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Abstract

Levodopa-induced dyskinesias are abnormal involuntary movements that limit the effectiveness of 

treatments for Parkinson’s disease. Although dyskinesias involve the striatum, it is unclear how 

striatal neurons are involved in dyskinetic movements. Here we record from striatal neurons in 

mice during levodopa-induced axial dyskinesias. We developed an automated 3-dimensional 

motion tracking system to capture the development of axial dyskinesias at ~10 ms resolution, and 

correlated these movements with neuronal activity of striatal medium spiny neurons and fast 

spiking interneurons. The average firing rate of medium spiny neurons increased as axial 

dyskinesias developed, and both medium spiny neurons and fast spiking interneurons were 

modulated around axial dyskinesias. We also found that delta field potential power increased in the 

striatum with dyskinesia, and that this increased delta power coupled with striatal neurons. Our 

findings provide insight into how striatal networks change as levodopa-induced dyskinesias 

develop, and suggest that increased medium spiny neuron firing, increased delta field potential 

power, and abnormal delta-coupling may be neurophysiological signatures of dyskinesias. These 

data could be helpful in understanding the role of the striatum in the pathogenesis of dyskinesias 

in Parkinson’s disease.
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INTRODUCTION

Motor symptoms of Parkinson’s disease (PD) are most often treated using L-3,4-

dihydroxyphenylalanine (L-DOPA or levodopa), a dopamine precursor. However, 80% of 

PD patients develop levodopa-induced dyskinesias (LIDs), which are abnormal, involuntary 

movements (Ahlskog and Muenter, 2001). LIDs are a major challenge in treating PD 
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because they limit the usefulness of levodopa, the most effective and commonly used 

therapy. In addition, the development of LIDs are harbingers of more invasive and high-risk 

PD therapies such as deep-brain stimulation (Fahn et al., 2004).

The mechanism by which LIDs develop remains unknown. PD involves degeneration of 

midbrain dopaminergic neurons which heavily project to the striatum (Alberico et al., 2015). 

Rodent and primate PD models also develop LIDs with chronic levodopa exposure; even in 

animals with dopamine depletion restricted to the dorsal striatum (Lundblad et al., 2004, 

2005; Pavón et al., 2006; Santini et al., 2007). The dorsal striatum is largely comprised of 

medium spiny neurons (MSNs), which are the primary output neuron of the striatum. Most 

MSNs express dopamine receptors (Gerfen, 2000; Kreitzer, 2009). Dopamine increases 

excitability in MSNs expressing D1-type dopamine receptors, promoting movement, and 

decreases excitability in MSNs expressing D2-type dopamine receptors (Surmeier et al., 

2007; Cui et al., 2013). PD involves a progressive loss of dopaminergic input to the striatum, 

disrupting both D1 and D2 MSNs leading to the motor symptoms of PD (Bunney et al., 

1973; Hernandez et al., 2013). Although comparatively rare, fast spiking interneurons (FSIs) 

are positioned to powerfully influence MSNs and in turn affect movement (Berke, 2011). 

FSIs can powerfully modulate the firing of MSNs (Koós and Tepper, 1999; Planert et al., 

2010). FSIs also have dopamine receptors and provide strong feedforward inhibition of 

MSN activity, and thus may play a role in dyskinesias (Bracci et al., 2002; Centonze et al., 

2003; Koos et al., 2004; Gittis et al., 2011b). Dopamine depletion can have complex effects 

on MSNs and FSIs as a result of altered input to striatum and/or remodeling of intrastriatal 

networks (Prosperetti et al., 2013; Corbit et al., 2016; Kondabolu et al., 2016). These may 

contribute to dysfunctional striatal networks and the emergence of synchrony at beta 

frequencies (Mallet et al., 2006; Jenkinson and Brown, 2011).

Here, we examine the neuronal activity of dorsal striatal neurons in LIDs. We record from 

MSNs, FSIs, and striatal local field potentials (LFPs) as dopamine-depleted mice develop 

LIDs. Striatal LFPs are of particular translational significance because they can be directly 

measured in humans via intracranial recordings. While these LFPs have been implicated in 

PD it is unknown how they change as LIDs develop (Brown et al., 2001; Williams et al., 

2002; Brown and Williams, 2005). A significant challenge to resolving these issues is that 

prior studies have human raters score abnormal involuntary movements as a measure of 

LIDs in rodents (Lundblad et al., 2002; Winkler et al., 2002; Smith et al., 2011; Breger et al., 

2013). In this method, humans grade axial, limb, and orofacial dyskinesias over a 1–2 

minute window every several minutes (Lundblad et al., 2005; Cenci and Lundblad, 2007; 

