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A requirement for understanding morphogenesis is being able to quantify expansion at the cellular scale. Here, we present
new software (RootflowRT) for measuring the expansion profile of a growing root at high spatial and temporal resolution.
The software implements an image processing algorithm using a novel combination of optical flow methods for deformable
motion. The algorithm operates on a stack of nine images with a given time interval between each (usually 10 s) and
quantifies velocity confidently at most pixels of the image. The root does not need to be marked. The software calculates
components of motion parallel and perpendicular to the local tangent of the root’s midline. A variation of the software has
been developed that reports the overall root growth rate versus time. Using this software, we find that the growth zone of
the root can be divided into two distinct regions, an apical region where the rate of motion, i.e. velocity, rises gradually with
position and a subapical region where velocity rises steeply with position. In both zones, velocity increases almost linearly
with position, and the transition between zones is abrupt. We observed this pattern for roots of Arabidopsis, tomato
(Lycopersicon lycopersicum), lettuce (Lactuca sativa), alyssum (Aurinia saxatilis), and timothy (Phleum pratense). These velocity
profiles imply that relative elongation rate is regulated in a step-wise fashion, being low but roughly uniform within the
meristem and then becoming high, but again roughly uniform, within the zone of elongation. The executable code for
RootflowRT is available from the corresponding author on request.

Growth underlies life. Although organisms may be
distinguished from crystals by reproduction, there
would be nothing to reproduce without growth. In
plants, growth is important not only for development
of the organism but also for physiology. An animal
runs, rolls over, bites, or plays dead; instead, a plant
bends away, repositions its leaves, thickens its stem,
or makes thorns. All these examples, among many
others, involve growth.

The first step to understanding how a plant grows
is measurement. Growth overall can be measured by

following the displacement of a terminus, such as the
tip of a blade of grass. By attaching the tip to a
position transducer, the displacement can be mea-
sured accurately (e.g. Hsiao et al., 1970; Degli Agosti
et al., 1997; Frensch, 1997), and tip displacement has
been measured at even greater accuracy by inter-
ferometry (Fox and Puffer, 1976; Jiang and Staude,
1989). Although such methods are useful for charac-
terizing the overall growth output of an organ, at-
taching a transducer may disturb the plant, and con-
ditions for interferometry are exacting. More
fundamentally, these methods are limited because
they record growth in one dimension and because
they cannot be used to measure the distribution of
growth within the organ. The distribution of growth
reflects the growth behavior of component cells and,
therefore, is linked to the underlying mechanisms
powering expansion.

To study expansion locally throughout a growing
organ, one begins by obtaining the velocity profile
(Erickson, 1976; Silk, 1992). Velocities arise because
expansion moves neighboring elements (units of cell
wall, cells, or whole organs), and the velocity profile
encompasses the instantaneous growth behavior. If
neighboring elements have the same velocity, there is
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no growth between them, but if they move at different
velocities, then the region between them is growing.
The velocity profile is usually estimated by marking a
growing organ and imaging it over time (Erickson,
1976; Silk, 1992). For marks, ink, graphite, and resin
beads have been used, and even pinpricks to leaf
tissue. From the images, the position of the marks is
measured and velocity as a function of position is
calculated. The images were originally photographs
and the positions of the marks measured with a ruler,
and as technology improved, the photographs were
replaced by digital images and the ruler by a video
cursor. Nevertheless, the basis of the approach
stayed the same: The position of a particle is mea-
sured directly in a series of images and the trajectory
of this particle defines its velocity. This approach is
limited by the invasiveness of marking, the low den-
sity of marks that can be applied, the relatively large
time that must elapse to give a measurable displace-
ment, and by the tedious, error-prone, subjective na-
ture of the manual measurement process. One group
has improved the marking approach by developing
software to recognize marks automatically (Ishikawa
et al., 1991), but the approach is still limited by the
potential for disturbing the plant and by the small
number of marks that were applied.

An alternative means to measure the spatial profile
of growth is available in principle from image pro-
cessing techniques for “image sequence” analysis
(Jähne, 1997; Nagel, 2000; Shapiro and Stockman,
2001). In these techniques, a stack of images is cap-
tured with a relatively short time interval between
images. The stack is then treated as a three-
dimensional image volume, and one or more filters
are used to define spatiotemporal structures in the
volume. If a defined structure is parallel to the time
axis, then it was stationary; if the defined structure is
at an angle to the time axis, then it was moving, and
the angle defines the velocity of movement. Because
the movement caused by growth is nonuniform, the
filters used to define structure operate on the image
volume locally. These structures are used to compute
a velocity for each pixel of the image, although in
practice the scene is seldom rich enough in texture
for every pixel to have a well-defined velocity. Be-
cause the filter operates on a volume with pixels
having neighbors in both space and time, velocity can
be quantified with sub-pixel accuracy.

