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Abstract

Rationale Addition of low doses of atypical antipsychotic
drugs with selective serotonin reuptake inhibitors (SSRIs)
could promote a rapid antidepressant effect in treatment-
resistant patients with major depression. Brexpiprazole, a
new atypical antipsychotic drug, has been used as adjunctive
therapy for the treatment of major depression.

Objectives The present study was undertaken to examine
whether brexpiprazole could augment antidepressant effects
of the SSRI fluoxetine in an inflammation model of
depression.

Methods We examined the effects of fluoxetine (10 mg/kg),
brexpiprazole (0.1 mg/kg), or the combination of the two
drugs on depression-like behavior, alterations in the brain-
derived neurotrophic factor (BDNF) - TrkB signaling, and
dendritic spine density in selected brain regions after admin-
istration of lipopolysaccharide (LPS) (0.5 mg/kg).

Results Combination of brexpiprazole and fluoxetine promot-
ed a rapid antidepressant effect in inflammation model al-
though brexpipazole or fluoxetine alone did not show antide-
pressant effect. Furthermore, the combination significantly
improved LPS-induced alterations in the BDNF - TrkB sig-
naling and dendritic spine density in the prefrontal cortex,
CA3 and dentate gyrus, and nucleus accumbens.
Conclusions These results suggest that add-on of
brexpiprazole to fluoxetine can produce a rapid antidepressant
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effect in the LPS inflammation model of depression, indicat-
ing that adjunctive therapy of brexpiprazole to SSRIs could
produce a rapid antidepressant effect in depressed patients
with inflammation.
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Spine - SSRI

Introduction

Accumulating evidence suggests that inflammation plays a
role in the pathophysiology of major depressive disorder
(MDD) (Dantzer et al. 2008; Hashimoto 2015b; Miller and
Raison 2015; Strawbridge et al. 2015). A meta-analysis shows
higher blood levels of pro-inflammatory cytokines in drug-
free depressed patients, compared with healthy controls
(Dowlati et al. 2010). Peripheral administration of the bacte-
rial endotoxin lipopolysaccharide (LPS) induces depression-
like behavior in rodents after the induction of inflammation
(Dantzer et al. 2008; O’Connor et al. 2009; Remus and
Dantzer 2016; Zhang et al. 2016). LPS-induced depression-
like behavior can be blocked by pretreatment with antidepres-
sants, including selective serotonin reuptake inhibitors
(SSRIs) and serotonin-norepinephrine reuptake inhibitors
(SNRIs) (Dong et al. 2016; Ma et al. 2014; Ohgi et al. 2013;
Yao et al. 2015). These findings suggest that inflammation
might be associated with depressive symptoms.

Several clinical studies demonstrate that addition of low
doses of atypical antipsychotic drugs (e.g., aripiprazole,
olanzapine, quetiapine, risperidone, ziprasidone) to SSRIs to
rapidly enhance the antidepressant effects in depressed pa-
tients, including treatment-resistant patients (Barbee et al.
2004; Brunner et al. 2014; Nelson and Papakostas 2009;
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Ozaki et al. 2015; Papakostas et al. 2005, 2007, 2015; Rogoz
2013; Shelton and Papakostas 2008). Brexpiprazole
(7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-
yl]butoxy } quinolin-2(1H)-one), a serotonin-dopamine activi-
ty modulator, binds with high affinity (Ki < 1 nM) to human
serotonin (5-HT) 5-HT o, 5-HT, -, dopamine D, (D, )- and
adrenergic o -, oxc-receptors. It displays partial agonism at
5-HT; o and D, receptors, and potent antagonism of 5-HT, 5
receptors and «;p,c—adrenoceptors (Maeda et al. 2014a).
Furthermore, brexpiprazole could potentiate nerve growth fac-
tor (NGF)-induced neurite outgrowth in PC12 cells via 5-
HT,; o and 5-HT,4 receptors (Ishima et al. 2015). Moreover,
brexpiprazole showed antipsychotic-like and procognitive ef-
fects in rodents (Maeda et al. 2014b; Yoshimi et al. 2014,
2015). Brexpiprazole has shown efficacy as adjunctive treat-
ment of MDD (Citrome 2015; McKeage 2016; Stahl 2016;
Thase et al. 2015a, 2015b).

