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Introduction

Genetic maps greatly facilitate a variety of genetic and 
genomic studies, including the genetic dissection of com-
plex traits, comparative genomic analyses, and genome 
assembly (Bowers et  al. 2012; Liu et  al. 2014). Cur-
rent approaches to map construction are mainly based on 
estimation of recombination frequency, and they aim to 
achieve three core objectives: (1) grouping, i.e. assigning 
markers to linkage groups; (2) ordering, i.e. finding the cor-
rect order of markers within each linkage group; and (3) 
spacing, i.e. estimating the map distances between pairs 
of adjacent markers (Cheema and Dicks 2009; Wu et  al. 
2008b).

Grouping is usually done by setting a threshold either 
directly on the pairwise recombination frequencies or on a 
statistic based on the pairwise recombination frequencies, 
e.g. the LOD scores (Van Os et al. 2005). Ordering can be 
viewed as an optimization problem. It typically involves 
two essential elements: (1) a scoring function that quanti-
fies the quality of a given marker order, e.g. the likelihood 
(Cartwright et  al. 2007; Jansen et  al. 2001), the sum of 
adjacent recombination frequencies (SARF) (Falk 1989), 
the sum of adjacent LOD scores (SALOD) (Weeks and 
Lange 1987), the product of adjacent recombination frac-
tions (PARF) (Wilson 1988) and weighted least squares 
(WLS) (Stam 1993); and (2) a search strategy that reduces 
the space of candidate marker orders, e.g. simulated anneal-
ing (Cartwright et al. 2007; Jansen et al. 2001), ant colony 
optimization (ACO) (Iwata and Ninomiya 2006), genetic 
algorithms (Gaspin and Schier 1998), evolutionary algo-
rithms (Mester et  al. 2003) or greedy and Lin–Kernighan 
heuristics (Van Os et al. 2005). The optimal marker order 
is the one that optimizes the scoring function. The map dis-
tance is measured in centiMorgan (cM), which is a unit that 
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describes a recombination frequency of 1%. For complete 
data, spacing is straightforward once ordering is done (Wu 
et  al. 2008b). For incomplete data, multi-point maximum 
likelihood estimates of recombination frequencies between 
adjacent markers can be obtained by the EM algorithm 
using the theory of hidden Markov models (Lander and 
Green 1987).

It has been recognized that genotyping errors tend to 
inflate map lengths and reduce the proportion of correctly 
ordered maps, particularly as marker density increases 
(Hackett and Broadfoot 2003; Shields et al. 1991). Mark-
ers exhibiting high nearest-neighbour stress (N.N.Stress, 
a quantity measuring the difference between estimated 
and observed recombination frequencies for the directly 
neighbouring loci with respect to a particular locus on the 
map) generally contain genotyping errors (Van Ooijen and 
Jansen 2013) and are, therefore, often removed from con-
structed genetic maps (Farré et al. 2011; Ting et al. 2013). 
Nonetheless, this post hoc filtering is inherently biased in 
terms of predictive validity, as it is applied to marker orders 
that are obtained under the assumption of no error.

Marker orders have been shown to be relatively robust 
against both missing data and genotyping errors for widely 
spaced markers (10 cM intervals) (Hackett and Broadfoot 
2003). This essentially coincides with the proposition made 
in Vision et al. (2000). In their study, Vision et al. demon-
strated that it is neither necessary nor desirable to genotype 
all markers in every individual of a large mapping popula-
tion to get a high-density genetic map. Instead, genotyping 
a limited number of markers, which are evenly and sparsely 
distributed throughout the genome, is sufficient for con-
structing a high-confidence framework map. Afterwards, 
additional markers can be added to the framework map by 
certain fine-mapping strategies, so as to avoid the loss in 
map resolution.

Few methods have been proposed for linkage map con-
struction in the case of reciprocal translocations. A recip-
rocal translocation refers to an even exchange of DNA 
fragments between two non-homologous chromosomes. 
Recombination between loci around the translocation 
breakpoints is severely suppressed. As a consequence, 
markers in these regions become ‘pseudo-linked’, i.e. 
markers that lie on different chromosomes involved in the 
translocation will be mapped onto a single linkage group 
(Farré et al. 2011).

Probabilistic graphical models (PGMs) combine graph 
theory and probability theory to give a multivariate statisti-
cal modelling framework. A PGM depicts a set of random 
variable as nodes or vertices in a graph, and encodes the 
conditional independence between variables through edges 
in the graph where a lack of an edge between two nodes 
indicates that the two variables are conditionally independ-
ent. Beyond existing successful applications of PGMs in 
the reconstruction of various biological networks (Airoldi 
2007; Friedman 2004), we show here that they can also 
serve as a map construction method that does not suffer 
from wrong marker orders as a consequence of genotyping 
errors and reciprocal translocations. More specifically, we 
demonstrate both theoretically and empirically that linkage 
map construction using PGMs can achieve marker filtering 
and ordering at the same time effectively. Moreover, PGMs 
allow accurate positioning of the translocation breakpoint 
and correct ordering of markers on the distal parts of the 
two chromosomes.

