Skip to main content
. Author manuscript; available in PMC: 2018 Feb 1.
Published in final edited form as: Drug Alcohol Depend. 2016 Nov 24;171:70–83. doi: 10.1016/j.drugalcdep.2016.11.021

Table 1.

Fit Information for RMLCAs Modeling Past 12-Month Marijuana Use from Ages 18 through 50 with 1-9 Latent Classes

Classes df AIC BIC a-BIC VLMRa Entropy loglikelihood Stability
1 175114 143786.7 143944.9 143875.0 −71871.3 1.000
2 175601 109999.3 110323.0 110180.0 0.000 0.935 −54954.6 1.000
3 175907 102107.1 102596.2 102380.1 0.000 0.892 −50985.5 1.000
4 175953 99342.6 99997.2 99708.0 0.640 0.847 −49580.3 1.000
5 176002 98032.1 98852.1 98489.8 0.761 0.852 −48902.0 1.000
6 175992 97153.8 98139.3 97703.9 0.762 0.832 −48439.9 0.692
7 176004 96549.3 97700.2 97191.8 0.772 0.834 −48114.7 0.540
8 175992 96100.7 97417.0 96835.5 0.761 0.836 −47867.3 0.564
9 175972 95791.9 97273.7 96619.1 0.760 0.837 −47689.9 0.100

Notes: Unweighted n=9.831. RMLCA=repeated measures latent class analysis; AIC=Akaike information criterion; BIC=Bayesian information criterion; a-BIC=adjusted BIC; VLMR=Vuong-Lo-Mendell-Rubin likelihood ratio test; Stability=proportion of time the maximum-likelihood solution was selected out of 250 final stage optimizations (preceded by 500 initial stage sets of random starting values). Bold font indicates selected model.

a

P-values for both the Vuong-Lo-Mendell-Rubin likelihood ratio test and Lo-Mendell-Rubin adjusted likelihood ratio test were identical; only the VLMR shown.