The purpose of this study is to examine whether combina-
tion of brexpiprazole and SSRI fluoxetine could improve
depression-like behaviors and alterations in the brain-derived
neurotrophic factor (BDNF) - TrkB signaling and dendritic
spine density in the selected brain regions after a single LPS
administration.

Material and methods
Animals

Male adult C57BL/6 mice (8 weeks old) weighing 20-25 g
were purchased from SLC Japan (Hamamatsu, Shizuoka,
Japan). The mice were housed in clear polycarbonate cages
(22.5 x 33.8 x 14.0 cm) in groups of 4 or 5 individuals under a
controlled 12/12-h light—dark cycle (light from 7:00 a.m to
7:00 p.m.), with the room temperature kept at 23 °C £ 1 °C
and humidity at 55% + 5%. The mice were given free access
to water and food pellets specifically designed for mice. The
experimental procedure was approved by the Animal Care
and Use Committee of Chiba University Graduate School of
Medicine.

Drugs and drug administration

LPS (0.5 mg/kg; L-4130, serotype 0111:B4, Sigma-Aldrich,
St Louis, MO, USA) was dissolved in distilled water. Saline
(10 ml/kg) or LPS (0.5 mg/kg) was administered intraperito-
neally (i.p.). Brexpiprazole was synthesized at Otsuka
Pharmaceutical Co., Ltd. (Tokyo, Japan). Vehicle (0.5%
CMC; 10 ml/kg), fluoxetine (10 mg/kg, Wako Chemical
Co., Ltd., Tokyo, Japan), brexpiprazole (0.1 mg/kg), or fluox-
etine (10 mg/kg) plus brexpiprazole (0.1 mg/kg) were admin-
istered orally. The doses of brexpiprazole (0.1 mg/kg) and
fluoxetine (10 mg/kg) were selected as reported previously
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(Maeda et al. 2014a, 2014b; Rogdz 2013; Yoshimi et al.
2015). The time schedule of behavioral tests after oral admin-
istration of drugs was selected as previously reported (Hirano
et al. 2005). Other chemicals were purchased from commer-
cial sources.

Behavioral tests

Behavioral tests were performed as previously reported (Ren
et al. 2015, 2016; Yang et al. 2015b; Zhang et al. 2015a,
2015b).

Locomotion Mice were placed in experimental cages
(L560 x W560 x H330 mm), and locomotor activity was
counted by the SCANET MV-40 (MELQUEST, Toyama,
Japan). The cumulative exercise was recorded for 60 min.
All cages were cleaned between testing session.

Tail suspension test A small piece of adhesive tape was
placed at 2 cm from the tip of the tail and punched with a
single hole that serves to hang the mice on a hook. The im-
mobility time of each mouse was recorded for 10 min. Mice
were considered immobile only when they hung passively and
completely motionless.

Forced swim test Animals were tested in an automated
forced-swim apparatus using SCANET MV-40
(MELQUEST Co., Ltd., Toyama, Japan). The mice were
placed individually in a cylinder (Diameter 23 cm; Height
21 cm), containing 15 c¢cm of 23 = 1 °C warm water.
Immobility time was calculated by subtracting active time
from total time, using the apparatus analysis software.
Cumulative immobility time was scored for 6 min during
the test. The TST and FST were performed 2 and 4 h after
the LMT, respectively.