Algorithms based on image sequence analysis
work at short time intervals, do not require marking
the plant, and remove the need for tedious and sub-
jective manual measurement. Although the mathe-
matical principles behind image sequence analysis
were delineated years ago (Fennema and Thompson,
1979; Horn and Schunck, 1981), it has only been
recently that improved algorithms and, in particular,
enhanced processing power have brought these
methods into the realm of practicality. Recently, two
groups have used image sequence analysis to quan-

tify growth in plants, with the first group applying it
to the coleoptile (Barron and Liptay, 1994, 1997;
Liptay et al., 1995) and the second group applying it
to both roots (Walter et al., 2002) and leaves
(Schmundt et al., 1998), with the latter paper report-
ing fully two-dimensional velocity fields.

Although these papers make an important start,
they have limitations. The method for the coleoptile
treated the growing organ as a rigid body and found
the velocity of tip movement only, thus functioning
in essence like a position transducer, except that ve-
locity in any direction could be measured (Barron
and Liptay, 1994). In the method of the second group,
values of velocity were confident at relatively few
pixels, thus requiring extensive interpolation
(Schmundt et al., 1998). An objective of the present
work was to develop an algorithm for estimating the
velocity field of a deformable object, such as a plant
root, returning confident velocity values densely
across an image, and handling intervals between
frames on the order of seconds.

Furthermore, we developed the algorithm reported
here for our studies of growth in the root, in which
relative elongation rates differ markedly in size be-
tween elongation zone and meristem. The meristem
is awkward for marking methods because it is diffi-
cult to apply more than one or two marks within it,
and the displacements are usually too small to mea-
sure manually within the customary time intervals.
The previously cited paper using image sequence
analysis on the root (Walter et al., 2002) does not have
data for the meristem. By any technique, growth in
the meristem remains poorly characterized. An addi-
tional objective of the present work was to develop
an algorithm for image sequence analysis with suffi-
cient versatility to quantify velocity confidently
within the elongation zone and meristem from the
same sequence of images.

Here, we report an algorithm that quantifies veloc-
ity confidently at more than 50% of the root pixels,
with time steps between images as low as 2 s and an
accuracy of better than 1 pixel per nine frames. The
velocity profiles we have obtained with the algorithm
for the root show velocity increasing more or less
linearly through, and perhaps beyond, the meristem,
and, surprisingly, also increasing quite linearly, al-
beit more steeply, through the zone of elongation.

RESULTS

Overview of the Software

Here, we overview the main features of the software
(RootflowRT); computational details are presented
elsewhere (Jiang et al., 2003). A set of nine images are
captured, with the same time interval between each
image. The nine images, called a “stack,” are treated as
a single image volume. A motionless feature will par-
allel the time axis, whereas a moving feature will be at
an angle, an angle that defines its velocity. The image
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processing task is to find those angles for as many
pixels as possible. The novelty of our algorithm is that
it combines two complementary procedures for doing
this, in essence as follows. The first uses the so-called
“structure tensor” (Jähne, 1997; Farnebäck, 2000) and
can be thought of as finding a line through the stack,
from a pixel in the starting image, that minimizes
changes in intensity, as expected for the same feature
through time (Fig. 1A). The virtues of the tensor
method are that it is fast to compute and it reports the
statistical confidence of values; the drawbacks are that
it is noisy and often gives confident data for few
pixels. The second method is called “robust matching”
(Black and Anandan, 1996; Black and Rangarajan,
1996; Zhuang et al., 1999), a brute force search to
match a target neighborhood between first and last
images (Fig. 1B). Matching is accurate and also in-
cludes statistical confidence but is computationally
intensive and, hence, slow to run.

The algorithm in RootflowRT first calculates a ve-
locity field with the tensor method (Fig. 2, A–C). The
tensor step is also used to define a mask, segmenting
the image into moving and nonmoving components
(Fig. 2B). The confident tensor values are then used to
constrain and, hence, accelerate a second round
where the velocity field is calculated by matching
(Fig. 2, D and E). Although confident tensor pixels
are few, they tend to be dispersed over the root
image (Fig. 2B). The implemented robust matching
procedure includes criteria to ensure valid matches,
including consistent matching forward and back-
ward in time. The final velocity field is made by
combining the confident pixels from both approach-
es; typically, 5% of the pixels are estimated by the
tensor and 50% to 60% estimated by the robust
matching. Because confidently estimated pixels ap-
pear well spread across the root, the remaining pixels
are assigned velocity values based on interpolation
(Fig. 2F).

The output thus far is a two-dimensional velocity
field. For the purpose of studying elongation, the
mask is used to generate a root midline and velocities
are computed parallel and perpendicular to this
curve, with the parallel component taken to represent
elongation. Because the determination of the midline

algorithmically is sometimes confounded by root
hairs or image irregularities, the software instead can
accept midline coordinates entered manually. The
velocity profile along the x axis is then determined by
averaging the velocities perpendicular to each pixel
along the midline.

To obtain the velocity profile for the total growth
zone, the root is imaged in a series of overlapping
stacks and profiles are determined for each stack.
Subsequently, the stack profiles are concatenated by
the software into a single profile based on distance
from the quiescent center and the movement of the
stage between image stacks, taking into account the
movement of the tip, found by estimating the veloc-
ity in the region of the quiescent center. The approx-
imate quiescent center coordinates are input by the
user to improve precision. The movement of the
stage was determined originally by marking the sur-
face of the agar with graphite particles and capturing
a background image at the same position as each
stack (van der Weele, 2001) but more recently by
using a position transducer to move the stage on
command. RootflowRT accepts either kind of input
to produce a single profile from those of each stack.

