will have
to be addressed in future studies.

Relation to other models
It is useful to discuss how ourmodel compares to other laminar models
of a local cortical area. Lee and collaborators (58, 59), for instance,
developed a laminar spiking model with three layers and different
types of interneurons, which provides interesting insight into the top-
down attention mechanisms mentioned above and also into the role of
cholinergic neuromodulators in interareal communication. Potjans and
Diesmann (32) have also developed an anatomically and physiologically
based laminar spikingmodel of a corticalmicrocolumn,with connectivity
patterns in agreementwith our simplified laminar circuit. Our approach
of considering a parsimonious model with two laminar modules has
several distinctive features and advantages at the conceptual level (for
example, it provides a cleaner picture to understand the origin of PAC)
and in the context of scaling up the model to large-scale networks.
Additional features from the above or similar laminar models can be
incorporated in our large-scale framework to further increase themulti-
scale predictive power of our approach in the future.

At the large-scale level, recent models of the macaque brain have
highlighted the importance of heterogeneity to explain the emergence
of a hierarchy of time scales (34), as recently observed experimentally
(60, 61), although these models lack structure at the laminar level.
Including a certain level of heterogeneity in a laminar large-scale model
could reveal new mechanisms for interareal communication. It will
be worth examining, in future research, the incorporation into our new
model of different types of heterogeneity [in particular, leading to
different gamma frequencies (14, 40)] that may contribute to efficient
coordination of global brain activity. This is particularly interesting be-
cause, although cell-to-cell heterogeneity is known to have a strong
effect in the dynamics of local populations (62, 63), the effect of area-
to-area heterogeneity on large-scale networks is much less understood.

Anatomical and functional hierarchies
Whereas the brain hierarchy is robust, it is also flexible functionally. A
strong and layer-specific input can modify the functional hierarchical
distance between cortical areas and induce “jumps” in the hierarchy
(see Results). This jumping phenomenonmay result from layer-specific
input arriving from cortical areas higher in the hierarchy, such as
parietal or prefrontal areas. In particular, areas involved in higher
cognitive functions, such as working memory or rule representation,
should be able to send layer-specific top-down signals in a context-
specific manner, leading to a reorganization of sensory and association
areas in the functional hierarchy, as observed experimentally (5). The
thalamocortical system may also contribute to altering the brain’s
functional hierarchy, a possibility that can be analyzed in our large-scale
model extended to include the thalamus.

In the context of the anatomical hierarchy, the hierarchical position
of FEF areas 8l and 8m deserves mention. The original Felleman and
Van Essen study (1) placed FEF aboveV4, based on the FF nature of the
projection from V4 to FEF but in the absence of data from the FB
projection. The high position of FEFwith respect toV4was also observed
in later analysis (34) and in our own analysis (fig. S5). On the other hand,
earlier work also suggested that FEF could be below V4 (2, 64).
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This apparent contradiction disappears when we take into account
that the position of FEF depends strongly on the areas that are included
in the analysis used to obtain the anatomical hierarchy. Prefrontal areas
are strongly connected to 8l and 8m, and therefore, a hierarchy that
includes prefrontal areas [as in the study by Chaudhuri et al. (34) and in
fig. S5] locates both 8l and 8m very high in the hierarchy. On the other
hand, if largely visual areas are considered in the estimation of the
hierarchy, then the relative position of FEF will be mainly driven by
visual areas (2, 64), and therefore, 8l will be especially lower in the
anatomical hierarchy. The fact that in certain tasks the functional
hierarchy from Bastos et al. (5) looks similar to the functional hierar-
chies found byMarkov et al. (2) and Barone et al. (64) could be due to a
smaller recruitment of the prefrontal cortex in these tasks, which would
leave the FEF-V4 relationship to be dictated by visual pathways.

On top of these anatomical considerations, it is worth noting that the
position of a given area in anatomical and functional hierarchies does
not have to coincide. The functional hierarchy heavily depends on the
dynamical interactions between areas, and although the anatomical
hierarchy can be a good estimation (as shown in Fig. 6, F and G), the
functional position of a given area can be context-dependent, as ob-
served by Bastos et al. (5) and explained by our model (Fig. 7). In the
anatomical hierarchy, frontal areas 8l and 8m are higher than early
visual areas (see fig. S5), but in the functional hierarchy, these frontal
areas seem to be highly dynamic. This suggests that, under some cir-
cumstances, 8l and 8m will rank much higher in the functional hierar-
chy, in agreement with the above neuroanatomical view. This would
also agree with physiological evidence from behaving monkey studies
that show that FEF is a source area for attentional modulation in V4
[(65) and references therein], which suggests that FEF could rank above
V4 in the hierarchy. In general terms, we expect that the observed dif-
ferences between anatomical and functional hierarchies will provide
insight into task-dependent computations that could be analyzed in
future studies.