Western blot analysis of BDNF, and its precursor
proBDNF, TrkB, and phosphorylated-TrkB

Western blot analysis was performed as reported previously
(Ren et al. 2015, 2016; Yang et al. 2015b; Zhang et al. 2015a,
2015b). Mice were killed by cervical dislocation and brains
were rapidly removed from the skull. Approximately 1 mm
thick coronal sections were cut and bilateral tissue punches of
prefrontal cortex (PFC), nucleus accumbens (NAc), striatum,
CALl, CA3, and dentate gyrus (DG) of the hippocampus were
dissected on ice using a SZ-LED Kenis light microscope
(Osaka, Japan), and stored at —80 °C. Tissue samples were
homogenized in Laemmli lysis buffer. Aliquots (20 pg) of
protein were measured using the DC protein assay kit (Bio-
Rad), and incubated for 5 min at 95 °C, with an equal volume
of 125 mM Tris-HCI, pH 6.8, 20% glycerol, 0.1%
bromophenol blue, 10% -mercaptocthanol, 4% SDS, and
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subjected to SDS polyacrylamide gel electrophoresis using
AnyKD minigels (Mini-PROTEAN TGX Precast Gel;
BioRad). Proteins were transferred onto PVDF membranes
using a Trans Blot Mini Cell (Bio-Rad). For
immunodetection, the blots were blocked with 2% BSA in
TBST (TBS + 0.1% Tween-20) for 1 h at room temperature,
and kept with primary antibodies overnight at 4 °C. The fol-
lowing primary antibodies were used: BDNF (1:200; H-117,
Cat#: sc-20981, Santa Cruz Biotechnology), phosphor-TrkB
(Tyr-706) (1:200; Cat#: sc135645, Santa Cruz
Biotechnology), TrkB (80E3) (1:1000; Cat#: 4603, Cell
Signaling Technology). The next day, blots were washed three
times in TBST and incubated with horseradish peroxidase-
conjugated anti-rabbit antibody (1:10,000) 1 h at room tem-
perature. After a final three washes with TBST, bands were
detected using enhanced chemiluminescence (ECL) plus the
Western Blotting Detection system (GE Healthcare
Bioscience). The blots were then washed three times in
TBST and incubated with the primary antibody directed
against 3-actin (1:10,000; Sigma-Aldrich). Images were cap-
tured with a Fuji LAS3000-mini imaging system (Fujifilm,
Tokyo, Japan), and immunoreactive bands were quantified.

Golgi staining

Golgi staining was performed using the FD Rapid
GolgiStain™ Kit (FD Neuro Technologies, Inc., Columbia,
MD), following the manufacturer’s instructions (Zhang et al.
2015a; Ren et al. 2015). Two hours after oral administration of
vehicle (10 ml/kg), fluoxetine (10 mg/kg), brexpiprazole
(0.1 mg/kg), or fluoxetine (10 mg/kg) plus brexpiprazole
(0.1 mg/kg), animals were deeply anesthetized with sodium
pentobarbital, and brains were removed from the skull and
rinsed in double distilled water. Brains were immersed in the
impregnation solution, made by mixing equal volumes of
Solution A and B, overnight and then stored in fresh solution,
for 2 weeks in the dark. Brains were transferred into Solution C
overnight and then stored in fresh solution at 4 °C for 1 week,
in the dark. Coronal brain sections (100 um thickness) were cut
on a cryostat (3050S, Leica Microsystems AG, Wetzlar,
Germany), with the chamber temperature set at —20 °C. Each
section was mounted in Solution C, on saline-coated micro-
scope slides. After absorption of excess solution, sections were
dried naturally, at room temperature. Dried sections were proc-
essed following the manufacturer’s instructions. Briefly, im-
ages of dendrites within CA1, CA3, and DG of the hippocam-
pus, prelimbic (PrL) and inflalimbic (IL) areas of medial PFC
(mPFC), and shell and core of NAc were captured using a 100x
objective with a Keyence BZ-9000 GenerationlImicroscope
(Osaka, Japan). Spines were counted along CA1, CA3, DG,
PrL and IL of mPFC, and shell and core of NAc dendrites
starting from their point of origin from the primary dendrite,
as previously reported (Zhang et al. 2015a; Ren et al. 2015).