For Arabidopsis roots growing about 500 �m h�1,
acceptable velocity profiles were computed with time

Figure 1. Schematic representation of the two major processing steps
in the algorithm for quantifying velocity. The drawing shows stacks
with five images, but nine are actually used. A, Tensor method finds
the line that minimizes intensity changes along its length, in this case
going through all black pixels. B, “Robust matching” method
matches a local neighborhood in first and last images.

Figure 2. Steps in the robust tensor velocity estimation algorithm. A,
One input frame from a nine-frame image stack in the middle of the
root’s growth zone. Scale bar � 50 �m. B, Result of the first stage of
motion estimation, showing object segmentation based on a two-step
motion mask with high confidence tensor-based velocity regions in
red. Velocities are computed parallel and perpendicular to the me-
dial axis of the root, and the velocities shown here are the parallel
component. C, Pure, tensor-based velocity field, regardless of con-
fidence. D, Velocity field from one step of robust estimation showing
the displacement field between the first and ninth frames (forward
matching). E, Velocity field after eliminating unreliable data with the
forward-backward motion consistency test. F, Final robust tensor
velocity field after motion interpolation. Images C to F are pseudo-
colored, as indicated in the color bar in F, with velocities ranging
from 0 to 2.5 pixels per frame.
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intervals between images ranging between 2 and 20 s
(Jiang, 2001), and we selected a 10-s interval as stan-
dard. This results in 80 s used per stack and a total
imaging time of 5 to 10 min depending on the size of
the growth zone. Various magnifications were used,
depending on the size of the root, but all in the range
of 1 �m pixel�1, which provides an upper limit for
spatial resolution. Velocities were measurable from a
high of about 0.3 pixels s�1 to a low of approximately
0.01 pixels s�1, defining the temporal resolution.

Spatial Profile of Velocity in the Root Growth Zone

As a root grows, its tip is propelled through the soil
by the cumulative elongation of all of the cells in the
growth zone. An element at the very tip moves at
maximal velocity; elements located at positions pro-
gressively distant from the tip move at progressively
lower velocities, until the end of the growth zone is
reached, where the velocity becomes zero. For math-
ematical convenience, it is useful to work in a coor-
dinate system where the tip of the root defines the
origin and growth displaces elements away from the
tip toward the base (Erickson, 1976). In this frame, an
element at the very tip has a velocity of zero, and as
the location of the element moves basally, its velocity
increases until reaching a maximum where growth
ceases. All velocity profiles reported here are in this
frame, with the quiescent center used as the origin
rather than the root tip because velocity values at the
very apex and within the root cap can be distorted by
the film of water surrounding the tip and by the
splaying out of root cap cells as they separate from
the root body. Note that in Arabidopsis, the quiescent
center amounts to four cells and acts as the biological
origin for all cells in the root.

A representative example of a velocity profile ob-
tained by the algorithm is shown, with a photograph
of the root approximately on the same scale included

for reference (Fig. 3). The profile has three distinct
regions: starting at the quiescent center (x � 0), ve-
locity increases first gradually with position, then
steeply, and finally it becomes constant, indicating
the end of the growth zone. The regions are sepa-
rated by fairly abrupt transitions, with the first tran-
sition invariably more abrupt than the second. The
increase in velocity in both the first and second re-
gions appears to have a considerable linear character.
The first region spans the meristem and may extend
beyond it (van der Weele, 2001), whereas the second
region is the elongation zone. The third region (con-
stant velocity and no growth) begins basal of the
position where root hairs initiate (Ma et al., 2003). For
convenience, we will refer to the first region as the
“meristem,” although cell division remains to be
delineated.

The profiles have high-frequency spatial fluctua-
tions, probably indicating computational noise. Pro-
files occasionally have larger, irregular, spatial fluc-
tuations and less pronounced transitions. In
approximately 15% of the profiles, velocity is con-
stant (i.e. has a slope of 0) over an appreciable region
of the meristem, suggesting either that expansion
stops transiently in the meristem or that the algo-
rithm is misled, for example by anomalous behavior
of lateral root cap cells. Similar regions of constant
velocity are present in the maize (Zea mays) meristem
in the profiles published by Erickson and Sax (1956).

In view of approximately linear regimes in the
velocity profile, the data were fitted to a single model
comprising three linear equations joined at two
breakpoints. The goodness of fit is evident (Fig. 4A).
This impression was confirmed by analysis of resid-
uals for 15 different roots (Fig. 5). For the first line
(through the meristem; Fig. 5A), the residuals are

Figure 3. Velocity profile for Arabidopsis obtained with the new
software. The root from which the profile was obtained is reproduced
above, roughly to scale. Data points are every pixel (�1.1 �m) and
do not show up as single symbols.

