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Abstract
Rationale Sedation, dependence, and abuse liability limit the
use of non-selective γ-aminobutyric acid (GABAA) receptor
positive modulators for the treatment of anxiety. AZD7325
and AZD6280 are novel, subtype-selective GABAAα2,3 re-
ceptor positive modulators with limited sedative effects.
Objectives The current study aimed to confirm target engage-
ment at GABAA receptors by AZD7325 and AZD6280 in
humans and to determine the relationship between exposure,
GABAA receptor occupancy, and tolerability.
Method Two PET studies, using high-resolution research to-
mography (HRRT) and the radioligand [11C]flumazenil, were
performed in 12 subjects at baseline and after administration
of single oral doses of AZD7325 (0.2 to 30mg) and AZD6280

(5 to 40 mg). PET images were analyzed using a simplified
reference tissue model, and regional binding potentials
(BPND) were obtained. The relationship between plasma con-
centration of AZD7325 or AZD6280 and GABAA receptor
occupancy was described by hyperbolic function, andKi,plasma

(plasma concentration required for 50% receptor occupancy)
was estimated. Assessments of safety and tolerability included
recording of adverse events, vital signs, electrocardiogram,
and laboratory tests.
Results The [11C]flumazenil binding was reduced in a dose-
dependent, saturablemanner by both agents. Maximum recep-
tor occupancy could be reached for both compounds without
causing sedation or cognitive impairment. The Ki,plasma esti-
mates for AZD7325 and AZD6280 were 15 and 440 nmol/l,
respectively.
Conclusion High GABAA receptor occupancy by AZD7325
and AZD6280 could be reached without clear sedative effects.
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Background

Benzodiazepines (BZs), discovered by serendipity in the
1950s (Sternbach 1979), are well-established medicines for
the treatment of anxiety (Nemeroff 2003). Its anxiolytic ef-
fects and related agents are mediated by allosteric enhance-
ment of the γ-aminobutyric acid, GABAA receptor complex
thus potentiating inhibitory GABA-mediated neurotransmis-
sion (Farb and Ratner 2014, review). This mechanism of ac-
tion of BZs has led to hypotheses on a pivotal role for GABA
neurotransmission in the pathophysiology of anxiety (Nutt
et al. 1990; Tiihonen et al. 1997; Malizia et al. 1998).
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Although benzodiazepines are rapid onset highly effica-
cious drugs, significant adverse effects, such as sedation, am-
nesia, ataxia, abuse, dependence, and withdrawal, limit their
clinical usefulness in long-term treatment of anxiety disorders.
Accordingly, they are now reserved for second-line treatment
(Baldwin et al. 2014). Building on an understanding of the
pharmacological profile of the first-generation benzodiaze-
pines, effective, safer, and tolerable GABAA receptor modu-
lators are now being sought (Skolnick 2012).

There is potentially a great diversity in the GABAA recep-
tor system at a detailed molecular level, as these ionotropic
receptors are pentamers made up from 19 known subunits
(α1–6, β1–3, γ1–3, δ, ε, θ, π, and ρ1–3). In the human brain,
the majority of combinations consist of two α, two β, and one
γ subunit (Olsen and Sieghart 2009). Benzodiazepine-like
modulators of GABAA receptors bind to a site, located on
the α/γ subunit interface (Trincavelli et al. 2012, review),
and pharmacological responses to BZ site activators vary with
specific subunit composition. Studies with transgenic mice
with introduced point mutations in murine α1 subunit gene
have led to the association of anxiolytic-like activity with the
GABAA receptor α2 and/or α3 subunits, sedation with α1
subunit, and some aspects of cognition to the GABAA recep-
tor α5 subunit (Rudolph et al. 1999). Thus, it has been hy-
pothesized that benzodiazepine site modulators which selec-
tively potentiate activity of GABAA receptors containing α2/
α3 receptor subunits would produce a greater separation be-
tween therapeutic and side effects than non-selective com-
pounds. In parallel, it has been hypothesized that side effects
of BZs may be related to the intrinsic activity of modulators
(Haefely et al. 1990; Puia et al. 1992); thus, partial agonism
may also allow for differentiation of anxiolytic effects from
unfavorable CNS effects such as sedation.