For spine density measurements, all clearly evaluable areas
containing 50-100 pm of secondary dendrites from each im-
aged neuron were used. To determine relative spine density,
spines on multiple dendritic branches from a single neuron
were counted to obtain an average spine number per 10 pm.
For spine number measurements, only spines that emerged
perpendicular to the dendritic shaft were counted. Three neu-
rons per section, three sections per animal, and six animals
were analyzed. The average value for each region, in each
individual, was obtained. These individual averages were then
combined to yield a grand average for each region.

Statistical analysis

The data show as the mean + standard error of the mean
(S.E.M.). Analysis was performed using PASW Statistics 20
(formerly SPSS Statistics; Tokyo, Japan). Comparisons be-
tween groups were performed using the one-way analysis of
variance (ANOVA), followed by post hoc Fisher’s least sig-
nificant difference (LSD) tests. The P values of less than 0.05
were considered statistically significant.

Result

Effects of fluoxetine and brexpiprazole on depression-like
behavior in mice after LPS administration

Vehicle, fluoxetine (10 mg/kg), brexpiprazole (0.1 mg/kg), or
fluoxetine (10 mg/kg) plus brexpiprazole (0.1 mg/kg) were
administered orally into mice 22 h after LPS (0.5 mg/kg)
administration (Fig. 1a). In the locomotion test (LMT), there
were no differences (F4 353 = 0.819, P = 0.522) among the five
groups (Fig. 1b). One-way ANOVA of TST and FST data
revealed the statistical results (TST (Fig. 1c)): Fy35 = 4.922,
P =0.003, FST ((Fig. 1d): F435 = 7.346, P < 0.0001). In the
TST and FST, combination of fluoxetine and brexpiprazole
significantly attenuated the increased immobility time in mice
after LPS administration (Fig. 1c, d). In contrast, fluoxetine or
brexpiprazole alone did not alter the increased immobility
time for TST and FST after LPS administration (Fig. 1c, d).
These findings suggest that adjunctive treatment of
brexpiprazole with fluoxetine showed a rapid antidepressant
effect on LPS-induced depression model.

Effects of fluoxetine and brexpiprazole on BDNF-TrkB
signaling in selected brain regions of mice after LPS
administration

Since PFC, NAc, striatum, CA1, CA3 and DG of the hippo-
campus play a role in the depression-like phenotype in rodents
(Ren et al. 2015; Shirayama et al. 2015; Yang et al. 2015a,
2015b; Zhang et al. 2015a, 2015b), we performed Western
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Fig. 1 Antidepressant effects of combination of brexpiprazole and
fluoxetine in inflammation model a Schedule of treatment and
behavioral tests. Saline (10 ml/kg) or LPS (0.5 mg/kg) was
administered i.p. Vehicle (10 ml/kg), fluoxetine (10 mg/kg),
brexpiprazole (0.1 mg/kg), or fluoxetine (10 mg/kg) plus brexpiprazole
(0.1 mg/kg) were administered orally 22 h after LPS administration.

blot analysis of BDNF (mature form), its precursor proBDNF,
TrkB, and phosphorylated TrkB (p-TrkB) in selected brain re-
gions (PFC, NAc, striatum, DG, CA1, and CA3). Vehicle, flu-
oxetine (10 mg/kg), brexpiprazole (0.1 mg/kg), or fluoxetine
(10 mg/kg) plus brexpiprazole (0.1 mg/kg) was administered
orally into mice 22 h after LPS administration (Fig. 2a). Brain
regions were collected 2 h after oral administration (Fig. 2a).
One-way ANOVA of BDNF data revealed the statistical results
(PFC: F43; = 5.785, P = 0.0013, NAc: F433 = 5.896,
P = 0.0011, striatum: F4,s5 = 1.165, P = 0.35, CAl:
Fu57 = 0501, P =0.736; CA3: Fy30 = 7.265, P = 0.0003;
DG: Fy3, = 17.24, P < 0.0001) (Fig. 2b—g). Combination of
brexpiprazole and fluoxetine significantly attenuated decreased
BDNF levels in the PFC, CA3, and DG regions after LPS
administration (Fig. 2b, f, g). Furthermore, combination of
brexpiprazole and fluoxetine significantly attenuated increased
BDNEF levels in the NAc after LPS administration (Fig. 2c).
However, no regional differences of proBDNF protein levels
were observed among the five groups (Fig. 2h-m).