Figure 4. Comparison of the velocity profile and its derivative, the
profile of relative elongation rate. A and B, Velocity profiles of two
different roots fitted to either a three-piece linear model (A) or
overlapping polynomials (B; Beemster and Baskin, 1998). Gray wig-
gly lines are raw data, and solid lines are the fits. C and D, Deriva-
tives obtained analytically from the fitted velocity profiles. The de-
rivative ordinate was converted from percentage per minute to
percentage per hour for easier comparison with data in the literature.
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small and evenly distributed around the mean, pro-
viding no evidence for a systematic departure from
linearity. For the second line (through the elongation
zone; Fig. 5B), the residuals are again small and
randomly distributed, except near the end where
they cluster beneath the mean, indicating that the
transition to constant (zero) velocity is more gradual
than the intersection of two lines.

Although the velocity profiles are well fitted by
lines, linearity is an oversimplification. Instead of
lines, one may fit a set of overlapping polynomials
(Beemster and Baskin, 1998), which can conform
closely to the raw data (Fig. 4B). The implications of
the different fits are best grasped by considering the
derivative of the velocity plot, which is the profile of
relative elongation rate (Fig. 4, C and D). For a ve-
locity profile of two lines, the derivative is a “step
stool” (Heaviside step function), indicating a con-
stant rate of relative elongation for the meristem and
a constant, albeit higher, rate for the elongation zone,
with a rapid transition between states. In contrast,
the velocity profile fit locally to polynomials gives
rise to a more complex derivative, which may be
considered to represent an overall step function
shape convolved with higher spatial frequency fluc-
tuations. These higher frequency fluctuations appear
to be partly synchronized among roots, insofar as
they are retained as “wobbles” in a plot averaging the
polynomial-based derivatives of the velocity profiles
of five roots (Fig. 6). Note that the averaging de-
emphasizes the step stool-like appearance of the de-
rivative not only because the location of the abrupt
transitions differed among roots but also because the
fitted polynomial is 300 �m long and when fit to an
abrupt transition gives rise to a derivative that
changes smoothly over much of the 300-�m interval
(van der Weele, 2001).

To determine whether the biphasic profile of veloc-
ity found for Arabidopsis typifies other species, we

obtained data for alyssum (Aurinia saxatilis), lettuce
(Lactuca sativa), tomato (Lycopersicon lycopersicum),
and timothy (Phleum pratense). These species have
roots of different optical texture. As in Arabidopsis,
the velocity profiles have two regions of roughly
linear increase separated by an abrupt transition (Fig.
7). As for Arabidopsis, linear regressions fitted to the
data from these species conform closely to the curves
(data not shown).

Tip-Tracking Algorithm

Although determining the spatial distribution of
growth was the major motivation behind developing
the algorithm, the spatial algorithm was modified to
measure the velocity of the root tip versus time. In
tip-tracking mode, images of the growing root tip are
collected at a given frequency for up to 300 frames.
Because the root cap may contain tissue fragments
moving irregularly as they separate from the root
body, fully automatic segmentation of the extreme
tip is difficult; therefore, the user initializes the rou-
tine by entering the approximate coordinates of the
quiescent center. The algorithm then defines a region
of interest, with the quiescent center at one edge. The
size of the region is defined by the user, and we
generally used 200 � 100 pixels. A tensor method
alone is used to calculate velocities for the pixels in
this box, starting with the first nine frames and mov-
ing through the entire sequence by adding the next
frame and dropping the last one. All confident ve-
locities are averaged, and this value is reported as
tip velocity and used to update quiescent center
coordinates.

Results of tip tracking have found that roots grow
more or less steadily during imaging for up to 1 h
(data not shown) but that small fluctuations in tip
velocity are usually present (Fig. 8). The fluctuations
are irregular, with magnitudes typically less than

Figure 5. Residual analysis of the linear regression fits to the data
from 15 individual Arabidopsis roots. A, Data for the meristem. B,
Data for the zone of elongation. The distance coordinate (x axis) is
expressed as a relative length, namely the ratio of the position of a
point within a zone to the total length of the zone.

Figure 6. Spatial profile of relative elongation rate (strain rate) for
9-d-old Arabidopsis roots. The raw velocity data for each root was
fitted with overlapping polynomials (Beemster and Baskin, 1998),
interpolated to 1-�m intervals, and differentiated analytically. The
symbols show the average for five roots, �SE The ordinate was
converted to percentage per hour for easier comparison with data in
the literature.
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10% of the mean velocity and apparent period rang-
ing from 5 to 20 min. Satisfactory records could be
obtained with 5- or 10-s intervals between frames. To
see if fluctuations could be reduced, we tracked roots
illuminated with yellow light (as used by Beemster
and Baskin, 1998) or with infrared; in addition, we
illuminated the shoot with yellow light either at the
intensity present in the growth chamber (200 �mol

m�2 s�1) or less (70 �mol m�2 s�1). Fluctuations were
assessed by analysis of variance and residuals. On
average, fluctuations were slightly reduced by infra-
red, but they were increased significantly by the
higher of the two light intensities on the shoot (not
shown). Based on these results, we have standard-
ized infrared light to illuminate the root and one-
half-strength light to the shoot.