Santini et al., 2007). This technique is not suited to capture modulation of striatal MSNs, 

which can be correlated with movements on the scale of milliseconds (Lundblad et al., 2004; 

Cenci and Lundblad, 2007; Breger et al., 2013; Sgroi et al., 2014). To address these issues, 

we used 3-dimensional position tracking technology to capture animals’ position at ~10 ms 

and ~ 1 mm resolution while recording neuronal activity from the dorsal striatum of mice 

during the development of LIDs. We found that striatal FSIs and MSNs changed firing with 

dyskinesias and were modulated around axial LIDs. These observations provide novel 

insight into the role of striatal neurons in LIDs.
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EXPERIMENTAL PROCEDURES

Animals

We used 9 C57/BL6 male mice (Harlan, Madison, WI), weighing >25g at the time of 

dopamine depletion. All procedures were approved by the Animal Care and Use Committee 

at the University of Iowa.

LID induction

We induced dyskinesias as previously described (Figure 1A; Lundblad et al., 2004; Cenci 

and Lundblad, 2007). Briefly, mice were anesthetized using ketamine (100 mg/kg) and 

xylazine (10 mg/kg) and injected with desipramine (25 mg/kg; i.p.) to protect 

catecholaminergic neurons. First, we depleted dopamine in the medial forebrain bundle 

(MFB) using the neurotoxin 6-OHDA bromide (Sigma, St. Louis, MO) made each surgery 

day at a concentration of 1 µg/µL dissolved in 0.02% ascorbic acid (AVANTOR, Central 

Valley, PA). Animals were unilaterally depleted of dopamine with 1µg of 6-OHDA 

stereotaxically injected into the MFB (AP: −1.2, ML: −1.2, DV: −4.7 from dura). We found 

that 1 µg of 6-OHDA reliably caused 71±5% (mean±SEM) dopamine depletion in the 

striatum. With levodopa administration this dopamine-depletion protocol maximized LIDs 

and minimized mortality of mice with electrode implants (Figure 1B). In these animals, a 16 

channel stainless steel microwire array (50 µm, 4×4; MicroProbes, Gaithersburg, MD) was 

lowered into the dorsal striatum (AP: +0.1, ML: −2.0, DV: −3.0; Figure 1B) while measuring 

neuronal activity. To ground the electrode, the stainless steel ground wire was wrapped 

around two skull screws, which were placed over the contralateral lateral surface of the skull 

between the bregmatic and lambdoid sutures. The craniotomy was sealed and implants were 

fixed in place with cyanoacrylate ('SloZap', Pacer Technologies, Rancho Cucamonga, CA) 

and methyl methacrylate (dental cement; AM Systems, Port Angeles, WA). In addition, an 

implant was designed to attach two 4 mm infrared reflective spheres to the recording 

headstage (Figure 2A). Following a week of recovery, animals were tested for unilateral 

depletion with the amphetamine-induced rotation test. Animals were injected with 

amphetamine (5 mg/kg; i.p.) and ipsilateral rotations were recorded 30 min post-injection 

(Healy-Stoffel et al., 2012; Chotibut et al., 2013). Animals that did not show >5 ipsilateral 

rotations per minute were not included in this study (Chang et al., 1999; Paquette et al., 

2009); animals used in the study performed 11±2 ipsilateral rotations per minute. Only 

complete rotations (360°) were counted. On the day following amphetamine-induced 

rotation testing, we began administering 20 mg/kg of L-DOPA-methylester (levodopa; 

Sigma) dissolved in 0.09% NaCl sterile saline at a concentration of 4 mg/mL with 

Benserazide (2 mg/mL; Sigma) daily. Striatal neuronal activity was recorded on Day 1 and 

Day 13 of levodopa administration while tracking movements (Figure 2).

Abnormal involuntary movement scores

We used amplitude based scoring to characterize LIDs in our mouse model (Lundblad et al., 

2002; Winkler et al., 2002; Smith et al., 2011; Breger et al., 2013). Briefly, animals were 

assessed for two minutes every 10 minutes for an hour and each LID subtype was given two 

scores, one for duration of dyskinesias (0–4) and one for severity (0–4). These scores were 

then multiplied and axial, orofacial, and limb LID subtypes were added to obtain the 
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integrated AIM scores at each time point (Figure 3A, line graph). To obtain a global score, 

integrated AIM scores were summed for each recording session (Figure 3A).

