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Abstract

Background—It is important to understand the relative importance of prognostic variables in 

patients with soft tissue sarcomas. The purpose of this study was to describe the hierarchical 

relationships between features inherent to completely excised, localized high-grade soft tissue 

sarcomas of the extremity and compare the associations to those previously reported.

Methods—Data were collected from the Memorial Sloan-Kettering Cancer Center Sarcoma 

Database. All adult patients with high-grade extremity soft tissue sarcomas who underwent 

complete excision (R0 margins) at our institution between 1982 and 2010 were included in the 

analysis. Bayesian belief network (BBN) modeling software was used to develop a hierarchical 

network of features trained to estimate the likelihood of disease-specific survival. Important 

relationships depicted by the BBN model were compared to those previously reported.

Results—The records of 1318 consecutive patients met the inclusion criteria, and all were 

included in the analysis. First-degree associates of disease-specific survival were the primary 

tumor size; presence of and time to distant recurrence; and presence of and time to local 

recurrence. On cross-validation, the BBN model was sufficiently robust, with an area under the 

curve of 0.94 (95% CI, 0.93–0.96).

Conclusions—We successfully described the hierarchical relationships between features 

inherent to patients with completely excised high-grade soft tissue sarcomas of the extremity. The 

relationships defined by the BBN model were similar to those previously reported. Cross-
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validation results were encouraging, demonstrating that BBN modeling can be used to graphically 

illustrate the complex hierarchical relationships between prognostic features in this setting.

SYNOPSIS

We used a Bayesian Belief Network (BBN) to describe the hierarchical relationships between 

features inherent to patients with completely excised high-grade soft tissue sarcomas of the 

extremities. The relationships defined by the BBN model were similar to those previously 

reported, demonstrating that BBN modeling can be used as an adjunct to existing nomograms to 

graphically illustrate the complex hierarchical relationships between prognostic features.

INTRODUCTION

Accurate, personalized survival estimates are important in the treatment of soft tissue 

sarcomas (STS). Since the development of our institution’s prospectively collected soft 

tissue sarcoma database, we have evolved from the descriptive characterization1–4 of 

prognostic factors for outcome5 to the development of generic,6 disease-specific,7 and 

therapy-related8 nomograms. These nomograms, however, require that specific outcomes be 

defined a priori, are limited by the number of specific categories in each variable (i.e., 

histology), and, more importantly, can be hampered by missing or outlying data points.

Bayesian classification, which includes Bayesian belief network (BBN) modeling, is an 

inductive statistical method that allows for rational learning from experimental data. For a 

given set of data, probabilistic relationships between features can be characterized by 

defining conditional probabilities in terms of joint events: P(A,B) = P(A /B) · P(B), which 

allows one to estimate the probability of “A” given a frame of knowledge “B.” Repeated 

application of this formula enables the development of a graphical n-dimensional model that 

codifies all related features within a single hierarchical network. When used as prognostic 

models, Bayesian classifiers can also account effectively for data multidimensionality and 

uncertainty—a quality that enables prognostic BBN models to maintain their robustness in 

the setting of incomplete or outlying clinical data.9, 10 Importantly, BBN models are capable 

of codifying even the most complex data into clear, graphical representations of hierarchical 

relationships—a quality that may interest physicians and surgeons. For instance, this 

technique has been used to better understand relationships between variables in a variety of 

oncologic settings,11–14

The purpose of this study was to develop a BBN model to describe the hierarchical 

relationships between features inherent to completely-excised localized high-grade soft 

tissue sarcomas of the extremity. In doing so, we illustrate the power of BBN modeling as a 

clinical tool that can aid clinicians in codifying complex hierarchical relationships between 

prognostic variables into clear graphical representations.

MATERIALS AND METHODS

The Memorial Sloan-Kettering Cancer Center (MSKCC) Sarcoma Database contains 

prospectively collected clinical, pathologic, and treatment-related variables for all adult 

patients (age >16 years) with primary and recurrent STS treated at our institution since 1982. 
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After obtaining approval from the MSKCC institutional review board, which issued a waiver 

of informed consent, we searched the MSKCC Sarcoma Database for all patients with high-

grade STS of the extremity who underwent complete resection (R0 margins). This 

homogeneous patient population was chosen in an effort to control for tumor grade and 

resection margin status prior to performing the initial probabilistic analysis.