DISCUSSION

A New Algorithm for Image Sequence Analysis
Applicable to the Plant Root

To measure the velocity field embodying root
growth accurately and easily, we turned to image
processing techniques for estimating deformable mo-
tion. Previously, we measured the velocity field man-
ually by marking the plant and measuring the dis-
placement of the marks (Beemster and Baskin, 1998),
but the subjective and tedious nature of the method
spurred us to find an alternative. Quantifying de-
formable motion, as in a growing root, is demanding
because the object changes while it moves. This kind
of motion analysis has been worked on extensively
(Nagel, 2000), but algorithms typically invoke as-
sumptions specific to a given application, such as
robot vision, graphics, or meteorology (e.g. Metaxas
and Terzopoulos, 1993; Vedula et al., 2000; Zhou et
al., 2001). For quantifying deformable motion in bi-
ology, there are unique challenges, including the lack
of explicit motion models, low-contrast images, high
variability in local intensity, nonuniform back-
ground, and multifaceted motion (simultaneously
observable fluid-like, appendage-like, thread-like
motions). Moreover, biologists typically wish to rep-
resent the velocity field quantitatively, a constraint
that is often absent from other kinds of application.

In the most common class of such methods, called
“optical flow,” the intensity of a small, moving re-

Figure 7. Velocity profiles for four species: A, alyssum; B, lettuce; C,
tomato; and D, timothy. The location of the quiescent center (QC)
was approximated from the image of the tip.

Figure 8. Time courses of overall root growth rate (tip velocity)
obtained with the tip-tracking algorithm. Records of two representa-
tive roots are shown. Different mean velocities result in part from the
roots being of different ages.
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gion of the image is assumed to be conserved (Fen-
nema and Thompson, 1979; Horn and Schunck, 1981;
Beauchemin and Barron, 1995). The concept arose out
of studies on the human visual system (Gibson,
1966), hence the word “optical,” but the concept is
independent of the imaging modality. The optical
flow-based algorithms that have been applied to
growth and motility can be divided roughly into
three classes: parametric, tensor, and matching. Para-
metric methods fit an affine transformation to the
motion within a region of interest (Odobez and
Bouthemy, 1995; Black and Jepson, 1996); this is an
approximate solution because all pixels in the region
are constrained to undergo the same transformation.
The tensor methods are differential methods based
on intensity gradients (Jähne, 1997); they are compu-
tationally fast but error prone. Finally, matching
methods find corresponding regions in a pair of im-
ages by maximizing a similarity criterion or minimiz-
ing an error criterion (Beauchemin and Barron, 1995;
Black and Anandan, 1996). Matching methods tend
to be slow, sensitive to neighborhood size, local im-
age content, and outliers; however, they can be
highly accurate, particularly when the search process
incorporates robust statistics.

In studies of growth and cell motility in biology,
there are a few examples of the use of each type of
algorithm. Tracqui and coworkers have estimated
motion parametrically in crawling and dividing cul-
tured animal cells as well in as monolayers involved
in wound healing (Germain et al., 1999; Ronot et al.,
2000). In their approach, the motion of an entire cell
was reduced to a single transformation and, thus,
was appreciably simplified. Matching methods have
been applied to muscle contraction, taking advantage
of the repetitive structure of the sarcomere (Zoccolan
et al., 2001). Tensor methods are the most popular
and have been applied to cells moving in slime molds
(Siegert et al., 1994; Dormann et al., 1996, 1997), al-
though without evaluating the confidence of the re-
covered velocities, and to the growth of plant leaves
(Hau�ecker and Jähne, 1997; Schmundt et al., 1998)
and roots (Walter et al., 2002), where the relatively
sparse frequency of confident pixels obtained led to
extensive interpolation. In their analysis of the maize
root, Walter et al. (2002) took advantage of the fast
computation of their tensor-based algorithm and fol-
lowed the features of the growth zone for a whole
day, capturing images once per minute, with approx-
imately 20 �m pixel�1. In contrast, our method em-
phasizes resolution, capturing images once per 10 s,
with approximately 1 �m pixel�1, and computing a
dense velocity field, but only for a single time.

We have applied RootflowRT to analyze root elon-
gation under water stress (van der Weele, 2001) and
phosphorus stress (Ma et al., 2003). The algorithm
combines tensor analysis with robust matching pro-
cedures, using the speed of the tensor method to

accelerate matching while retaining the reliability of
matching. The root does not require marking, and the
images are relatively low contrast and separated by
short time intervals (10 s). The algorithm is auto-
mated, estimates velocity with sub-pixel accuracy,
applies statistical tests to exclude values below a
given level of confidence, and returns confident ve-
locities for the majority of pixels in the root. Along
with velocity data, the software also provides an
output file tabulating various parameters. Because
the root is essentially cylindrical, the software calcu-
lates velocity parallel and perpendicular to the local
tangent of the root’s midline.