To clarify whether TrkB activation or inhibition underpins
mechanistic action of brexpiprazole and fluoxetine combina-
tion, we performed Western blot analyses of TrkB and phos-
phorylated TrkB (p-TrkB), an activated form of TrkB, in sam-
ples from PFC, NAc, striatum, and CA1, CA3, DG of hippo-
campus. One-way ANOVA of p-TrkB/TrkB data revealed the
statistical results (PFC: F4,7 = 3.179, P = 0.029, NAc:
Fu37 = 17.67, P < 0.0001, striatum: Fy 30 = 0.35, P = 0.842,
CAL: Fy30=0.256, P=0.904; CA3: F4,6=38.607, P=0.0001;
DG: Fyys = 8.62, P = 0.0002) (Fig. 3a—f). Combination of
brexpiprazole and fluoxetine significantly attenuated LPS-
induced decrease of p-TrkB/TrkB ratio in the PFC, CA3, and
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Locomotion (LST), tail-suspension test (TST), and forced swim test
(FST) were performed 2, 4, and 6 h after oral administration. b LMT. ¢
TST. d FST. Data are shown as mean = S.EM. (n = 7-9). *P < 0.05,
*##P < 0.01, ***P < 0.001 compared to vehicle-treated LPS group (one-
way ANOVA, followed post hoc LSD test). N.S. not significant, Veh
vehicle, Flu fluoxetine, Brex brexpiprazole

DG regions (Fig. 3a, e, f). Furthermore, combination of
brexpiprazole and fluoxetine significantly attenuated increased
p-TrkB/TrkB ratio in the NAc after LPS administration
(Fig. 3b). However, no regional differences of TrkB protein
levels were observed among the five groups (data not shown).

Effects of fluoxetine and brexpiprazole on alterations
in the dendritic spine density in selected brain regions
of mice after LPS administration

A single administration of LPS (0.5 mg/kg) causes alterations
in the dendritic spine density in the PFC, CA3, DG of hippo-
campus, and NAc (Zhang et al. 2015a). In this study, we
examined whether combination of brexpiprazole and fluoxe-
tine could affect alterations in the dendritic spine density in the

Fig. 2 Effects of brexpiprazole and fluoxetine combination on the P
alterations in the BDNF and proBDNF in the brain regions after LPS
administration

a Schedule of treatment and collection of brain samples. Vehicle (10 ml/
kg), fluoxetine (10 mg/kg), brexpiprazole (0.1 mg/kg), or fluoxetine
(10 mg/kg) plus brexpiprazole (0.1 mg/kg) were administered orally
22 h after saline or LPS (0.5 mg/kg) administration. Brain regions were
collected 2 h after administration of drugs. Western blot analysis of
proBDNF (b-g), BDNF (mature form)(h-m), and (3-actin in the brain
regions (PFC, NAc, striatum, CA1, CA3, DG) was performed. b, h PFC.
¢, i NAc. d, j striatum. e, k CAl. f, i CA3. g, m DG. The values are
expressed as a percentage of that of control mice. Representative data of
Western blot analyses of proBDNF, BDNF, and (3-actin in the mouse
brain regions. Data are shown as mean + S.E.MM. (n = 6-8). *P < 0.05,
**P < 0.01, **¥*P < 0.001 compared to vehicle-treated LPS group (one-
way ANOVA, followed post hoc LSD test). N.S. not significant, Veh
vehicle, Flu fluoxetine, Brex brexpiprazole
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prelimbic (PrL) and infralimbic (IL) regions of mPFC, shell
and core of NAc, CAl, CA3, and DG of the hippocampus.
Vehicle, fluoxetine (10 mg/kg), brexpiprazole (0.1 mg/kg), or
fluoxetine (10 mg/kg) plus brexpiprazole (0.1 mg/kg) were
administered orally into mice 22 h after LPS administration
(Fig. 4a). Brain regions were collected 2 h after oral adminis-
tration (Fig. 4a). One-way ANOVA of Golgi staining data
revealed the statistical results (PrL of mPFC: F4,4 = 16.042,
P <0.0001, IL of mPFC: Fy54=1.236, P=0.327, NAc core:
Fq24 = 18.003, P < 0.0001, NAc shell: Fy,4 = 12.501,
P < 0.0001, CAl: F4,6 = 1.949, P = 0.138; CA3:
F4,26 = 7966, P < 00001, DG: F4’26 = 22997,
P < 0.0001)(Fig. 4b-h). Combination of brexpiprazole and
fluoxetine significantly attenuated the LPS-induced decrease
of spine density in the PrL. of mPFC, CA3, and DG regions
(Fig. 4b, f, g). Furthermore, combination of brexpiprazole and
fluoxetine significantly attenuated LPS-induced increase of
spine density in the core and shell of NAc (Fig. 4d, e). In
contrast, administration of brexpiprazole or fluoxetine alone
did not alter alterations in the dendritic spine density in these
regions after LPS administration (Fig. 4b—h).