Twenty-seven candidate features were chosen based on their current clinical or historical 

association with disease-specific outcomes in patients with high-grade STS, as well as their 

availability within the MSKCC Sarcoma Database (Table 1). These included the following: 

age at the time of surgical excision; sex; size, depth, and location of the tumor; histology 

and, if applicable, histologic variant; oncologic procedures prior to referral, if any; whether 

the sarcoma was thought to be radiation-induced; the patient’s home zip code at the time of 

referral; the surgeon and surgical service of record; need for tumor bed excision following 

referral; type of surgical procedure performed; presence of bone, nerve, or vascular invasion 

by the tumor; bone or nerve resection with the tumor; history of chemotherapy or 

radiotherapy; timing of chemotherapy or radiotherapy, if applicable; presence of and time to 

local recurrence (LR); presence of and time to distant recurrence (DR); and death from 

disease.

The following definitions were used in this study. As mentioned above, only completely 

excised high-grade STS of the extremity were considered in this analysis. Specifically, 

tumors distal to the vertical plane made by the axillary fold in the upper extremity or distal 

to the inguinal ligament in the lower extremity were considered. A sarcoma was considered 

to be radiation-induced if it was histologically dissimilar from the original tumor and 

occurred within an irradiated field more than 6 months after irradiation. For histology, only 

histologic diagnoses comprising more than 2% of cases were included. Those comprising 

less than 2% of cases were combined and categorized as “other.” Patients were considered to 

have undergone a re-excision if they required, in the opinion of the treating surgeon, a tumor 

bed excision after referral for local control. Bone adherence/invasion was considered present 

if, on imaging, the tumor exhibited any effect on an adjacent bone, including periosteal 

reaction. Nerve and vascular invasion were determined histologically. The presence of and 

time to first DR were determined based on imaging, and calculated from the date of initial 

operation. Local recurrences were diagnosed by physical examination and/or imaging, and 

were confirmed histologically. Time to LR was calculated from the date of initial surgical 

excision to the date of histologic diagnosis of recurrence. Deaths confirmed to be sarcoma-

related were considered disease-related.

Bayesian Statistical Analysis and Model Development

The training data set included all cases identified from the MSKCC Sarcoma Database 

during the study period. All 27 candidate features were considered for inclusion in the 

preliminary models. The BBN models were developed using commercially available 

machine-learning algorithms (FasterAnalytics, DecisionQ Corp., Washington, DC, USA) 

that automatically learn network structures and priors from the training data, thus, priors 

were not specified a priori.15, 16 Prior to Bayesian analysis, features containing continuous 

variables required conversion to categorical variables,17, 18 We used equal-area binning 
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based on prior distributions learned from the training set. In an effort to balance goodness-

of-fit against robustness, a parsimony metric was used to reduce the risk of overfitting the 

final model to the training data.9, 18 Using a step-wise process, unrelated and redundant 

features were pruned from the preliminary models to produce the final model.9, 18

To account for missing data within the training set, we used a passive, truncation-based 

imputation algorithm.9 We imputed values for those features in which missing data 

represented less than 30% of the total record count, and for which there was no adequate 

substitute feature. The imputation algorithm was applied to six features within the training 

set: bone invasion (missing in 5.4% of records), bone resection (7.9%), nerve invasion 

(11.6%), nerve resection (12.2%), vascular invasion (12.4%), and re-excision (27.5%). Thus, 

no features were pruned from the model because of missing data. Most patients had neither 

LR (85.3%) nor DR (68.3%). Therefore, a “missing” value in each of these features was 

defined as no LR or DR.

We trained the BBN model to specify network structure and prior probability distributions in 

order to develop classifiers of estimated disease-specific survival (DSS). The network 

structure was then portrayed graphically to illustrate the conditional interdependence and 

hierarchy of the features. First-degree associates were defined as those nodes that share 

edges with the outcome of interest (death from disease, in this case), while second-degree 

associates were those nodes that share edges with the first-degree associates. Inference 

tables were calculated depicting posterior estimates of probability for each possible 

permutation with respect to the outcome.

Cross-validation

Ten-fold cross-validation was performed to assess the robustness of the final BBN model. 