RootflowRT also concatenates the velocity fields
from overlapping stacks spanning the root growth
zone, which cannot be imaged at sufficiently high
resolution in a single field of view. Lowering the
magnification results in insufficient gray level texture
for reliable feature extraction over the short time
intervals used. Combining the profiles from individ-
ual stacks into a single profile requires knowing the
displacement of the stage between stacks and also the
displacement of the tip between successive stacks
because the quiescent center has an x axis coordinate
of zero but is moving in the laboratory frame. To
combine the profiles, we assume that the velocity
field is time invariant (i.e. for all x, dV(x)/dt � 0), an
assumption that is also made in the traditional mark-
ing methods (Silk, 1992). At the highest level of res-
olution, this assumption is wrong; fluctuations in
overall root elongation rate occur (Fig. 8) and for
some stacks values of velocity do not match exactly
in the region of overlap. For these cases, the software
lifts one profile in the y axis (velocity) direction by an
amount that minimizes the least square difference
between points within the overlap. The values of the
lifts (if any) are tabulated for the user; therefore, roots
with large discrepancies can be excluded.

Fluctuations can distort the velocity profile in three
ways. First, changes in velocity that occur within the
80-s interval of the image stack will lead to an average
velocity determination; few fluctuations occur on this
time scale. Second, as described above, fluctuations
cause a mismatch in the velocity where neighboring
stacks overlap. To date, the mismatch amounts to no
more than 10% of the velocity itself and is usually
much less. Note that the derivative of the velocity
profile, which is of chief interest, is not affected by
lifting one part of the profile relative to another. Third,
the fluctuations in tip velocity mean that the succeed-
ing stacks cannot be placed exactly with respect to the
quiescent center. This uncertainty amounts to approx-
imately 1 pixel on the x axis and, thus, is unlikely to
distort the final profile appreciably. Given the time
required to image the entire growth zone, our algo-
rithmic procedure represents an increase in temporal
resolution over previous manual methods by more
than an order of magnitude.
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A New “Old” View of Growth in the Root

For many years, the profile of velocity in the root
growth zone has been estimated by marking experi-
ments and widely accepted to be a smooth curve,
resembling a sigmoid (Goodwin and Stepka, 1945;
Erickson and Sax, 1956; Sharp et al., 1988; Mullen et
al., 1998). In contrast, the results of our algorithmic
determination show a velocity profile that has a con-
siderable linear character, more closely resembling
three lines than a sigmoid. The difference in the
shape of the velocity profile is unlikely to be ex-
plained by different environments because previous
marking experiments recovered a sigmoid velocity
curve for Arabidopsis roots grown under the same
conditions as used here (Beemster and Baskin, 1998),
and RootflowRT found abrupt velocity profiles for
Arabidopsis roots growing inside the agar medium
(Ma et al., 2003). We suggest that the linear velocity
profile reflects a nearly instantaneous picture of
growth, whereas the sigmoid presents an average
picture, possibly compromised by measurement er-
ror or undersampling.

Marking experiments are intrinsically error prone
because they rely on subjective and manual measure-
ments, and they are limited by the number of marks
that can be applied to the root, typically around 10
per growth zone, in contrast to the data at every pixel
obtained with RootflowRT (thousands of pixels per
growth zone). Most previous publications show ve-
locity profiles averaged for a group of roots and,
therefore, would smooth out abrupt behavior. To
obtain measurable displacements, marking experi-
ments typically use imaging intervals between 15
and 60 min, compared with the 80 s per stack used
here. Marks moving through an abrupt transition
will yield an average velocity for before and after the
transition. Furthermore, if either the position of a
transition or the magnitude of the relative elongation
rate fluctuated during the imaging interval, then the
measured displacements would also reflect average
behavior. Fluctuations in overall elongation rate oc-
cur in the Arabidopsis root (Fig. 8) and appear to be
widespread among plant organs (Kristie and Jolliffe,
1986; Jiang and Staude, 1989; Liptay et al., 1995; Degli
Agosti et al., 1997; Walter et al., 2002), although their
cause on a cellular level is not known. The fluctua-
tions typically have periods around 30 to 60 min and,
thus, are too slow to greatly affect the results from
the imaging interval of 80 s used here but would
affect results from the longer intervals used in mark-
ing experiments.

Our interpretation that the instantaneous velocity
field has quite linear regions is supported directly in
the classic paper of Erickson and Sax (1956). Their
velocity profile of the maize root has been widely
reproduced and is a sigmoid curve (Fig. 9A); this
curve reflects the average profile of 10 roots, with
data for each root averaged over four to six measured
time points. However, they also published raw data

for one root, showing velocity profiles that result
from single measurements at successive times (Fig.
9B). In contrast to the sigmoid curve for the average,
the profiles for the raw data have a phase of gradu-
ally increasing velocity at the tip and one of steeply
increasing velocity further back, with a distinct tran-
sition region between the two phases.