Based on these concepts, a series of subunit selective
GABAAα2,3 partial receptor modulators, including
AZD7325 and AZD6280, were developed by AstraZeneca
(Suppl. Fig. 1, Alhambra et al. 2011). Both compounds
exert their function selectively via GABAA receptor sub-
units as characterized by high in vitro affinity to the α1, α2,
and α3 subunits and low affinity to the α5 subunit (Suppl.
Table 1) and are partial BZ site modulators with efficacy
selective for α2β3γ2 or α3β3γ2 subunits, i.e., AZD6280
produces 32–34% and AZD7325 produces 15% of maximal
diazepam response, respectively (Chen et al. 2014, 2015,
Suppl. Table 1). In preclinical models, these compounds
have potent anxiolytic-like effects without sedation and in-
duce a distinct pharmacoEEG signature (Alhambra et al.
2011; Christian et al. 2015). Examination of pharmacody-
namic effects in phase I clinical trials has shown a novel
pattern of effects on EEG (reduction in delta and theta
bands) by AZD7325 and AZD6280, as well as effects on
saccadic peak velocity, a suggested marker of anxiolysis
(Chen et al. 2014, 2015).

The binding of BZs at the GABAA receptor benzodiaze-
pine binding site in humans has been examined extensively by
PET using the radioligand [11C]flumazenil (Persson et al.
1985; Pike et al. 1993; Abadie et al. 1996). Flumazenil is an
antagonist with high affinity for the GABAA α1, α2, α3, and
α5 subunits (Ki ∼1 nmol/l), whereas the affinity is lower for
the α4 and α6 subunits (Ki ∼150 nmol/l) (Sieghart 1995).
[11C]flumazenil continues to be used as a tool in research on
the pathophysiology of neuropsychiatric disorders as well as
for examination of GABAA receptor occupancy by classical
and novel receptor modulators.

We aim to confirm target GABAA receptor engagement in
humans by the modulators AZD7325 and AZD6280 and ex-
amine the relationship to sedation and previously published
pharmacodynamics effects. Twelve subjects were examined
using high-resolution research tomography (HRRT) and the
radioligand [11C]flumazenil. For dose finding purposes, we
examined the relationships between dose, plasma concentra-
tion, and receptor occupancy for both compounds.

Method

Study design and subjects

Two separate open-label phase I PET studies were conducted
in 2008–2009. In the first study (study 1), we examined re-
ceptor occupancy at GABAA receptors after administration of
AZD7325 and in the second study (study 2) after administra-
tion of AZD6280.

The studies were approved by the Medical Products
Agency of Sweden, the Regional Ethical Review Board in
Stockholm, and the Radiation Safety Committee at the
Karolinska University Hospital (KUH), Stockholm, Sweden.
The studies were performed in accordance with the
Declaration of Helsinki and International Conference on
Harmonization/Good Clinical Practice Guidelines. Written in-
formed consent was obtained from all subjects prior to the
initiation of the study.

Subjects were enrolled and remained at the AstraZeneca
Clinical Pharmacology Unit, KUH, Huddinge, for the dura-
tion of the study. Magnetic resonance imaging (MRI) and PET
examinations were performed at KUH, Solna. Four men, 23–
34 years of age, underwent repeated PET examinations with
[11C]flumazenil in study 1, and eight men 21–32 years of age
in study 2. The subjects were healthy according to medical
history, physical examination, blood and urine analyses, and
brain MRI. None of the subjects discontinued the study.

The initial study design included two sequential panels,
with two subjects in each. The first panel was intended to
obtain initial receptor occupancy values, to be used for dose
selection in the second panel. Each of the subjects was
planned to participate in four PET examinations with
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[11C]flumazenil, including one baseline assessment and sub-
sequent weekly examinations at the approximate time of max-
imum drug plasma concentration, Tmax (1 h), after administra-
tion of different single oral doses of AZD6280 or AZD7325.
The studies followed an adaptive design, i.e., doses and PET
measurements were adjusted depending on the results of pre-
ceding measurements. For AZD7325 (study 1), the second
panel was run in line with the first panel, altogether providing
occupancy values covering the saturation curve. For
AZD6280 (study 2), due to the maximum tolerated dose of
40 mg of AZD6280 reached in the parallel multiple ascending
dose study, the study design was re-arranged. To optimize
quantification of the relationship between AZ6280 exposure
and receptor occupancy, the number of subjects with the
highest 40 mg dose was increased (Fig. 1).