Data were randomized and divided into 10 matching train-and-test sets. Each train-and-test 

set consisted of a training set composed of 90% of the patient records and a test set 

composed of the remaining 10%. Each matching set was unique, without overlap. A BBN 

model was trained, using each training set, by applying the same parameters as the final 

BBN model, then tested on the corresponding test set. This was repeated 10 times on each of 

the ten unique train and test groups. Using the generated predicted probabilities, a receiver 

operating characteristic (ROC) curve, which is a graphical plot of sensitivity versus 1-

specificity at all discrimination threshold levels, was generated considering DSS as the 

outcome. The area under the ROC curve (AUC) was then calculated to assess the model’s 

overall accuracy and robustness.

RESULTS

We identified a total of 1318 patients who met the inclusion criteria. All records were 

included in the analysis. The clinical characteristics and demographics of the patient 

population are shown in Table 2. These data comprised the training set for model 

development. The median age was 54 years (interquartile range [IQR], 38, 58). Most 

patients were male (55.2%), and most had lower-extremity lesions (73.1%). Tumor size was 

less than 5 cm (35.5%), 5–10 cm (32.5%), and greater than 10 cm (31.6%); it was unknown 

in six patients (0.5%). The most common histology was malignant fibrous histiocytoma/
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high-grade pleomorphic sarcoma (39.6%) followed by synovial sarcoma (15.8%), 

liposarcoma (12.7%), leiomyosarcoma (10.8%), malignant peripheral nerve sheath tumor 

(3.9%), and fibrosarcoma (2.6%).

Chemotherapy was administered preoperatively in 12.4% of patients and postoperatively in 

15.3%. Radiotherapy was given preoperatively in 3.9% of patients and postoperatively in 

43.9%. In 34.7% of patients, re-excision was performed after a previous marginal excision 

(28.1%) or wide excision (10.0%). LR occurred in 14.7% of patients, with a median time to 

LR of 15 months (IQR, 6.0, 29.5). DR occurred in 31.8% of patients, with a median time of 

11 months (IQR, 5.0, 24.0). Overall survival for the entire group was 54.4%, and DSS was 

73.5%, at a median follow-up of 39.9 months (IQR, 14.6, 96.8). Median survival was not 

reached.

Bayesian analysis revealed strong, hierarchical associations between the various features 

(Figure 1). As shown, there were three first-degree associates of DSS: primary tumor size, 

time to DR, and time to LR. Second-degree associates of DSS were: the anatomic site and 

depth of the tumor, any oncologic treatment prior to referral, and a history of preoperative 

chemotherapy.

On cross-validation, ROC curve analysis demonstrated that the model was robust. With DSS 

as the predicted outcome, the AUC was 0.94 (95% CI, 0.93–0.96). Inference tables were 

calculated based on the three first-degree associates, and posterior estimates of probability of 

death from disease ranged from 0.1% to 97.7%. The 41 most likely inferential cases are 

presented (Table 3), out of 144 potential permutations for this model.

For locally recurrent tumors, the model showed a difference in survival based on the original 

size of the primary tumor. From the BBN model, we generated case-specific examples of LR 

for the three size categories (Table 4). The predicted probability of disease-related death was 

28.6% for tumors 5 cm or smaller, but increased to 52.5% for tumors 5–10 cm and to 67.9% 

for tumors larger than 10 cm. Importantly, death from disease became the most likely 

scenario following a LR if the size of the primary tumor was greater than 5 cm, but only in 

the presence of DR (Table 3).

An association between DSS and the time to LR was also shown. Again, from the BBN 

model, we created five case-specific examples in which LR occurred prior to and after 18 

months (Table 5). If LR occurred prior to 18 months after surgery, the predicted probability 

was 59.6%– 68.2% and death from disease was 55.8%–65.9%. However, if LR occurred 18 

months after surgery, the predicted likelihood of DR and death from disease decreased 

substantially to 37.4%–39.8% and 29.7%–32.4%, respectively. Thus, time to LR affected 

both the likelihood of DR and the likelihood of death from disease.

DISCUSSION

Using readily available clinical data, we successfully described the hierarchical relationships 

between features inherent to patients with completely excised high-grade STS of the 

extremity. In doing so, we illustrated the ability of Bayesian statistics to codify the complex 

relationships that exist between prognostic variables in STS into a simple hierarchical 
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model. In the broader sense, we hope that by incorporating the use of BBN modeling in 

oncology, clinicians can improve their understanding of the complex relationships between 

various features and offer personalized estimations of any outcome of interest based on prior 

information. For example, the BBN model constructed in the present study confirmed 

several important relationships between prognostic features related to the treatment of STS 

(Figure 1). First-degree associates, or primary determinants, of DSS in this case, were the 

size of the primary tumor, time to DR, and time to LR.