Automated computer tracking

For 13 days, animals were injected with 20 mg/kg of levodopa (Figure 1A). Starting on Day 

1 with baseline recording before levodopa administration, striatal activity was recorded 

along with behavior via OptiTrack Prime 13 cameras (NaturalPoint Inc, Corvallis, OR) using 

Motive OptiTrack software and a video camera at the beginning and end of treatment (Day 1 

and 13) to measure the development of LIDs. The OptiTrack cameras were mounted on 

tripods with a height of 34 cm from recording surface (Figure 2A). These cameras were 

calibrated on each recording day using a wand (250 mm; NaturalPoint Inc) consisting of 

three infrared reflective spheres at a fixed distance from one another in a straight line. The 

filter switch on Motive OptiTrack was set to infrared spectrum, the gain was set to “low” for 

short range, and the cameras were set to object mode. At least 5000 samples were gathered 

to calibrate the cameras. A sample is registered when two or more cameras can view all 

three spheres. Following wand calibration, the ground plane (X, Y, Z directions) was set by 

placing a calibration square (NaturalPoint Inc) with three infrared reflective spheres. Wand 

calibration was applied and converted to meters and the output had a mean 3-dimensional 

error of <.03 mm. Two 4-mm infrared reflective spheres were attached to the headstage to 

determine animals’ head position. The animals were placed in a transparent cylinder (15 cm 

diameter) 42 cm from each camera (Figure 2A). Motive OptiTrack was synced with Plexon 

and with the video camera. The Motive Optitrack software tracks movements along the X, Y, 

and Z axes. Position data were exported as CSV files using Motive OptiTrack. Basic 

tracking of two infra-red reflective spheres on the animal’s head was done in Motive. When 

Motive lost tracking of the spheres due to reflection from the recording chamber, coordinates 

of the spheres were co-registered in MATLAB using a nearest neighbor algorithm. The 

distance between the spheres in 3D space was calculated between n and n+1 frame, and 

minimal distance change per each detected sphere was selected as n+1 tracked sphere. 

Frames with no detected spheres were linearly interpolated when continuous missing frames 

were less than 1 second; otherwise these frames were excluded from behavioral analysis. A 

total of 96.9±0.8% frames were tracked per each session and linear interpolation filled in 

2.8±0.7% of missing frames.

Rapid and continuous head rotation movements were identified as characteristic of axial 

dyskinesia-associated movements based on hand-scored dyskinesias. Head rotation was 

identified by simultaneous velocity changes in X and Y axes. Tracked sphere coordinates 

were filtered with a low-pass FIR filter at 4Hz to remove high frequency noise. Velocity was 

calculated between frames on the X and Y axes, then dyskinesia-associated head rotations 

were identified using findpeaks function in MATLAB. The threshold parameters for 

rotational movement were minimum peak prominence (continuous velocity changes) at 

0.002 and minimum peak height (velocity) at 0.096 mm/sec.

Neuronal Analyses

Neuronal ensemble recordings in the striatum were made using a multi-electrode recording 

system (Plexon, Dallas, TX). Putative single neuronal units were identified on-line using an 
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oscilloscope and audio monitor. Plexon Off-line Sorter was used to analyze the signals after 

the experiments and to remove artifacts. Spike activity was analyzed for all cells that fired at 

rates above 0.1 Hz. Statistical summaries were based on all recorded neurons. Principal 

component analyses (PCA) and waveform shapes were used for spike sorting. Single units 

were identified as having 1) consistent waveform shape, 2) separable clusters in PCA space, 

and 3) a consistent refractory period of at least 1 ms in interspike interval histograms. All 

neurons were analyzed offline using Off Line Sorter (Plexon) and MSNs and FSIs were 

identified by waveform shape, half-peak-width, peak-to-trough duration, and firing rate 

(Figure 4A–B). Analysis of neuronal activity and quantitative analysis of basic firing 

properties were carried out using NeuroExplorer (Nex Technologies, Littleton, MA), and 

MATLAB. LFP channels were filtered between 0.7 and 1000 Hz online, sampled at 1000 Hz 

and recorded in parallel with single unit channels using a wide-band board. Medium spiny 

neurons and fast spiking interneurons were clustered using Gaussian mixture models.

Field potentials (4 per animal) were low-pass filtered at 0.5 Hz and high-pass filtered at 50 

Hz using EEGlab’s eegfilt. Spectrograms were calculated using EEGlab’s spectopo using 

the entire recording session (Delorme and Makeig, 2004; Emmons et al., 2016). Power was 

compared via a paired-t test between sessions in three frequency bands: delta (1–4 Hz), theta 

(4–8 Hz), and beta (12–25 Hz). Spike-field coherence was calculated using neurospec’s 

sp2a_m1 using type 0 analysis, and a segment power of 11 with the average LFP per each 

animal according to methods described in detail previously (Rosenberg et al., 1989; Halliday 

et al., 1995, 1998; Parker et al., 2014). Coherence values were normalized to the 95% 

confidence interval for each neuron to facilitate comparisons across animals. All statistics 

assumed each recording day was an independent sample; no statistical dependence between 

days was considered and the same neurons were not explicitly tracked across days.