Study drugs, pharmacokinetic, and safety-tolerability
measurements

Single doses of AZD7325 (doses of 0.2, 1, 2, 5, 20, and 30mg)
and AZD6280 (doses of 5, 12, 20, 30, and 40 mg) were ad-
ministered as immediate release capsules (manufactured at
AstraZeneca, Sweden) 60 min before PET measurements.
The AZD7325 dose of 0.2 mgwas prepared as an oral solution
(0.2 mg) (powder manufactured at AstraZeneca, solution pre-
pared at the Pharmacy of the KUH, Stockholm, Sweden).

Venous blood samples for determination of drug plasma
concentrations were collected at approximately 15 min before
[11C]flumazenil injection and at 15 and 30 min and 3, 4, 6, 8,
10, 12, 16, 24, 36, and 48 h after drug administration, includ-
ing three samples during PETmeasurement, at 1, 1.30, and 2 h
after drug administration. The plasma concentrations of
AZD7325 and AZD6280 were determined by solid-phase ex-
traction using Waters HLB μElution plate followed by LC-
MS/MS (AstraZeneca Department of Development Drug

Metabolism, Pharmacokinetics, and Bioanalysis in
Wilmington, DE, USA).

Calculations of the pharmacokinetic parameters includ-
ed the maximum plasma concentration (Cmax), the time to
the maximum plasma concentration (Tmax), and the average
drug plasma concentration during the PET measurement
(Cav,PET) (division of the partial area corresponding to the
start and end times of PET assessment, AUCPET, by the
duration of the PET measurement). The pharmacokinetic
calculations were performed using non-compartmental
analysis using WinNonlin™, Pharsight Corporation.

Safety and tolerability assessments included records of
adverse events, vital signs (blood pressure, heart rate),
Allen’s test, ECG, clinical chemistry, hematology assess-
ments, and urinalysis.

Imaging procedures

MRI measurements

Prior to PETmeasurements, 3D brainMRI examinations were
acquired on a 1.5-T General Electric Signa system (GE,
Milwaukee, WI, USA) at the MRI Center of KUH, Solna.
Two examinations were made in one session. The T2-
weighted images were acquired for clinical evaluation, and
the T1-weighted images were used for delineation of anatom-
ical brain regions of interests (ROIs). The T1 sequence was a
3D SPGR protocol in the axial plane with the following pa-
rameters: TR 23 ms, TE 4 ms, matrix 256 × 192 × 156, and
voxel size 1.02 × 1.02 × 1.0 mm.

PET measurements

[11C]flumazenil was produced at the Karolinska Institutet
PET Center by methylation of the corresponding desmethyl

Fig. 1 Flowchart of the two PET
studies with GABAA agonists
AZD7325 and AZD6280
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precursor analog using [11C]methyl triflate (Någren and
Halldin 1998).

The head of the subject was fixed using individual plaster
helmet. A sterile physiological phosphate buffer (pH 7.4) so-
lution containing [11C]flumazenil was injected intravenously
as a bolus during 2 s, immediately followed by flush with
10 ml saline. The injected radioactivity for [11C]flumazenil
was in the range of 330–350 MBq, (340 (9) MBq, mean,
SD) in the study 1 and in the range of 317–363 MBq (335
(16) MBq) in the study 2. The specific radioactivity of the
radioligand at time of injection ranged from 310 to
1465 GBq/μmol (730 (414) GBq/μmol, mean, SD) and from
464 to 1879 GBq/μmol (977 (424) GBq/μmol, mean, SD), for
study 1 and study 2, respectively.