Discussion

The major findings of this study are that combination of
brexpiprazole and fluoxetine could promote a rapid

Fig. 3 Effects of brexpiprazole
and fluoxetine combination on the
alterations in the phosphorylation
of TrkB in the brain regions after
LPS administration

a—f The ratio of p-TrkB to total
TrkB in the brain regions is
shown. Representative data of
Western blot analyses of p-TrkB
and TRKB in the mouse brain re-
gions. The values are expressed as
a percentage of that of control
mice. Representative data of
Western blot analyses of BDNF
and (3-actin in the mouse brain re-
gions. Data are shown as
mean = S.E.M. (n = 5-8).
*P < 0.05, **P < 0.01,
*#*¥%P < 0.001 compared to
vehicle-treated LPS group (one-
way ANOVA, followed post hoc
LSD test). N.S. not significant,
Veh vehicle, Flu fluoxetine, Brex:
brexpiprazole
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antidepressant effect in an inflammation model of depression,
although either drug alone did not show an antidepressant
effect. Recently, we reported a rapid antidepressant effect of
TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) in the same
model (Zhang et al. 2015a), indicating that the rapid antide-
pressant effect of combination of brexpiprazole and fluoxetine
is similar to 7,8-DHF’s rapid antidepressant action. To the best
of our knowledge, this is the first report showing a rapid an-
tidepressant effect for combination of brexpiprazole and flu-
oxetine in inflammation model of depression. Therefore, it is
likely that adjunction of brexpiprazole to SSRI therapy could
promote a rapid antidepressant effect in depressed patients.
Studies using postmortem brain samples from depressed
patients showed alterations in the BDNF expression in the
hippocampus and NAc (Krishnan and Nestler 2008). In addi-
tion, serum levels of BDNF in depressed patients are lower
than those of control subjects (Shimizu et al. 2003; Yoshida
et al. 2012; Molendijk et al. 2014), suggesting that BDNF
could be a biological marker for depression (Hashimoto
2010; 2015a). We previously reported a marked reduction of
BDNF-TrkB signaling in the PFC, DG, and CA3, but not
CAl, of inflammation model of depression (Zhang et al.
2015a). A single systemic administration of 7,8-DHF promot-
ed a rapid antidepressant effect in inflammation model of de-
pression (Zhang et al. 2015a), implicating BDNF-TrkB signal
pathway in the PFC, DG, and CA3 in the antidepressant action
of TrkB agonist. This is consistent with decreased BDNF
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Fig. 4. Effects of brexpiprazole