Histology

After the completion of the experiments, mice were euthanized by injections of 100 mg/kg 

sodium pentobarbital, and transcardially perfused with 4% paraformaldehyde. Brains were 

post fixed in 4% paraformaldehyde and cryoprotected in 30% sucrose before sectioning in a 

cryostat. Brain slices were mounted and stained for tyrosine hydroxylase (TH; polyclonal 

rabbit anti-TH, 1:500; Millipore, Temecula, CA) and cell bodies using DAPI. Histological 

reconstruction was completed using post mortem analysis of lesion, electrode placement in 

the striatum, and cell concentration in the substantia nigra. Images were captured on Zeiss 

Apotome.2 Axio Imager and cells in the substantia nigra were counted using the optical 

fractionator in Stereo Investigator for dopamine depletion quantification and analysis.

Statistics

All statistical testing was done via functions in the statistical toolbox in MATLAB. 

Hypotheses about levodopa administration affecting the development of LIDs, the firing rate 

of MSNs, FSIs, and LFPs were determined beforehand. Means of two independent 

populations were compared via a t-test. When a single group underwent repeated testing (i.e. 

comparing LIDs between Day 1 and 13), we used an ANOVA. We used a χ2 test when 

counting elements (i.e. the number of neurons with spike-field coherence) in two 
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populations. In line with our past work, all neuronal populations were considered 

statistically independent over repeated days (Parker et al., 2014, 2015a, 2015b).

RESULTS

Automated tracking of LIDs

To induce LIDs, dopamine was unilaterally depleted using 1µg of 6-OHDA, after which 

levodopa (20 mg/kg) was administered for two weeks (Figure 1A). Mice were implanted 

with microwire recording arrays (16 channels, 4×4 array) into the dorsal striatum. Following 

one week of recovery, animals were screened for ipsilateral rotation using amphetamine. 

Only animals with biased and constant ipsilateral rotations were included in this study. On 

average, animals had a 71±5% decrease in TH positive cells in the substantia nigra pars 

compacta (t(4)= 3.3, p<0.03; bar graph in Figure 1B). The average dopamine depletion we 

observed was lower than other studies (Lundblad et al., 2004, 2005; Cenci and Lundblad, 

2007) due to the fact that we used 1µg of 6-OHDA, instead of 3µg. However, all mice 

developed LIDs and we observed minimal mortality. In these animals, we studied how 

striatal neuronal ensembles changed as LIDs developed on Day 1 vs. Day 13 of levodopa 

administration.

Along with microwire array implantation, all mice had two 4 mm infrared-reflective spheres 

attached to the recording headstage in the anterior-posterior dimension (Figure 2A). Four 

infrared cameras recorded the X (right and left), Y (forward-back), and Z (up-down) 

coordinates of the mouse’s head at 120 frames/per second (frames/s) to track head position 

(Figure 2A). Automated computer tracking data was synchronized with a video camera at 30 

frames/s and Plexon neurophysiological recording hardware (Figure 2B–C). To examine 

how movement tracking captured dyskinetic movements, we analyzed movement videos to 

identify dyskinetic movements by hand, and abnormal-involuntary movement (AIM) scoring 

was performed by human raters in LID sessions (Figure 3A; Winkler et al., 2002; Lundblad 

et al., 2004, 2005; Cenci and Lundblad, 2007; Bido et al., 2011; Smith et al., 2011). AIM 

scoring indicated that LIDs developed and increased severity over two weeks of levodopa 

administration in 6-OHDA-lesioned mice (t(4)= 4.71, p< 0.01; Day 1 vs. Day 13) but not in 

sham-lesioned mice (Figure 3A). We recorded the timestamps of hand-coded LIDs along 

with tracking data (Figure 3B). By aligning automated tracking to video and hand-scoring, 

we found that axial LIDs involved large changes in the X and Y axes, with smaller changes 

in the Z axis (Figure 3B–C).

By examining patterns of movement in 3D around hand coded dyskinetic events, we 

observed that axial dyskinesias were associated with rapid changes in velocity and angular 

position, identified by peaks in the velocity record in X and Y axes. These were denoted as 

computer-identified axial dyskinesias. Around these computer-identified axial dyskinesias, 

there were large changes in X/Y/Z position, speed, acceleration, and angular velocity 

(Figure 3C–D).