PET examinations were performed over 63 min (HRRT;
Siemens/CTI). List mode data were reconstructed using the
ordinary Poisson 3D ordered subset estimation maximiza-
tion algorithm, with 10 iterations and 16 subsets including
modeling of the point spread function (Varrone et al. 2009)
into a 4D PET image containing 33 consecutive time frames
(9 × 10 s, 2 × 15 s, 3 × 20 s, 4 × 30 s, 4 × 60 s, 4 × 180 s,
7 × 360 s) with a 3D array of 256 × 256 × 207 voxels having
a size of 1.22 × 1.22 × 1.22 mm. Attenuation correction was
acquired with a 6-min transmission measurement using a
single 137Cs source.

PET image analysis The high-resolution T1-weighted MR
images were re-oriented, re-sampled, and cropped to generate
220 × 220 × 170 matrix with 1-mm2 voxels. The T1-weighted
MR images were co-registered to the PET images and re-
sliced to a resolution of 2 × 2 × 2 mm, using SPM5 software
(Wellcome Department of Cognitive Neurology, UK).

The anatomical brain regions were delineated manual-
ly on the MR images using in-house image analysis soft-
ware. The regions included cortical and striatal subre-
gions, thalamus, cerebellum, limbic regions, pons, and
whole brain. The following four regions were selected
in the final analysis: The occipital cortex and cerebellum
were chosen because of the highest GABAA receptor
binding by [11C]flumazenil and good imaging statistics
and preferential distribution of α1/α2 receptor subtypes;
the amygdala was chosen because of its role in the brain
circuits involved in anxiety and putamen for preferential
α1/α2/α3 versus α5 receptor subtypes (Lingford-Hughes
et al. 2002; Fatemi et al. 2013; Waldvogel and Faull
2015). For the pons, the ROI was drawn on horizontal
projection on the six central slices. The ROIs were
displayed on the corresponding PET images, and the av-
erage concentration of radioactivity for the whole volume
of anatomical structure was obtained by pooling the data
from a series of sections. The concentration of radioac-
tivity in each ROI, calculated for each sequential time

frame and corrected for 11C decay, was plotted versus
time (TACs).

An index of neuronal GABAA receptor density or binding
potential (BPND) was calculated using the simplified reference
tissue model (Lammertsma and Hume 1996) and pons as a
reference region. The calculated receptor occupancy (%) was
then correlated to drug exposure according to the following
equation:

Occupancy ¼ Occmax � Cav;PET

� �
= Ki;plasma þ Cav;PET

� � ð1Þ

where Occmax is the maximal occupancy induced by drug,
Cav,PET is the total drug plasma concentration, and Ki,plasma is
the inhibition constant corresponding to the drug plasma con-
centration required for half-maximum receptor occupancy.
Non-linear least squares curve fitting of the relationship be-
tween drug plasma concentration and receptor occupancy was
performed using Matlab R2007b (http://de.mathworks.com).
Regional data were fitted simultaneously to obtain a single
estimate of Ki,plasma and regionally different estimates of
Occmax. Best fit estimate and confidence interval (95% CI)
were obtained on the logarithmic scale.

Results

Clinical observations

In the present study, there were no serious adverse events
(AEs) related to either of the test drugs. Among subjects re-
ceiving AZD7325, CNS-related AEs such as dizziness, feel-
ing hot, anhedonia, and hypoesthesia were reported by three
subjects receiving the dose of 20 and 30mg and in one subject
both at 20 and at 5 mg (RO > 70%, Table 1). Among subjects
receiving AZD6280, the most common AEs were dizziness
(four of eight subjects) and feeling drunk (two out of eight
subjects). The AEs were reported at doses of 20 mg and above
(RO > 60%, Table 2), but not at 5 and 12 mg dose. No overt
sedative-like effects were reported or observed. No consistent
changes were observed in vital signs, ECG, clinical chemistry,
hematology, or urinalysis variables. All AEs were of mild-to-
moderate intensity and resolved without additional
interventions.