Materials and methods

Partial correlation coefficient vs N.N.Stress 
in identifying markers having genotyping errors

The partial correlation coefficient provides a measure 
of conditional independence between variables, which 
forms the basis for construction of PGMs. Here, we dem-
onstrate, theoretically, that the partial correlation coef-
ficient can serve as an alternative to N.N.Stress to iden-
tify markers with genotyping errors. To begin with, a few 
basic concepts are briefly reviewed. The recombination 
frequency θ refers to the probability of observing a gam-
ete with a recombinant haplotype in a single meiosis of a 
heterozygous parent. In this study, we mainly consider the 
recombination frequency between marker loci. For each 
marker, the two parental alleles are denoted by a and b, 
respectively. The genotyping error rate ε is the probabil-
ity of observing allele a when b is the true allele, or vice 
versa. An observation on a set of markers is referred to 
as a phenotype. We investigate the probabilities associ-
ated with all possible phenotypes for an ordered triplet of 

Table 1   Genotypic frequencies for ordered triplet of markers 
M1–M2–M3. θij (0  <  θij  <  0.5) denote the recombination frequency 
between markers Mi and Mj; εM1

, εM2
,and εM3

 denote locus-specific 
genotyping error rates, 0 < ε < 0.5

Numeric values −1 and 1 in the first three columns represent marker 
types a and b, respectively

Marker type Genotypic frequency
(εM1

= εM3
= 0, εM2

= ε)
M1 M2 M3

−1 −1 −1 0.5 × [(1 − ε)(1 − θ12)(1 − θ23) + εθ12θ23]

−1 −1 1 0.5 × (1 − ε)(1 − θ12)θ23 + εθ12(1 − θ23)

−1 1 1 0.5 × ε(1 − θ12)θ23 + (1 − ε)θ12(1 − θ23)

−1 1 −1 0.5 × [ε(1 − θ12)(1 − θ23) + (1 − ε)θ12θ23]

1 1 1 0.5 × [(1 − ε)(1 − θ12)(1 − θ23) + εθ12θ23]

1 1 −1 0.5 × (1 − ε)(1 − θ12)θ23 + εθ12(1 − θ23)

1 −1 −1 0.5 × ε(1 − θ12)θ23 + (1 − ε)θ12(1 − θ23)

1 −1 1 0.5 × [ε(1 − θ12)(1 − θ23) + (1 − ε)θ12θ23]
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markers M1–M2–M3 (Table 1). The genotypic frequencies 
are obtained under two assumptions:

1.	 Recombination events occurring in adjacent intervals 
are statistically independent;

2.	 the alleles a and b occur with equal probability (0.5).

For mathematical simplicity, we replace alleles a and b 
by the values −1 and 1, respectively. By doing so, the mean 
and variance of each marker, hereafter considered as a ran-
dom variable and denoted by Mk (k = 1,2,3), become 0 and 1, 
respectively. This will greatly facilitate the derivations on 
(partial) correlation coefficients presented below.

Partial correlation coefficient

Under the settings mentioned above, the correlation coeffi-
cient between markers Mi and Mj, rij, is equal to the expecta-
tion value E[Mi × Mj]. Let θij (0 < θij < 0.5) denote the recom-
bination frequency between markers Mi and Mj; εM1

, εM2
 

and εM3
 denote locus-specific genotyping error rates. When 

εM1
= εM3

= 0 and εM2
= ε (0 < ε < 0.5), we obtain

It is obvious that (1 − 2θ12)(1 − 2ε) < 1 − 2θ12 and (1 − 2θ23)
(1 − 2ε) < 1 − 2θ23. This shows that if M2 contains errors, 
r12 and r23 decrease when ε increases, whereas r13 remains 
unchanged.

The partial correlation coefficient ρMiMj |Mk
 measures the 

correlation between markers Mi and Mj after removing the 
effect of marker Mk. It can be computed as:

r12 = (1−2θ12)(1−2ε)

r23 = (1−2θ23)(1−2ε)

r13 = (1−2θ12)(1−2θ23).

ρMiMj |Mk
=

rij − rik × rjk
√

1− r2ik

√

1− r2jk

.