As dyskinesias developed with two weeks of levodopa administration, average velocity 

increased, but not acceleration or angular velocity (F(2,14)= 4.8, p<0.05; Figure 3E). 

Consistent with AIM scoring, there were more computer-identified axial dyskinesias on Day 
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13 vs. Day 1 of levodopa (F(2,14)= 4.6, p<0.05; Figure 3F) and these increases were 

significantly correlated with AIM scores (R=0.73, p<0.01; Figure 3G). Our data indicate that 

computer-identified axial dyskinesias correlate with AIM scores, which have low temporal 

resolution (Breger et al., 2013; Sgroi et al., 2014). Indeed, around axial dyskinesias, 

automated tracking captured patterns of large displacements and faster movements. 

Automated tracking revealed that dyskinetic sessions are characterized by more overall 

movement and higher average velocity. Thus, such automated tracking techniques could be 

useful in capturing dyskinetic movements in mouse models of LIDs with high temporal 

resolution and linking these movements to striatal neuronal activity.

Striatal neurons and development of LIDs

Prior work demonstrates that striatal MSNs and FSIs encode aspects of movement (Berke et 

al., 2004; Berke, 2008; Hernandez et al., 2013; Jin et al., 2014; Barter et al., 2015a, 2015b). 

To examine striatal function during dyskinesias, we recorded striatal neuronal ensembles and 

tracked movement. In accordance with prior work, we used peak-to-trough duration and 

half-peak-width spike-waveforms to identify striatal MSNs and FSIs (Berke et al., 2004; Jin 

et al., 2014; Figure 4A). Gaussian mixture models were able to cluster striatal MSNs and 

striatal FSIs (Figure 4B). Across five 6-OHDA-lesion animals and four sham-lesion animals 

in three recording sessions (Saline, Day 1, and Day 13 of levodopa) we classified 240 

neurons as MSNs and 146 as FSIs. Without levodopa administration dopamine-depleted 

animals had higher firing rates of MSNs (4.15 Hz ± 1.84) compared to shamlesioned 

animals (1.18 ± 0.56; t(7) = 3.6, p<0.01; Figure 4C). However, the firing rate of FSIs did not 

differ between dopamine depleted animals and sham-lesion animals (Figure 4C). For MSNs, 

a repeated measures ANOVA revealed main effects of lesion (F(1,171) = 5.60, p < 0.02) and 

levodopa administration (F(1,171) = 23.0, p < 10−5) without interactions. The average firing 

rate of striatal MSNs was significantly higher on Day 13 (4.81 Hz ± 0.65) when compared to 

Day 1 (3.37 Hz ± 1.25) while FSIs on average were unchanged (Figure 4C).

We focused on Day 13 of levodopa sessions, as this time point had the most LIDs (Day 13; 

Figure 3F). In LID sessions after two weeks of levodopa injection (Day 13 of levodopa), we 

recorded 39 MSNs and 31 FSIs. Around axial dyskinesias, both striatal MSNs and FSIs had 

prominent modulations (Figure 5A–D). We found no clear evidence that MSNs and FSIs had 

differential patterns of activity around LIDs. These data indicate that both MSNs and FSIs 

could be strongly modulated around dyskinetic events.

Striatal field potentials and LIDs

Striatal LFPs reflect the integrated activity of striatal neurons. LFPs are prominently 

modulated by levodopa and could be a neurophysiological signature of LIDs that can be 

measured in humans (Brown et al., 2001; Brown, 2003; Brown and Williams, 2005). To 

investigate striatal LFPs in LID sessions, we recorded striatal LFPs and measured delta (1–4 

Hz), theta (5–8 Hz), beta (12–24 Hz), and gamma band (25–95 Hz). Around computer-

identified axial dyskinesias on Day 13, striatal LFPs had significant delta, theta, and beta 

modulations around axial dyskinesias (compared to random events; Figure 6A–B). Delta, 

beta, and gamma power significantly increased from Day 1 vs Day 13 of levodopa (delta: 

paired-t(19) = 3.4, p < 0.003; beta: paired-t(19) = 2.8, p < 0.01; gamma: paired-t(19) = 3.5, p < 
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0.003; data from 20 channels in 5 mice; Figure 6C–D). Additionally, we found that the 75–

85 Hz power in dyskinetic animals was significantly higher (Day 13 vs Day 1; paired t(19) = 

5.6, p < 10−5), similar to that previously reported in the motor cortex in dyskinetic rats 

(Halje et al., 2012). The LFPs in the sham lesion animals did not change from Day 1 to Day 

13 of levodopa injections (Figure 6D). These data implicate delta, beta, and gamma bands in 

axial LIDs.