Pharmacokinetic parameters

The range for peak exposures of AZD7325, Cmax, was from
0.81 to 109 nmol/l, and peak plasma concentrations were
reached at 0.47 to 3 h. For AZD6280, Cmax was in the range
from 28.3 to 555 nmol/l. Peak plasma concentrations occurred
in the time window from 0.5 to 1.77 h (Tables 1 and 2).
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GABAA receptor occupancy

At baseline, specific binding of the non-selective radioligand
[11C]flumazenil was the highest in the occipital cortex, follow-
ed by other cortical and subcortical regions, and lowest in the
striatum (Tables 1 and 2; Figs. 2a and 3a). A dose-dependent
decrease in [11C]flumazenil binding in all regions was ob-
served after administration of AZD7325 and AZD6280
(Figs. 2b and 3b). The calculated GABAA receptor occupancy
at the highest doses of 20–30mgAZD7325 reached over 80%
in the occipital cortex and cerebellum. Correspondingly, at the

maximum tolerated dose of 40 mg of AZD6280, receptor
occupancy in the cortex and cerebellum was over 60%. For
both compounds, maximal occupancy in putamen and amyg-
dala was considerably lower than in occipital cortex and cer-
ebellum (Tables 1 and 2; Figs. 2c and 3c).

Estimation of Ki,plasma

The relationship between GABAA receptor occupancy and
AZD7325 and AZD6280 plasma concentrations measured at
time of PET data acquisition could be described by the

Table 2 Pharmacokinetic parameters for AZD6280 and GABAA receptor occupancy in eight subjects

Subject Dose (mg) Cmax (nmol/l) Tmax (h) Cav,PET (nmol/l) BPND (baseline) Occupancy (%)

OC CER PUT AMG OC CER PUT AMG

2 5 179.03 1.0 144.37 4.3 2.1 1.7 3.1 11 22 6 2

7 5 77.23 1.8 52.94 4.7 3.2 1.8 3.0 7 10 −5 −13
5 12 248.90 0.9 204.68 4.5 2.6 1.9 3.5 17 25 0 −8
8 20 676.82 1.6 592.22 5.3 2.6 2.1 4.2 60 65 32 20

1 30 728.67 0.5 513.07 5.2 3.0 2.0 4.1 39 50 16 9

2 30 731.40 1.6 676.82 4.3 2.1 1.7 3.1 43 59 14 5

1 40 676.82 1.0 570.39 5.2 3.0 2.0 4.1 50 69 26 18

2 40 1247.21 1.0 979.75 4.3 2.1 1.7 3.1 52 61 17 19

3 40 1495.56 0.5 1189.90 5.8 3.1 2.1 4.2 62 69 34 26

4 40 439.39 1.6 390.26 5.9 3.1 2.1 4.0 53 62 33 17

6 40 1514.66 0.6 750.51 3.8 2.6 1.6 3.0 36 60 10 −16

Receptor occupancy was measured at Tmax of AZD7325, 1 h after drug administration

Cmaxmaximum plasma concentration, Tmax time for maximum plasma concentration,Cav,PETaverage plasma concentration at time of PETmeasurement,
BPND binding potential, OC occipital cortex, CER cerebellum, PUT putamen, AMG amygdala

Table 1 Pharmacokinetic parameters for AZD7325 and GABAA receptor occupancy in four subjects

Subject Dose (mg) Cmax (nmol/l) Tmax (h) Cav,PET (nmol/l) BPND (baseline) Occupancy (%)

OC CER PUT AMG OC CER PUT AMG

1 0.2 2.29 0.5 1.74 5.0 2.9 2.0 3.7 −8 −5 6 −12
2 0.2 4.12 0.5 2.93 5.9 3.4 2.2 4.2 0.5 3 −7 1

3 1 5.19 1.8 4.97 6.0 3.0 2.5 4.5 25 43 35 19

4 1 12.84 1.0 10.36 5.2 2.9 2.9 4.5 11 25 −3 −14
3 2 5.19 1.3 4.60 6.0 3.0 2.5 4.5 24 45 28 0.2

4 2 21.36 1.1 15.60 5.2 2.9 2.9 4.5 42 60 26 17

1 5 50.23 1.0 46.28 5.0 2.9 2.0 3.7 77 85 40 16

2 5 44.02 2.2 39.22 5.9 3.4 2.2 4.2 67 82 37 26

1 20 213.33 3.0 57.28 5.0 2.9 2.0 3.7 75 77 41 9

2 20 301.94 3.0 281.62 5.9 3.4 2.2 4.2 85 95 46 32

4 30 307.58 2.2 265.25 6.0 3.0 2.3 4.5 82 89 52 37

Receptor occupancy was measured at Tmax of AZD7325, 1 h after drug administration