Using a series of regression-derived nomograms, we have previously shown that a 

personalized estimation of outcomes in patients with STS is possible.1–8 Canter et al. 

demonstrated that the primary tumor size and the tumor site (upper or lower extremity) were 

the two variables most strongly associated with DSS in patients with synovial sarcoma, the 

majority of whom had undergone R0 resections. 19 In the present BBN model, both the 

primary tumor size and site of the tumor (upper vs lower extremity) also emerged as 

dominant features; the former was identified as a first-degree associate of DSS and the latter 

as a second-degree associate. Elsewhere, Canter et al. acknowledged that using tumor grade 

alone to classify patient outcomes was inadequate; in high-grade tumors, other variables 

such as histology need to be included for accurate outcome prediction. 20 They found a 

statistically significant difference in DSS by discretizing histologic diagnoses into 

“favorable,” “intermediate,” and “unfavorable” groups. We chose not to group histologic 

diagnoses in this fashion, but in an effort to improve the generalizability of the BBN model, 

we represented the dominant histologies comprising more than 2% of cases as individual 

categories. In the present study, which is based on a relatively homogeneous patient 

population, the BBN model structure revealed that the specific histologic diagnosis is a 

fourth-degree associate of DSS, and that knowledge of the size category (first-degree 

associate) or depth of the primary tumor (second-degree associate) renders DSS independent 

of the individual histologic diagnosis. Stojadinovic et al. previously described the 

relationship between LR, including the disease-free interval, and DSS. 21 In the present 

study, by examining the prior distributions within the BBN model, we observed not only an 

association between LR and a higher probability of death from disease (22.7% vs 27.0%), 

but also that patients who experienced an LR within 18 months were twice as likely to die 

from disease than those who experienced an LR after 18 months (63.6% vs 31.6%).

Preoperative chemotherapy was identified as a second-degree associate of DSS in this 

patient population. This is an important observation considering that only 27.8% of patients 

received adjuvant chemotherapy and 12.4% received neoadjuvant chemotherapy. Although it 

varies between treating oncologists, preoperative chemotherapy is typically offered at our 

institution for larger tumors (>7.5 cm) in which the risk of metastatic disease is believed to 

be higher. As such, this relationship may represent an institutional selection bias. Evaluation 

in other independent data sets is thus needed to confirm this observation.

We believe that a Bayesian classifier is well suited for analyzing outcomes in patients with 

STS for a variety of reasons. First, we have previously shown that there are verifiable 

relationships between features in the setting of patients with extremity STS 5–7, 20, 22 and 

that the nature of and time to LR influence these relationships.23 Studying the effect(s) of 

one variable at a time while holding all others constant is generally not possible in clinical 
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research, nor does it adequately represent conditional interdependence. The Bayesian 

method not only generates a joint distribution function describing these relationships, but it 

also displays them graphically in an intuitive, transparent, and comprehensive manner. For 

the purpose of the current study, this is considered a major advantage over other, popular 

machine learning approaches such as Artificial Neural Networks (ANNs), which do not 

represent data graphically. The BBN method also depicts important relationships within one 

cohesive model (as opposed to a series of nomograms), which allows the clinician to better 

understand the hierarchy and relative importance of each feature as it pertains to an 

individual clinical scenario. Second, Bayesian networks can account for uncertainty within 

the data, 9, 10 and can thus be used effectively in the setting of reasonable amounts of 

incomplete or missing input data. This is a significant advantage over traditional nomograms 

and ANNs which require that input data be complete. As we have recommended with 

nomograms, clinicians may first conceptualize the model structure, then compute 

personalized estimations of outcomes for a given clinical scenario. As an analytical tool, 

Bayes’ theorem is inductive, updating beliefs (H) in response to evidence (e)— P(H/e)—
something clinicians do every day. Thus, like other modeling techniques, Bayesian models 

can be updated (improved) from time to time as new evidence presents itself, be it emerging 

patterns of disease, new prognostic variables, or more effective treatment modalities. We 

acknowledge that prospectively collected data are ideally suited for this purpose; however, to 

establish the basis of this analysis in this patient population and improve the ability for other 

populations to be treated similarly, we encourage participation in multi-institutional 

prospective trials.