Next, we examined how spectral power in striatal LFPs was related to individual neuronal 

activity using spike-field coherence (Halliday et al., 1998). This technique allows us to 

investigate the evolution of coupling between individual neurons and striatal LFPs (Halliday 

et al., 1998; Narayanan et al., 2013; Parker et al., 2014). We normalized coherence values to 

the 95% confidence interval to compare raw spike-field coherence; thus a scaled coherence 

measure above 1 is significant at p<0.05 (Parker et al., 2015a). This measure revealed 

significant average delta spike-field coherence for FSIs but not for MSNs around axial LIDs 

(Figure 7A–B). Across all ensembles, we found that delta coherence in FSIs increased on 

Day 13 of levodopa administration compared to Day 1 (Figure 7A–D; χ2=5.8, p<0.02), 

whereas theta, beta, and gamma coherence did not. No changes were observed in MSNs on 

Day 1 vs Day 13 of levodopa, although levodopa administration did decrease delta spike-

field coherence for MSNs (Saline vs Day 1, χ2=4.7, p<0.03; Figure 7C). Taken together, 

these data implicate delta-band striatal LFPs and delta spike-field coherence in dyskinesias 

and provide some insight into striatal network function in LIDs.

DISCUSSION

In the present study, we recorded from striatal neurons in unilaterally dopamine-depleted 

mice as they developed LIDs. We developed a novel automated tracking system to capture 

dyskinetic movements with high temporal resolution, allowing us to correlate dyskinesias 

with neuronal activity. Striatal MSNs increased activity as dyskinesias developed, but both 

striatal MSNs and FSIs were modulated around dyskinetic events. Furthermore, striatal 

LFPs increased delta and theta activity as dyskinesias developed, and striatal FSIs but not 

MSNs developed delta coupling during dyskinesias. To our knowledge, these are the first 

data to describe striatal network activity as dyskinesias develop, and suggest that dyskinesias 

change striatal network activity. This observation could help understand the disruption of 

striatal circuits during dyskinetic movements.

The dopamine precursor levodopa can influence the firing rate of MSNs (Centonze et al., 

2003). Dopamine’s effect on FSIs in unclear as it can increase excitability (Bracci et al., 

2002) although this is not universally described with prolonged dopamine depletion (Mallet 

et al., 2006; Gittis et al., 2010). We do not observe consistent changes in FSI activity with 

dopamine depletion or repeated application of dopamine precursors. Dopamine depletion 

leads to complex changes in the circuitry of the striatum (Nisenbaum et al., 1986; Pang et 

al., 2001; Fino et al., 2007; Prosperetti et al., 2013; Corbit et al., 2016; Kondabolu et al., 

2016). There have been few prior reports studying the activity of these striatal populations as 

LIDs develop (Picconi et al., 2003; Meissner et al., 2006; Liang et al., 2008; Belic et al., 

2015). Though initial administration of levodopa significantly facilitates movement in 

humans and animal models, chronic exposure leads to severe side effects that can be 
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debilitating (Damiano et al., 2000; Péchevis et al., 2005). One important advance in our 

work is automated tracking with high temporal (<0 ms) and high spatial (< mm) resolution. 

Previous studies have largely relied on AIM scores, which can be laborious and temporally 

limited (Lundblad et al., 2004). Tracking techniques have been used to correlate movements 

with striatal neurophysiology (Barter et al., 2015a, 2015b), and here we extend this work to 

LIDs.

Previous work on LIDs provides evidence of increased expression of D1 dopamine receptors 

in the striatum in animals with LIDs, possibly implicating D1 MSNs in LIDs (Aubert et al., 

2005; Darmopil et al., 2009; Hanrieder et al., 2011). Diverse changes in dopamine receptors 

and intracellular proteins with chronic levodopa administration could affect D1 and D2 

MSN activity (Aubert et al., 2005 p.4; Darmopil et al., 2009; Bezard and Carta, 2015). 

Additionally, prior work on FSIs describe that under physiological conditions FSIs tend to 

preferentially target D1 MSNs (Gittis et al., 2011b), but following dopamine depletion FSIs 

showed higher connectivity to D2 MSNs (Gittis et al., 2011a). The change in inhibitory 

input to the different MSN populations may be a contributing factor in LIDs. Our study is 

limited in that we cannot differentiate between D1 and D2 MSNs, and we could not identify 

consistent synaptic relationships between MSNs and FSIs. Future studies in mice could try 

to unravel MSN-FSI interactions further and differentiate between D1 and D2 MSNs by 

recording simultaneously with optogenetics and pharmacology.