Cmaxmaximum plasma concentration, Tmax time for maximum plasma concentration,Cav,PETaverage plasma concentration at time of PETmeasurement,
BPND binding potential, OC occipital cortex, CER cerebellum, PUT putamen, AMG amygdala
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hyperbolic function (Eq. 2). The AZD7325 plasma concentra-
tion required for 50% receptor occupancy (Ki,plasma) for
AZD7325 was 15 nmol/l and for AZD6280 440 nmol/l
(Figs. 2c and 3c).

Discussion

The present PET studies confirm GABAA receptor occupancy
in humans by the subunit-selective partial modulators
AZD7325 and AZD6280. A high-resolution PET imaging
system was used to examine receptor occupancy in the human
brain in vivo. After administration of each compound, a
marked reduction of [11C]flumazenil binding to the GABAA

receptors was observed, consistent with competitive binding
at the benzodiazepine binding site.

The GABAA receptor occupancy by AZD7325 and
AZD6280 was dose dependent and could be described by a
hyperbolic function indicating saturability. The plasma con-
centration corresponding to 50% of maximal GABAA recep-
tor occupancy (Ki,plasma) was estimated and used as an index
of affinity in vivo. The estimates of the Ki,plasma value of
AZD7325 and AZD6280 were 15 and 440 nmol/l,

respectively. Both compounds bind to human plasma proteins,
leaving approximately 10% of the total plasma drug unbound.
Neither compound is a P-gp substrate, and both compounds
demonstrate good brain exposure in animals; thus, the 30-fold
difference in affinity in vivo probably relates to differences in
in vitro affinity (Suppl Table 1).

An important observation in the present PET studies was
that high receptor occupancy, i.e., >70% for AZD7325 and
>60% for AZD6280, could be reached by both compounds
without obvious sedative effects. This characteristic of low or
no hypnotic effect at high receptor occupancy was predicted
by the translational studies in rodents for both compounds
(Christian et al. 2015). A special focus was given to the ex-
amination of sedative effects across phase I clinical studies. In
the single and multiple ascending dose studies (ClinicalTrials.
gov, NCT00681317 and NCT00681915), sedation and
cognition/information processing speed were assessed by
patient-based monitoring using visual analog scale (VAS)
alertness-sedation subscale, Modified Wilson Sedation
Scale, and by Digit Symbol Substitution Test (DSST), and
no significant relationship between AZD7325 or AZD6280
doses and alertness or cognitive performance was reported.
There were just numerically higher sedation scores in VAS

Fig. 2 a Parametric PET images of [11C]flumazenil binding to brain
GABAA receptors at baseline and after oral administration of 2 and
30 mg of AZD7325 (PET images obtained using wavelet-aided
parametric mapping (Cselényi et al. 2002) and fused with MR images;
BPND binding potential; individual subject). b Time curves for
radioactivity in the occipital cortex following administration of
AZD7325 in the human subject. c Relationship between receptor

occupancy and plasma exposure. Result of a model fit to the data
(Eq. 2). The figure demonstrates regional maximum occupancy
differences in relation to the differences in the fraction of GABAA