It follows that

We have derived that when εM1
= εM3

= 0 and εM2
  =  ε 

(0  <  ε  <  0.5), ρM1M2|M3
 (and analogously, ρM2M3|M1

) is a 
monotonically decreasing function of ε, whereas ρM1M3|M2

 
is a monotonically increasing function of ε (please refer to 
Supplementary Material for detailed derivation). This indi-
cates that the association between a marker containing geno-
typing error and each of its flanking markers decreases with 
increasing error rate, whereas the association between the 
two flanking markers increases with increasing error rate.

In Table 2 we have summarized the values of r12, r23 and 
r13 with respect to eight different settings of εM1

, εM2
 and εM3

 . 
Accordingly, we have derived the following relationships:

where Mi and M̃i denote a locus genotyped without and with 
error, respectively.

N.N.Stress

Genotyping errors that occur at a marker will increase the 
observed recombination frequencies between that marker 

ρM1M2|M3
=

r12 − r13 × r23
√

1− r
2
13

√

1− r
2
23

,

ρM1M2|M3
=

r13 − r12 × r23
√

1− r
2
12

√

1− r
2
23

.

ρM1M3|M2
= ρ

M̃1M3|M2
= ρ

M1M̃3|M2
= ρ

M̃1M̃3|M2
= 0

0 < ρ
˜M1

˜M3|
˜M2

< ρ
˜M1M3|

˜M2
= ρ

M1
˜M3|

˜M2
< ρ

M1M3|
˜M2

< 1,

when θ12 = θ23

0 < ρ
˜M1

˜M3|
˜M2

< ρ
˜M1M3|

˜M2
< ρ

M1
˜M3|

˜M2
< ρ

M1M3|
˜M2

< 1,

when θ12 > θ23

0 < ρ
˜M1

˜M3|
˜M2

< ρ
M1

˜M3|
˜M2

< ρ
˜M1M3|

˜M2
< ρ

M1M3|
˜M2

< 1,

when θ23 > θ12,

Table 2   Pairwise correlation 
coefficients for ordered triplet 
of markers M1–M2–M3

Denotations of θ12, θ23, εM1
, εM2

, εM3
 and ε are identical to those in Table 1

r12 r23 r13

εM1
= 0, εM2

= 0, εM3
= 0 1 − 2θ12 1 − 2θ23 (1 − 2θ12)(1 − 2θ23)

εM1
= ε, εM2

= 0, εM3
= 0 (1 − 2θ12)(1 − 2ε) 1 − 2θ23 (1 − 2θ12)(1 − 2θ23)(1 − 2ε)

εM1
= 0, εM2

= 0, εM3
= ε 1 − 2θ12 (1 − 2θ23)(1 − 2ε) (1 − 2θ12)(1 − 2θ23)(1 − 2ε)

εM1
= ε, εM2

= 0, εM3
= ε (1 − 2θ12)(1 − 2ε) (1 − 2θ23)(1 − 2ε) (1 − 2θ12)(1 − 2θ23)(1 − 2ε)2

εM1
= 0, εM2

= ε, εM3
= 0 (1 − 2θ12)(1 − 2ε) (1 − 2θ23)(1 − 2ε) (1 − 2θ12)(1 − 2θ23)

εM1
= ε, εM2

= ε, εM3
= 0 (1 − 2θ12)(1 − 2ε)2 (1 − 2θ23)(1 − 2ε) (1 − 2θ12)(1 − 2θ23)(1 − 2ε)

εM1
= 0, εM2

= ε, εM3
= ε (1 − 2θ12)(1 − 2ε) (1 − 2θ23)(1 − 2ε)2 (1 − 2θ12)(1 − 2θ23)(1 − 2ε)

εM1
= ε, εM2

= ε, εM3
= ε (1 − 2θ12)(1 − 2ε)2 (1 − 2θ23)(1 − 2ε)2 (1 − 2θ12)(1 − 2θ23)(1 − 2ε)2
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and its flanking markers (Goring and Terwilliger 2000). 
When εM1

= εM3
= 0 and εM2

= ε (0 < ε < 0.5), 

where ρij denote the observed recombination frequency 
between two markers Mi and Mj. Let dij denote the distance 
(in Morgans) between two markers Mi and Mj. Applying 
Haldane’s mapping function, dij = –0.5ln(1 − 2 ρij), gives

The N.N.Stress of marker M2 given M1 and M3 is computed 
as:

Given that 0  <  ε  <  0.5, −ln(1 −  2ε) is a monotonically 
increasing function of ε. This indicates that markers geno-
typed with high error rate exhibit large N.N.Stress.

Analogously, we have investigated and listed the values 
of ρ12, ρ23 and ρ13 with respect to eight different settings of 
εM1, εM2

 and εM3
 in Table 3. Further, we have derived the 

relationships below:

ρ12 = θ12 + ε(1−2θ12)

ρ23 = θ23 + ε(1−2θ23)

ρ13 = θ12 + θ23−2θ12θ23,

d12 = −0.5 ln[(1−2θ12)(1−2ε)]

d23 = −0.5 ln[(1−2θ23)(1−2ε)]

d13 = −0.5 ln[(1−2θ12)(1−2θ23)].

d12 + d23−d13 = − ln (1−2ε).