We found evidence of increased LFP delta, beta, and gamma rhythms after LIDs developed. 

Several prior studies have looked at the LFPs of dopamine-depleted animals during LIDs 

(Halje et al., 2012; Belic et al., 2015), and report the development of beta and gamma 

oscillations in the striatum. These beta oscillations can be increased with dyskinesias 

(Salvadè et al., 2016), and we find similar increases in beta and gamma rhythms here. 

However, we also report novel increases in delta power in LID sessions, and delta coupling 

with FSIs.

These data could provide insight into the mechanism of striatal network dysfunction during 

LIDs. FSIs express dopamine receptors, exert a powerful influence over MSNs, and, thus, 

modulate the firing of these neurons (Koós and Tepper, 1999; Bracci et al., 2002; Planert et 

al., 2010; Berke, 2011). FSIs have also been reported to have less-specific task modulations 

(Berke, 2008). With levodopa administration, FSIs might increase their firing and to 

suppress MSN activity. However, after LIDs develop, these FSIs are coupled to delta/beta 

rhythms, and, thus, might be unable to regulate MSN activity, leading to LIDs.

Our study is the first report to our knowledge that combines automated tracking in rodent 

models of LIDs with striatal neuronal ensemble recording. Our results are biased towards 

axial dyskinesias as the tracking device was placed on the animals’ midline. Future advances 

in 3-dimensional tracking might enable high-fidelity tracking of these movements, and 

extend this work to limb dyskinesias and orofacial dyskinesias. Capturing these dyskinesias 

in freely-moving mice would require significant advances in tracking technology, but might 

afford a higher-resolution picture of striatal neuronal activity. However, because axial 

dyskinesias are a large component of LIDs, our results are representative of striatal changes 

with the development of LIDs (Winkler et al., 2002).
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One further limitation includes our LID protocol. Electrode implants are expensive and labor 

intensive; thus, we used a lower dose of 6-OHDA and a higher levodopa dose to minimize 

mortality while maximize LIDs (Pan and Walters, 1988; Duty and Jenner, 2011; Thiele et 

al., 2012). While this protocol produced reliable LIDs in our hands, some aspects of our 

results might be difficult to compare to prior work. Additionally, we allowed animals to 

recover for one week before starting levodopa treatment, while other studies allow animals 

to recover for three weeks. Levodopa therapy is typically used early in PD treatment while 

dopaminergic neuronal death is still occurring and within 4–6 years of treatment about 40% 

of patients develop LIDs (Ahlskog and Muenter, 2001; Kumar et al., 2005); thus our data 

might still have clinical relevance, although our interpretation is complicated by ongoing 

dopaminergic cell loss. Despite these limitations, our data clearly indicate that we can use 

automated methods to track LIDs and correlate these events with striatal neuronal activity, 

and that striatal MSNs and LFPs change as LIDs develop.

Conclusions

We have developed an automated tracking system to capture striatal neuronal activity around 

axial LIDs. We found that both striatal MSNs and FSIs are strongly modulated around 

dyskinetic events. Only FSIs were coupled with increased striatal delta power as LIDs 

developed. These data provide insight into how striatal networks change as LIDs develop as 

well as new tools to analyze LIDs in detail.
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ABBREVIATIONS

PD Parkinson’s disease

LIDs levodopa-induced dyskinesias

AIM abnormal involuntary movement

MSN medium spiny neuron

FSI fast spiking interneuron

LFP local field potential

MFB medial forebrain bundle
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HIGHLIGHTS

• We developed an automated system to track levodopa-induced dyskinesias in 

mice.

• Striatal medium spiny neurons and fast spiking interneurons were modulated 

around dyskinesias.

• Delta power and delta-neuronal coupling increased as dyskinesias developed.
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Figure 1. Experimental timeline: mouse model of levodopa-induced dyskinesias
A) To model LIDs, we depleted dopamine unilaterally with a MFB 6-OHDA lesion and 

injected levodopa (20 mg/kg) for two weeks. We recorded striatal neuronal ensemble activity 

on Day 1 and 13 of levodopa administration. B) Location of MFB 6-OHDA lesion (left) via 

immunohistochemistry resulting in large loss of striatal dopamine in the dorsal striatum, 

where electrodes were implanted (right; TH in red; DAPI in blue). Each white circle 

represents electrode placement of one animal. Bar graph shows quantification of TH in the 

substantia nigra pars compacta. On average, animals had 71±5% less TH positive cells on 

the lesioned side (red) when compared to the contralateral side (black). Data from 5 lesioned 

mice. (*) p<0.05.
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Figure 2. Tracking set-up
A) Inset: Picture of two infrared reflective spheres (white arrow) and recording electrode. 