receptor subunits in the region (CER cerebellum, OC occipital cortex,
PUT putamen, AMG amygdala). Ki,plasma, best fit estimate, and 95% CI,
obtained on the logarithmic scale, was 15 nmol/ml; 95%CI 10–24 nmol/l
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alertness scale compared to placebo at 1 h post-dose of
AZD6280 and lower mean correct answers on DSST at 2 h
after administration at dose ≥20 mg, i.e., at the exposure
corresponding to receptor occupancy of >60% (AZ data on
file). Moreover, no cognitive or hypnotic side effects were
either observed in subjects examined in detail using
neurophysiological test battery at the doses up to 80% RO
for AZD7325 and up to 60% RO for AZD6280 (Chen et al.
2014, 2015). In contrast, at anxiolytic doses of non-selective
positive allosteric modulators acting at the BZ site (diazepam,
clonazepam, alprazolam, midazolam, lorazepam), significant
drowsiness has been associated with low receptor occupancy,
ranging from 2 to 30% (Shinotoh et al. 1989; Pauli et al. 1991;
Sybirska et al. 1993; Malizia et al. 1996; Lingford-Hudges
et al. 2005). More recently, for the partial GABAA receptor
agonistsMRK-409 and TPA023, sedation has been reported at
a broad range of receptor occupancy, from severe sedation at
<10% occupancy (MRK-409) or lack of overt sedation up to
50% receptor occupancy (TPA023) (Atack et al. 2010, 2011
a,b). One possible explanation for this broad range of tolerated
levels of GABAA receptor occupancy of novel partial
GABAA receptor agonists may be their intrinsic activity as
suggested in the early studies comparing GABAA receptor
modulators (Bottlaender et al. 1994).

Other side effects, such as transient dizziness, euphoric
mood, and hypoesthesia, were reported in clinical develop-
ment of both studied compounds. AZD6280 and AZD7325
were screened in vitro in a broad panel of receptor binding
sites to identify potential secondary targets. Specific binding
and functional activity at melatonin type 1 and type 2 recep-
tors (MT1, MT2) were found, more so for AZD6280 (Suppl
Table 3). Sleep-promoting effects could, thus, be predicted,
however were not observed in clinical studies. Hence, all
the side effects reported could not be explained by second-
ary binding to other receptor and have been interpreted as
benzodiazepine-like side effects. Importantly, they oc-
curred at the exposure also corresponding to the high recep-
tor occupancy for both compounds (>70% for AZD7325,
>60% for AZD6280; adverse events in phase I clinical stud-
ies, Suppl Table 2).

The role of receptor occupancy in discriminating efficacy
and side effects is best understood for antipsychotic drugs.
PET studies using [11C]raclopride (Farde et al. 1986, 1992;
Nyberg et al. 1995) have provided a large set of data showing
that striatal D2 receptor occupancy at therapeutic dosing of
typical antipsychotics is in the range of 70–80%, with increas-
ing risk of extrapyramidal side effects at receptor occupancy
over 80%. This concept has been successfully applied in the

Fig. 3 a Parametric PET images of [11C]flumazenil binding to brain
GABAA receptors at baseline and after oral administration of 5 and
30 mg of AZD6280 (PET images fused with MR images; BPND

binding potential; individual subject). b Time curves for radioactivity in
the occipital cortex after intravenous injection of [11C]flumazenil at
baseline and following administration of AZD6280 in the human
subject. c Relationship between receptor occupancy and plasma

exposure. Result of a model fit to the data (Eq. 2). The figure
demonstrates regional maximum occupancy differences in relation to
the differences in the fraction of receptor subunits in the region (CER
cerebellum, OC occipital cortex, PUT putamen, AMG amygdala).
Ki,plasma, best fit estimate, and 95% CI, obtained on the logarithmic
scale, was 440 nmol/ml; 95% CI 197–982 nmol/ml
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development of new generation sedation-free antihistaminergic
compounds, by learning that histamine H1 receptor antagonists
induce severe sedation at high occupancy (50–90%), whereas
occupancy in the range of 5–30% is sufficient for therapeutic
effects (Yanai and Tashiro 2007). The relationship between
target receptor occupancy needed for the therapeutic efficacy
for functional ion channel modulators is, however, far less well
understood, and occupancy thresholds that would differentiate
efficacy and side effects remain to be identified. Currently, the
data set on clinical response or lack of it across novel selective
BZs is too small to allow for more conclusive interpretation of
relationship between the range of GABAA receptor occupancy
measured using [11C]flumazenil, intrinsic activity of com-
pounds, and efficacy/side effect profile.