This study has several limitations. First, the BBN model was developed using only patients 

with localized high-grade STS of the extremity resected with negative margins. Thus, it is 

not applicable to all patients with STS, particularly those with low-grade lesions or those 

who have positive margins. Our inclusion of institution-specific features, such as 

“SURGEON,” “SERVICE,” and “REFERRING ZIP CODE,” further limits the model’s 

applicability and were included simply as a description of our current patient population. 

Second, like other machine-learning techniques, Bayesian methods have imperfections, 

especially when trained using censored observations.24 Other methods such as proportional 

hazard regression25 may better describe the likelihood of disease-specific death in the 

presence of censored data. However, graphically representing the hierarchical relationships 

between features (the purpose of this study) is not possible, by this method. We recognize 

this limitation and in lieu of developing a prognostic model, we performed an initial, 

descriptive Bayesian analysis designed to compare our results to previously reported data. 

The relationships described by the current model are similar to those previously reported; 

and cross-validation, which was performed as a general metric of overall robustness, yielded 

encouraging results. Nevertheless, the effect of censoring on Bayesian analysis is the subject 

of continued research, and future studies that include broader populations of patients with 

extremity sarcomas are under way to better define the role of Bayesian modeling in these 

patients. Next, feature selection was performed prior to cross validation, which could 

theoretically result in overstatement of model robustness. As such, adoption of the model 

structure depends on similarities between it and BBN models developed in other, 

independent datasets. Finally, this cohort is from a highly selected, relatively homogeneous 
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referral population and the generalizability of subsequent Bayesian models depends on their 

performance in a variety of centers with differing institutional biases and treatment 

philosophies. Other variables that are potentially important, such as compartmentalization,26 

were not available; these variables may be as important as other variables included in this 

model. Thus, development and validation of future models in other, more diverse patient 

populations is required and has already been planned.

The present analysis demonstrates that Bayesian modeling, an inductive statistical method, 

can be used to illustrate the complex hierarchical relationships between features and can thus 

function as an adjunct to existing nomograms. Controlling for tumor grade and resection 

margin status, as we did in this study, helps to easily visualize the relative importance of 

time to LR, primary tumor size, histology, and other features with respect to DSS. Perhaps 

most importantly, this type of modeling can provide insights into the interrelationships 

between various prognostic features that can then be explored further either by more 

restrictive Bayesian models or by defined population nomograms.
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Figure 1. 
Bayesian belief network constructed using the records of 1318 patients with completely 

excised high-grade soft tissue sarcomas of the extremity. As shown, there are three first-

degree associates of death from disease (“DOD”): primary tumor size (“PRIMARY SIZE 

CATEGORY”); time to distant recurrence (“TIME TO DR”); and time to local recurrence 

(“TIME TO LR”).
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TABLE 1

Candidate features considered for inclusion in the Bayesian belief network model

Candidate feature Label Description States

Agea AGE Patient age, at the
time of surgery

CV

Sex SEX Male
Female

Sizea PRIMARY SIZE
CATEGORY

Size category of
tumor in maximum
dimension

≤5 cm
5–10 cm
>10 cm

Deptha DEPTH Depth of primary
tumor compared to
investing fascia of
limb

Superficial
Deep

Sitea SITE Upper extremity
Lower extremity

Subsite SUBSITE Extremity tumors
distal to the vertical
plane made by the
axillary fold and
horizontal plane
made by the
inguinal ligament
were considered.

Hand
Forearm
Elbow
Arm
Axilla
Shoulder
Groin
Hip
Thigh
Knee
Leg
Ankle
Foot

Histologya HISTOLOGY Final histology
following excision,
review by 3
pathologists

MFH/HGPS
Synovial
Liposarcoma
Leiomyosarcoma
MPNST
Fibrosarcoma
Other

Varianta VARIANT Histologic variant, if
applicable

Monophasic
Biphasic…etc.