Right: Diagram of 4 infrared cameras calibrated to track movements at 120 frames/s. B) 

Tracking examples (2 s) in a dopamine-depleted animal (6-OHDA) in the X (blue), Y 

(green), and Z (black) axes with corresponding still images. C) The same animal as in (B) 

with initial levodopa administration in the X (blue), Y (green), and Z (black) axes with 

corresponding still images.
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Figure 3. Automated tracking of axial LIDs
A) With levodopa administration for two weeks, LIDs increased over time by AIM scoring 

in 6-OHDA-lesioned animals (5 animals) but not sham-lesioned animals (4 mice). B) 

Example traces from one mouse 1 s before and after a single hand-coded axial LID on all 

three axes (X: blue, Y: green, Z: black). C) Average displacement observed around the 

computer-identified axial LIDs in all three axes (X: blue, Y: green, Z: black) compared to 

shuffled events (noise, in gray; based on randomly selected timestamps). D) Around 

computer-identified events, there were large changes in velocity, acceleration, and angular 
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velocity when compared to shuffled data (gray). E) Average velocity increased as LIDs 

developed, while acceleration and angular velocity did not. F) Computer-identified 

dyskinetic events increased as LIDs developed. G) Computer-detected LIDs and AIM scores 

were significantly correlated. These data indicate that automated motion tracking can 

capture axial dyskinesias. Data from five 6-OHDA-lesioned and four sham-lesioned mice. 

Error bars are mean ± SEM. (*) p<0.05.
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Figure 4. Striatal MSNs increase firing rate as LIDs develop
A) Example waveforms of one MSN (red) and one FSI (blue) recorded from a single 

electrode. B) Clustering across peak-to-trough duration and half-peak-width identified 240 

MSNs (red) and 146 FSIs (blue). C) Mean firing rate of MSNs increased following 6-OHDA 

lesion (Saline: sham-lesion (grey) vs 6-OHDA-lesioned in (red)) and as LIDs developed 

(Day 1 vs Day 13) while FSIs did not change as LIDs developed; data from 240 MSNs and 

146 FSIs in 9 mice over 3 days. Error bars are mean ± SEM; (*) p<0.05.
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Figure 5. Striatal neurons are modulated around levodopa-induced dyskinesias
A) Example of an MSN and B) an FSI showing prominent firing rate modulation around 

computer-identified axial dyskinesias (0 s, Time from LID). Top portions are raster plots 

where each line represents a time-coded LID and each dot represents an action potential of 

the neurons. Bottom portions are the average firing rate for that neuron for all time-coded 

LIDs. C) Firing rate changes for all MSNs and D) all FSIs around axial dyskinesias on Day 

13.
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Figure 6. Delta power in striatal local field potentials increases as LIDs develop
A) Voltage modulation of LFPs around axial dyskinesias (0 s, Time from LID). B) Time-

frequency plot of LFPs around axial dyskinesias. Spectral power of LFP activity revealed 

significant modulations in delta, theta, and beta bands around axial dyskinesias vs. shuffled 

events (outlined in black). C) Spectral power of striatal LFPs on Saline (black), Day 1 

(pink), and Day 13 (red) of levodopa administration. D) Error bar of average normalized 

power (dB) of 6-OHDA-lesioned mice (red) and sham-lesioned mice (grey) in each 

frequency band across days (Day 1 and Day 13). Delta, beta, and gamma power significantly 

increased as LIDs developed in 6-OHDA-lesioned mice (red). No changes were seen in mice 

with sham lesions (grey). Data from five 6-OHDA-lesioned and four sham-lesioned mice. 

Error bars are mean ± SEM. (*) p<0.05.
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Figure 7. Striatal FSI delta spike-field coherence increases as LIDs develop
Normalized spike-field coherence around axial dyskinesias for A) MSNs and B) FSIs. All 

spike-field coherence was normalized to 95% significance; thus yellow and red indicate 

significant spike-field coherence. Data from 39 MSNs and 31 FSIs in five 6-OHDA-lesioned 

mice on Day 13 of levodopa. C) Initial administration of levodopa (Day 1) significantly 

reduced delta spike field-coherence in MSNs when compared to Saline but no change was 

detected as dyskinesias developed. D) FSIs significantly increased delta coherence as 

dyskinesias developed. Data from 5 mice. (*) p<0.05
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