Amazingly, the method used by Erickson and Sax
is in essence an analog version of the digital image
processing used here. They marked a root densely by
dipping it in lampblack and then photographed the
longitudinal axis of the root through a narrow rect-
angular aperture onto film while the film moved
continuously. This caused the mark images to leave
streaks on the film, with the angle of the streak to the
horizontal being proportional to the velocity of
movement. The streaks are lines of (roughly) con-
stant intensity and, therefore, are an analog of the
structure tensor. In fact, streak photography was de-
signed by Erickson explicitly to reach as “elemental”
and “instantaneous” a level as possible, and he ap-
pears to have succeeded.

That the root growth zone has a velocity profile
with linear phases separated by an abrupt transition

Figure 9. Figures redrawn from Erickson and Sax (1956) showing the
velocity profile for maize roots measured using streak photography.
A, (Fig. 4), Average data for 10 roots, �95% confidence interval. B,
(Fig. 3), Raw data measured at four different times from a single root
and the mean of the four measurements. Curves are displaced for
clarity. The y axis is calibrated in protractor units (actually tangents
of the angles made by the streaks), which are proportional to veloc-
ity. Solid lines were obtained by numerical smoothing.
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is supported by other data. A pioneering paper by
Brumfield (1942) on timothy reported a roughly con-
stant rate of relative elongation in the zone of elon-
gation, and early work by Hejnowicz (1959) for
wheat (Triticum aestivum) reported roughly constant
relative elongation rate across the meristem. Ivanov
and Maximov (1999) reanalyzed the profile of
metaxylem cell length in maize roots and concluded
that relative elongation rate accelerates abruptly at
the base of the meristem; in addition, they discuss
indirect evidence supporting the idea that relative
elongation rate is essentially constant across the mer-
istem. Most recently, the spatial profiles of growth in
the maize root obtained by tensor-based image pro-
cessing, although not spanning the meristem, show a
strikingly steep increase in relative elongation rate at
the start of the elongation zone (Walter et al., 2002),
similar to the results shown here.

To the extent that the sigmoid curve reflects aver-
aging out real phenomena such as growth fluctua-
tions, these curves may be appropriate for under-
standing processes taking place in the growth zone
over hours to days, such as cell division (Sacks et al.,
1997; Beemster and Baskin, 1998), nutrient partition-
ing (Muller et al., 1998), or osmotic adjustment
(Sharp et al., 1990); but for understanding the mech-
anism of expansion and its regulation, the sigmoid
curve may be misleading.

The importance of the shape of the velocity curve
lies in the implications for relative expansion rate,
which is the derivative of the velocity profile. Relative
elongation rate, technically a strain rate, reflects the
deformation of the underlying cell wall and, thus, is
the appropriate parameter for characterizing the
mechanism of growth on the cellular or subcellular
scale. A smooth, sigmoid-like velocity curve gives rise
to a profile of relative elongation rate that is bell
shaped, implying that relative elongation rate changes
continuously as a cell traverses the growth zone
(Erickson, 1976), whereas a velocity profile with linear
phases give rise to a “step stool” derivative, implying
that relative elongation rate is essentially constant
within the meristem and also constant, albeit greater,
in the elongation zone (Fig. 4). It is difficult to envisage
the regulatory machinery needed to generate a bell-
shaped variation in relative elongation rate; in con-
trast, the root can generate a step stool profile by
regulating two rates of relative elongation (height of
the steps) and two positions where growth rate
changes (width of the steps). Deviation from perfect
steps would occur to the extent that the transitions
take a finite time to execute, and relative elongation
cannot be maintained constant exactly (van der Weele,
2001; Walter et al., 2002; Ma et al., 2003).

The Idea of a Constant Relative Elongation Rate Is
Particularly Appealing for the Meristem

Whatever its character, the profile of relative elon-
gation rate must equal the profile of cell division rate

because congruence of these profiles is necessary to
maintain a constant cell length (per cell file) as ob-
served (Green, 1976; Ivanov et al., 2002). The bell-
shaped profiles have relative elongation rate increas-
ing continuously across the meristem, implying that
cell division rate increases in parallel. Although there
is some uncertainty about the profile of cell division
rate across the meristem, to our knowledge no one
has reported that it increases steadily, and much
evidence indicates that it is constant, apart from the
quiescent center (Baskin, 2000). Constancy of cell di-
vision rate implies consistency in the underlying cell
cycle engine, and a balancing relative elongation rate
provides further consistency for the activities of the
meristem. Our finding that relative elongation rate
tends to be constant across the meristem suggests
that division parameters and elongation parameters
are regulated uniformly.

With our algorithm, we are zeroing in on the truly
instantaneous growth behavior of the root: the growth
zone comprises two zones, each with more or less
uniform relative elongation, separated by a relatively
abrupt transition. Future studies can now determine
how these zones are maintained and modified in re-
sponse to the environment and how they correspond
to other processes in the root that are delimited spa-
tially, such as cell division and differentiation.