Presentation statusa PRESENTATION
STATUS

Oncologic
procedures
performed prior to
referral (if any)

None
Biopsy only
Marginal excision
Wide excision

Radiation-induced RT INDUCED Whether the
sarcoma is
considered radiation
induced

Yes
No

Referring zip code FIRST 3 DIGITS
ZIP

First 3 digits of
patient’s home zip
code at the time of
referral

CV

Surgeona SURGEON CODE 31 surgeons, listed
anonymously

A-EE

Servicea SERVICE CODE 2 surgical services GMT
Orthopaedic
Surgery

Re-excisiona RE EXCISION Whether the patient,
upon referral,
required a tumor
bed excision

Yes
No

Procedurea PROCEDURE Type of procedure
performed

Limb sparing
Amputation
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Candidate feature Label Description States

Bone invasiona BONE INVASION Yes
No

Bone resectiona BONE RESECTED Yes
No

Nerve invasiona NERVE
INVASION

Yes
No

Nerve resectiona NERVE
RESECTED

Yes
No

Vascular invasion VASC INVASION Yes
No

Chemotherapy

Preopa PREOP CHEMO Yes
No

Postopa POSTOP CHEMO Yes
No

Radiotherapy

Preopa PREOP RT Yes
No

Postopa POSTOP RT Yes
No

Time to LRa TIME TO LR In months CV
None

Time to DRa TIME TO DR In months CV
None

Death from diseasea DOD Whether the patient
died of disease, a
reflection of
disease-specific
survival

Yes
No

a
Candidate feature included in the final model.

CV = continuous variable; MFH/HGPS = malignant fibrous histiocytoma/high-grade pleomorphic sarcoma; MPNST = malignant peripheral nerve 
sheath tumor; GMT = Gastric & Mixed Tumor; LR = local recurrence; DR = distant recurrence.
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TABLE 2

Clinical characteristics and demographics for all patients with completely excised high-grade soft tissue 

sarcomas of the extremity (N = 1318)

Feature No. % Median IQR

Age (years) 54 38, 58

Sex

  Male 728 55.2

  Female 590 44.8

Tumor size category

  ≤5 cm 468 35.5

  5–10 cm 428 32.5

  >10 cm 416 31.6

  Unknown 6 0.5

Depth

  Superficial 265 20.1

  Deep 1053 79.9

Site

  Upper extremity 354 26.9

  Lower extremity 964 73.1

Subsite

  Hand 37 2.8

  Forearm 99 7.5

  Elbow 26 2.0

  Arm 91 6.9

  Axilla 33 2.5

  Shoulder 68 5.2

  Groin 43 3.3

  Hip 12 0.9

  Thigh 607 46.0

  Knee 73 5.5

  Leg 149 11.3

  Ankle 22 1.7

  Foot 58 4.4

Histology, variant

  MFH/HGPS 522 39.6

  Pleomorphic 200 38.3

  Myxofibrosarcomatous 171 32.8

  Giant Cell 10 1.9

  Inflammatory 2 0.4

  NOS 139 26.6

  Synovial sarcoma 208 15.8

  Monophasic 136 65.4
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Feature No. % Median IQR

  Biphasic 70 33.7

  NOS 2 0.9

  Liposarcoma 168 12.7

  Myxoid/round cell 83 49.4

  Pleomorphic 57 33.9

  Dedifferentiated 21 12.5

  NOS 7 4.2

  Leiomyosarcoma 142 10.8

  MPNST 51 3.9

  Fibrosarcoma 34 2.6

  Other 193 14.6

Presentation Status

  No prior treatment 260 19.7

  Biopsy only 555 42.1

  Marginal excision 371 28.1

  Wide excision 132 10.0

Radiation-induced

  Yes 19 1.4

  No 1299 98.6

Zip code upon referral

  First 3 digits 112 087, 125

Surgeon

  A 318 24.2

  B 245 18.6

  C 146 11.1

  D 123 9.3

  E 116 8.8

  F 103 7.8

  G 102 7.8

  Other 165 12.4

Surgical Service

  GMT 798 60.6

  Orthopaedic Surgery 512 38.8

  Other 8 0.6

Tumor bed excision

  Yes 457 34.7

  No 498 37.8

  Missing 363 27.5

Procedure

  Amputation 106 8.0

  Limb-sparing surgery 1212 92.0

Bone invasion
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Feature No. % Median IQR