Finally, understanding the cortical mechanisms underlying hierar-
chical processing will improve future estimates of the anatomical hier-
archy in humans. The measurement of laminar-specific projections via
tract-tracing studies defines an anatomical hierarchy inmacaques (1, 2),
but these anatomical data are not availablewith known imaging or post-
mortem technique in humans. Diffusion tensor imaging does not
provide directionality information about interareal connectivity. There-
fore, the anatomically defined hierarchy is not known for humans at the
present time. However, inspired by studies showing a strong correlation
between functional hierarchy obtained from frequency-dependent GC
analysis with anatomically defined hierarchy, a recent human study
showed that the same analysis applied to magnetoencephalography
yielded a functional hierarchy in humans (6), allowing inference of an-
atomical hierarchy of the human cortex at least for areas showing strong
homology with macaque. Computational modeling studies, such as the
one presented here, will contribute to solving this problem and will
strengthen the links between functional and anatomical connectomes.
MATERIALS AND METHODS
Anatomical data
The anatomical connectivity data used in this work came from an
ongoing tract-tracing study in macaques (2, 8, 11). In short, retrograde
tracer was injected into a given target area, and it labeled neurons in
several source areas projecting to the target area. The number of labeled
neurons on a given source area allowed to define the FLNs from that
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source to the target area. In addition, the number of labeled neurons
located on the supragranular layer of a given source area (over the total
number of labeled neurons on that source area) allowed us to define the
supragranular layered neurons (SLN) from that source area to the target
area. Source areas that were lower (higher) than the target area in the
anatomical hierarchy tended to have a progressively higher (lower)
proportion of labeled neurons in the supragranular layer. That is, the
lower (higher) the source area relative to the target area, the higher
(lower) the SLN values of the source-to-target projection. By repeating
the process using other anatomical areas as target areas, we obtained an
anatomical connectivitymatrix withweighted directed connections and
laminar specificity.

We used the anatomical connectivity matrix fromMarkov et al. (2),
and we also performed additional injections to expand the connectivity
data and include the parietal area LIP in the connectivity matrix. The
30 cortical areas, which constituted the new connectivitymatrix, were as
follows: V1, V2, V4, TEO, 9/46d, F5, 8m, 7A, DP, 2, 5, 7B, STPr, STPi,
STPc, PBr, TEpd, 24c, F1, F2, F7, ProM, 8L, 9/46v, 46d, 8B,MT, 7m, 10,
and LIP. The anatomical data used in the present study can be down-
loaded from core-nets.org (LIP_Dataset.xlsx, Neuron_2015_Table.xlsx
and PNAS_2013_Distance_Matrix.xlsx).

The corresponding 30 × 30 matrices of FLN, SLN, and wiring
distance are shown in figs. S2, S3, and S4, respectively. The anatomical
hierarchy, which was computed using the SLN values and a generalized
linear model, as in previous studies (2, 34), is shown in fig. S5. The
anatomical data are also shown in fig. S6 for a particular subset of
cortical areas of interest (used for the study of the functional hierarchy
in themodel). The subset of areas of interest wasV1,V2,V4, DP, 8m, 8l,
TEO, and 7A. Surgical and histology procedures were in accordance
with European requirements 86/609/EEC and approved by the ethics
committee of the Rhône-Alpes region.

Computational model
The large-scale model of the macaque cortex was built by assembling
four different levels of description of increasing sizes: (i) local excitatory-
inhibitory populations of the Wilson-Cowan type that describe the
activity within a given layer, with quantitative differences for the
supra- and infragranular layers so that they preferentially exhibit
noisy oscillations in the gamma and alpha frequency band, respec-
tively; (ii) interlaminar circuits coupling supra- and infragranular
layers; (iii) interareal couplings that consider the layer-specific influ-
ences between two given cortical areas (such as V1 and V4); and (iv) a
large-scale laminar cortical network, which extends the anatomical
connectivity data from previous studies (2, 8) to include the posterior
parietal area LIP and a laminar structure of local areas. The network
model consisted of 30 cortical areas distributed among occipital, tem-
poral, parietal, and frontal lobes. Further details of the model, including
equations, parameter values, and the routines used for data analysis, can
be found in the Supplementary Materials.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/11/e1601335/DC1
Supplementary Methods
fig. S1. Microstimulation experiments at the interareal level, for an FB projection that is strong
to L2/3E and weak to L5E (more precisely, with a supra/infra ratio of 0.8).
fig. S2. FLN connectivity matrix, after a logarithmic transformation for visualization purposes,
for the 30 areas of the large-scale model.
fig. S3. SLN connectivity matrix for the 30 areas of the large-scale model.
fig. S4. Wiring distances, in millimeters, for the 30 areas of the large-scale model.
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fig. S5. Anatomical hierarchy obtained from the data shown in fig. S3.
fig. S6. Different matrices for the subset of eight areas of interest (V1, V2, V4, DP, 8m, 8l, TEO,
and 7A) used in the functional hierarchy study.
fig. S7. Spectral pairwise-conditioned GC profiles for all the possible pairs of interactions
between the eight cortical areas of interest: V1, V2, V4, DP, 8m, 8l, TEO, and 7A, with a
background input of I = 6 to all areas, plus a strong extra input of I = 6 to V1.
fig. S8. Effect of introducing a distance-dependent relationship on the target of FB projections.
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