MATERIALS AND METHODS

Plant Growth

Seeds of Arabidopsis Columbia, timothy (Phleum pretense), tomato (Lyco-
persicon lycopersicum Mill. var. Roma VFN), lettuce (Lactuca sativa L. var.
Black Seeded Simpson), and alyssum (Aurinia saxatilis L. Desv. var. Gold
Dust), the latter three obtained from a local supermarket, were surface
sterilized and germinated on agar-solidified nutrient solution in 9-cm petri
dishes as described previously for Arabidopsis (Baskin and Wilson, 1997).
Sucrose concentration in the media was 2% (w/v) for tomato and lettuce,
0.5% (w/v) for Arabidopsis, and 0% (w/v) for timothy. Plates were put
vertical in a growth chamber with constant conditions (19°C, 200 �mol m�2

s�1) permitting roots to grow along the surface of the agar.

Imaging

A petri dish was placed on the stage of a horizontal compound micro-
scope so the plants remained vertical. Images were taken through the lid of
the petri dish to prevent evaporation of the water film around the root and
consequent movement of the root. To accommodate for the focal length of
the objective, a dimple lid was constructed. Light from the built-in micro-
scope lamp (12-V halogen bulb) was passed through either yellow acrylic
(Plexiglas J2208, Cope Plastic, St. Louis) for broad-band yellow light or glass
(Schott RG-9, Bes Optics, West Warwick, RI) for infrared light. Roots were
imaged with a 10� objective and a CCD camera (C2400, Hamamatsu Co.,
Hamamatsu, Japan) with the infrared cutoff filter removed and coupled to
the microscope with either a 5� or 2.5� intermediate tube lens. A time
stamp was placed on the image with a time date generator. Images were
captured on an Apple Macintosh G3 (Apple Computer, Cupertino, CA)
equipped with a frame grabber board (Scion LG-3) and the image analysis
program Scion Image (www.Scioncorp.com, Scion Image, Frederick, MD).
Each frame is 640 � 480 pixels in size, with 0.8 to 1.5 �m pixel�1, depending
on the tube lens.

For tip tracking, the tip was placed in the field of view and images taken
every 5 or 10 s for a total of up to 200 images. For spatial analysis, a series
of stacks were obtained, spanning the growth zone and including nongrow-
ing regions of the root. Each stack has nine images, with the time interval
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chosen by the user (usually 10 s). The algorithm references the calculated
velocity to the time of frame five, being at the center of the stack.

To concatenate the velocity output from the single stacks into a single
profile, one must determine the amount of movement of the stage between
the positions used to obtain each stack. Initially, this movement was deter-
mined by collecting, for each stack, a background image of the agar surface
that had been marked to enable the backgrounds to be registered. As marks,
good results were obtained with graphite particles or cornstarch, although
care had to be taken to avoid disturbing the root. Disturbing the root could
be avoided by incorporating inert, latex beads into the agar, but this re-
quired focusing into the agar and resulted in successive background images
being captured at different focal planes. Because capturing a background
image lengthened the time required to image the growth zone, we obtained
an electro-optical position transducer (Inchworm; Burleigh Instruments,
Fishers, NY), and built a cradle for the microscope stand that allowed the
inchworm to engage the stage controller in the vertical direction. The
inchworm moves the stage in preset increments, accurate to �1 �m, and in
this way the stage movement between stacks could be accounted for abso-
lutely without recourse to background images. The software accepts either
method for concatenation.

In addition to accounting for the movement of the stage, one must also
account for the movement of the tip. For frame five of the tip stack, the user
enters the coordinates of the quiescent center (in Arabidopsis, the quiescent
center contains four cells, and its position is determined with reference to
the columella, detectable because its abundant amyloplasts scatter light and
give rise to dark bands running across the tissue—the absolute tip of the
root could also be entered). The position of the quiescent center is taken as
x � 0 for the velocity profile. The velocity at this region is multiplied by the
time between center frames to obtain the tip displacement between a pair of
stacks, and the output from each is adjusted accordingly.

Source code for RootflowRT is available for downloading from the cor-
responding author. Both spatial and tip-tracking versions are available. At
present, the code compiles and runs under Unix and Windows operating
systems with development done primarily on SGI MIPS Irix (Silicon Graph-
ics, Mountain View, CA) and HP Intel P4 computers (Hewlett Packard, Palo
Alto, CA).

Regression

The velocity profiles were fitted either with overlapping second degree
polynomials as described by Beemster and Baskin (1998) or with a three-
piece linear regression using the nonlinear regression module in Statistica
(Statsoft Inc., Tulsa, OK). Least mean square regressions were calculated
with the following model:

y�b�s1x�s2(x�bp1)(x�bp1)�s3(x�bp2)(x�bp2)

in which y is the predicted value, x is the distance from the quiescent center,
b is the y intercept, bp1 and bp2 are the values of x at which breakpoints in
the regression occur, and s1, s2, and s3 are coefficients of regression. The
coefficients give the slopes of the three respective pieces, with s1 for the first
slope, s1 � s2 for the second slope, and s1 � s2 � s3 for the third. The
expressions x � bp1 and x � bp2 are logical multipliers: If true, it will
evaluate to 1 and if false to 0. The six parameters (b, s1, s2, s3, bp1, and bp2)
were estimated in the independent variable x (distance along the root) with
the quasi-Newton method. Convergence was robust provided that suitable
initial values were chosen.
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