Although we have shown that high receptor occupancy can
be achieved in humans without overt sedative affects or cogni-
tive impairment, the question remains as to whether the intrinsic
modulatory activity of these compounds is sufficient to produce
a therapeutic effect. AZD7325, a compound with low intrinsic
activity and highest tolerated receptor occupancy observed
among BZs, showed only a weak anxiolytic effect in patients
with generalized anxiety disorder (Chen et al. 2014, ClinTrials.
gov). It is tempting to speculate that the reduced intrinsic
activity of AZD7325 was sufficient to diminish sedative side
effects but was too low to achieve optimal anxiolytic activity.
Importantly though, clear pharmacodynamic effects of both
compounds were observed in the human volunteer studies
using psychometric tests and EEG (Chen et al. 2014, 2015).
These effects were qualitatively and quantitatively distinct from
those of lorazepam, and it is quite possible that the therapeutic
effect of GABAA receptor a2/3 subunit selective compounds
may bemore appropriate for other neuropsychiatric indications.

Recent efforts in pharmaceutical development of anxio-
lytics have focused on the development of subtype-selective
GABAA receptor modulators with reduced intrinsic efficacy.
The combination of both changes may be beneficial but limits
understanding of the role of each factor in isolation. Thus, the
relative contributions of partial modulatory efficacy and sub-
unit selectivity remain to be determined (Skolnick 2012;
Sieghart 2015).

Comments

For the quantitative analysis of [11C]flumazenil binding, the
simplified reference tissue model (SRTM) was used with pons
as reference region. GABAA receptors in human brain are
widespread, with no brain region that is devoid of receptors
that could be used as reference. It has been shown, however,
that GABAA receptor density in pons is very low, appr. 5% of
receptor binding in cortical regions (Bmax in pons 2 pmol/g, in
cortex 60–70 pmol/g, in subcortical regions 20–35 pmol/g,
Hall et al. 1992). Though some displacement of radioligand
in pons at high doses of agonists may occur, it has been used

as a reference region, acknowledging potential underestima-
tion of receptor occupancy (Abadie et al. 1996). Recent stud-
ies suggest that specific binding of [11C]flumazenil in the pons
is negligible so that this region can be used as a reference
region to obtain accurate BPND values (Odano et al. 2009).

Regional differences in the maximum GABAA receptor
occupancy were observed after administration of AZD7325
and AZD6280. The pattern of regional receptor occupancy
may be explained by (i) the difference in the distribution of
GABAA receptor subtypes in the brain, (ii) the use of a non-
selective radioligand, and (iii) the drug selectivity towards the
GABAA receptor subtypes. The data on the GABAA receptor
subunit distribution in the human brain are scarce, but some
regional specificity has been suggested, e.g., GABAA recep-
tors containing α1 subunit are expressed predominantly in the
cerebellum and thalamus,α5 appears mainly in the hippocam-
pus combined with α2 and α3, and all four subunits are
expressed in the cortex (Smith 2001; Fatemi et al. 2013;
Waldvogel and Faull 2015). Imaging studies with the
radioligand [11C]Ro15 4513, which has high affinity to α5
receptor subtype, have demonstrated that it is highly bound
in the hippocampus, with a gradient of binding that decreases
from the frontal cortex to the occipital cortex (Lingford-
Hughes et al. 2002). Flumazenil is a benzodiazepine antago-
nist that has high affinity for the α1, α2, α3, and α5 receptor
subtypes (Ki ∼1 nmol/l) and low affinity for the α4 and α6
receptor subtypes (Ki ∼150 nmol/l) (Sieghart 1995).
AZD7325 and AZD6280 have a high affinity for the α1,
α2, and α3 receptor subunits (in the range of 0.3 to
30 nmol/l) but low affinity to α5 subunit. Thus, it is tempting
to relate the pattern of regional receptor occupancy observed
in the present studies to the low affinity of AZD7325 and
AZD6280 for the α5 subunit. It is important to note, though,
that this interpretation has to be taken with caution, as the
distribution of GABAA receptor subunit combinations is still
not fully revealed.

Conclusions

The present PET studies confirmed that two novel α2/α3 re-
ceptor subtype-selective partial GABAA receptor modulators
bind in a saturable fashion to GABAA receptors in the human
brain. High GABAA receptor occupancy by AZD7325 and
AZD6280 could be reached at doses known to produce clear
pharmacodynamic effects without clear sedation or cognitive
impairment.
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