  Yes 51 3.9

  No 1196 90.7

  Missing 71 5.4

Bone resected

  Yes 183 13.9

  No 1031 78.2

  Missing 104 7.9

Nerve invasion

  Yes 27 2.1

  No 1137 86.3

  Missing 154 11.6

Nerve resected

  Yes 156 11.8

  No 1001 78.0

  Missing 161 12.2

Vascular invasion

  Yes 73 5.5

  No 1081 82.0

  Missing 164 12.4

Chemotherapy

  Preop 164 12.4

  Postop 202 15.3

  None 952 72.2

Radiotherapy

  Preop 51 3.9

  Postop 579 43.9

  None 688 52.2

LR 194 14.7

Time to LR (months) 15 6, 29.5

DR 419 31.8

Time to DR (months) 11 5, 24

Death from disease 349 26.5

Follow-up time (months) 39 14.6, 96.8

IQR = interquartile range; MFH/HGPS = malignant fibrous histiocytoma/high-grade pleomorphic sarcoma; NOS = not otherwise specified; 
MPNST = malignant peripheral nerve sheath tumor; GMT = Gastric & Mixed Tumor; LR = local recurrence; DR = distant recurrence.
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TABLE 3

Inference table describing the 41 most likely scenarios, out of a total of 144 potential permutations. The 

outcome of interest was the predicted probability of death from disease

Probability of case
based on training

data (%)

Primary size
category (cm)

Time to
LR

(months)

Time to
DR

(months)

Predicted probability of
death from disease (%)

24.5 ≤ 5 No LR No DR 0.1

18.6 5–10 No LR No DR 0.4

14.6 > 10 No LR No DR 0.7

2.4 > 10 No LR ≤ 4 83.3

2.3 > 10 No LR 14–28 83.9

2.3 > 10 No LR 9–14 85.3

2.2 > 10 No LR > 28 75.0

2.1 > 10 No LR 4–9 84.1

1.9 5–10 No LR ≤ 4 72.4

1.8 5–10 No LR > 28 61.2

1.8 5–10 No LR 14–28 73.3

1.8 5–10 No LR 9–14 75.4

1.6 5–10 No LR 4–9 73.5

1.4 ≤ 5 No LR > 28 35.8

1.3 ≤ 5 No LR ≤ 4 48.1

1.2 ≤ 5 No LR 14–28 49.3

1.2 ≤ 5 No LR 9–14 52.0

1.1 ≤ 5 No LR 4–9 49.5

0.8 ≤ 5 18–37 No DR 0.2

0.7 ≤ 5 > 37 No DR 0.2

0.6 5–10 18–37 No DR 0.6

0.6 5–10 > 37 No DR 0.6

0.5 ≤ 5 ≤ 5 No DR 0.6

0.5 > 10 18–37 No DR 1.2

0.4 > 10 > 37 No DR 1.1

0.4 > 10 > 37 No DR 1.1

0.4 ≤ 5 11–18 No DR 0.9

0.4 5–10 ≤ 5 No DR 1.7

0.4 ≤ 5 5–11 No DR 1.0

0.3 5–10 11–18 No DR 2.5

0.3 > 10 ≤ 5 No DR 3.1

0.3 5–10 5–11 No DR 2.7

0.3 > 10 11–18 No DR 4.7

0.2 > 10 11–18 ≤ 4 97.1

0.2 > 10 11–18 9–14 97.5

0.2 > 10 11–18 14–28 97.2

0.2 > 10 5–11 No DR 5.0
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Probability of case
based on training

data (%)

Primary size
category (cm)

Time to
LR

(months)

Time to
DR

(months)

Predicted probability of
death from disease (%)

0.2 > 10 5–11 ≤ 4 97.3

0.2 > 10 5–11 9–14 97.7

0.2 > 10 5–11 14–28 97.4

0.2 > 10 5–11 No DR 5.0

LR = local recurrence; DR = distant recurrence
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TABLE 4

Association between the size category of the primary tumor and disease-specific survival in cases of local 

recurrence

Local
Recurrence

Size category
of primary
tumor (cm)

Predicted probability
of death from disease

(%)

Change in
probability above

baseline (%)

N/A N/A 26.8 0

Yes ≤ 5 28.6 +1.9

Yes 5–10 52.5 +25.7

Yes > 10 67.9 +41.2

N/A = not applicable
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TABLE 5

Time-dependent association between local recurrence and disease-specific survival

LR Time to LR
(months)

Predicted probability
of death from disease

(%)

Change in probability
above baseline (%)

N/A N/A 27.5 0

Yes ≤ 5 55.8 29.1

Yes 5–11 67.5 40.8

Yes 11–18 65.9 39.2

Yes 18–37 32.4 5.8

Yes > 37 29.7 3.0

LR = local recurrence; N/A = not applicable
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