Vehicle or Drugs Collection of brain

and fluoxetine combination on the A SalineorLPS (i.p.) (p-0.) samples
alterations in the dendritic spine y‘\
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a Schedule of treatment, and B D

collection of brain samples.
Vehicle (10 ml/kg), fluoxetine
(10 mg/kg), brexpiprazole
(0.1 mg/kg), or fluoxetine
(10 mg/kg) plus brexpiprazole
(0.1 mg/kg) were administered
orally 22 h after saline or LPS
(0.5 mg/kg) administration. For
Golgi staining, brain regions
were collected 2 h after
administration of drugs. b—h
Golgi staining in the brain
regions (PrL and IL regions of
mPFC, core, and shell of NAc,
CA1l, CA3, and DG of
hippocampus) was performed. Brex
Representative data of Golgi = Lps
staining in the mouse brain
regions. Data are shown as
mean = S.E.M. (n = 5-7).
*P < 0.05, **P < 0.01,
*¥*#%kP < 0.001 compared to
vehicle-treated LPS group (one-
way ANOVA, followed post hoc
LSD test). N.S. not significant,
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protein levels in the PFC, DG, CA3, but not CAl, in inflam-
mation model (Zhang et al. 2015a). In this study, we found
that combination of brexpiprazole and fluoxetine could atten-
uate decreased BDNF-TrkB signaling in the PFC, CA3, and
DG after inflammation. Therefore, it is possible that combina-
tion of brexpiprazole and fluoxetine might promote a rapid
antidepressant effect by stimulation of BDNF-TrkB signaling
in these regions.

Several studies have shown that NAc plays a critical role in
depression (Nestler and Carlezon 2006; Shirayama et al. 2015;
Zhang et al. 2015a, 2015b; Yang et al. 2015a). We also report-
ed that inflammation, social defeat stress, and learned help-
lessness caused an increased BDNF-TrkB signaling within the
NAc (Zhang et al. 2015a, 2015b; Shirayama et al. 2015; Yang
etal. 2015a, 2015b). Taken together, this indicates that inflam-
mation decreases BDNF in the hippocampus and PFC, but
increases BDNF in the NAc, resulting in depression-like be-
havior in rodents. Interestingly, we found that combination of
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brexpiprazole and fluoxetine attenuated the increase in the
BDNF-TrkB signaling in NAc as well as PFC, and hippocam-
pus. Further detailed studies examining the underlying mech-
anism of action for the combination of brexpiprazole and flu-
oxetine in the NAc are needed.

Changes in dendritic length and spine density in the PFC
and hippocampus are thought to contribute to the neurobiolo-
gy of depression, and antidepressant treatment is mediated, in
part, by blocking or reversing these changes (Duman and
Aghajanian 2012; Ohgi et al. 2015; McEwen 2007). A single
administration of TrkB agonist 7,8-DHF and TrkB antagonist
ANA-12 could normalize alterations in spine density in in-
flammation model by stimulation at TrkB in the PFC, CA3,
and DG, as well as blockade of TrkB in the NAc, respectively
(Zhang et al. 2015a). Therefore, the combination of
brexpiprazole and fluoxetine could act by normalizing altered
dendritic spine density in all these regions, including PFC,
hippocampus, and NAc. Thus, it seems that BDNF-TrkB

@ Springer



532

Psychopharmacology (2017) 234:525-533

signaling in NAc might play a role in the antidepressant effect
of brexpiprazole plus fluoxetine, although further studies are
needed.

Recently, Svensson et al. (2016) reported that brexpiprazole
added to a SSRI escitalopram synergistically potentiated oc-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
(AMPAR) as well as N-methyl-D-aspartate receptor
(NMDAR)-mediated neurotransmission and also electrically
evoked excitatory postsynaptic potentials (EPSPs) in the rat
mPFC. Furthermore, the NMDAR antagonist ketamine
(10 mg/kg) enhanced AMPA and apparently to some extent
also NMDAR-induced currents in the rat mPFC (Bjorkholm
et al. 2015). Together, it is likely that rapid antidepressant ef-
fects of brexipiprazole and a SSRI may be related to ketamine’s
antidepressant action.

In conclusion, this study shows that adjunction of
brexpiprazole to fluoxetine can produce a rapid antidepressant
effect in inflammation model of depression. Therefore, it is
likely that adjunction of brexpiprazole to SSRI could produce
arapid antidepressant effect in patients with major depression.
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