N.N. StressM2|M1,M3
= N.N. Stress

M2|
˜M1,M3

= N.N. Stress
M2|M1, ˜M3

= N.N. Stress
M2|

˜M1, ˜M3
= 0,

0 < N.N. Stress
M̃2|M̃1,M̃3

= N.N. Stress
M̃2|M̃1,M3

= N.N. Stress
M̃2|M1,M̃3

= N.N. Stress
M̃2|M1,M3

= − ln (1−2ε),

where N.N.StressMj |Mi ,Mk
 denote the N.N.Stress of Mj given 

its flanking markers Mi and Mk.
In view of the similarity between relationships revealed 

by partial correlation and N.N.Stress, we are able to draw 
the following conclusions:

1.	 When the marker data contain no genotyping errors, 
the partial correlations between physically non-adja-
cent markers are all equal to 0, whereas the absolute 
partial correlations between physically adjacent mark-
ers are close to 1. It implies that, ideally, marker order-
ing can be carried out through diagonalization of the 
partial correlations matrix.

2.	 In addition to its application to marker ordering, partial 
correlation coefficient can also serve as an alternative to 
N.N.Stress, i.e. it can be used to identify markers involv-
ing genotyping errors. More specifically, if ρM1M3|M2 
is larger than a certain threshold, for the conditioning 
marker M2 one of the two situations holds:

(i)	 M2 is not genetically located between M1 and M3;
(ii)	 M2 is indeed between M1 and M3, but contains gen-

otyping error (alternatively, the error rate of M2 is 
much greater than the error rates of M1 and M3).

	 Notably, a large ρM1M3|M2
 always comes with 

small r12 and r23, which indicates, in the context of 
PGMs, that M1 and M3 are, highly likely, directly 
connected to each other, whereas M2 is, quite pos-
sibly, disconnected from M1 and M3. This naturally 
provides a simultaneous graphical representation 
of two situations:

(i)	 The non-intermediate marker M2 is excluded from 
the connection between M1 and M3;

(ii)	 The intermediate marker M2 that involves big 
genotyping error is excluded from the connection 
between M1 and M3.

3.	 If not only M2 but also M1 or/and M3 have genotyp-
ing errors (alternatively, the error rates of M2, M1 or/

Table 3   The observed pairwise recombination frequencies for ordered triplet of markers M1–M2–M3

Denotations of θ12, θ23, εM1
, εM2

, εM3
 and ε are identical to those in Table 1

ρ12 ρ23 ρ13

εM1
= 0, εM2

= 0, εM3
= 0 θ12 θ23 θ12 + θ23 − 2θ12θ23

εM1
= ε, εM2

= 0, εM3
= 0 θ12 + ε(1 − 2θ12) θ23 θ12 + θ23 − 2θ12θ23 + ε(1 − 2θ12)(1 − 2θ23)

εM1
= 0, εM2

= 0, εM3
= ε θ12 θ23 + ε(1 − 2θ23) θ12 + θ23 − 2θ12θ23 + ε(1 − 2θ12)(1 − 2θ23)

εM1
= ε, εM2

= 0, εM3
= ε θ12 + ε(1 − 2θ12) θ23 + ε(1 − 2θ23) θ12+ θ23 − 2θ12θ23 + 2ε(1 − ε)(1 − 2θ12)(1 − 2θ23)

εM1
= 0, εM2

= ε, εM3
= 0 θ12 + ε(1 − 2θ12) θ23 + ε(1 − 2θ23) θ12 + θ23 − 2θ12θ23

εM1
= ε, εM2

= ε, εM3
= 0 θ12 + 2ε(1 − ε)(1 − 2θ12) θ23 + ε(1 − 2θ23) θ12 + θ23 − 2θ12θ23 + ε(1 − 2θ12)(1 − 2θ23)

εM1
= 0, εM2

= ε, εM3
= ε θ12 + ε(1 − 2θ12) θ23 + 2ε(1 − ε)(1 − 2θ23) θ12 + θ23 − 2θ12θ23 + ε(1 − 2θ12)(1 − 2θ23)

εM1
= ε, εM2

= ε, εM3
= ε θ12 + 2ε(1 − ε)(1 − 2θ12) θ23 + 2ε(1 − ε)(1 − 2θ23) θ12 + θ23 − 2θ12θ23 + 2ε(1 − ε)(1 − 2θ12)(1 − 2θ23)
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and M3 are comparable), the increment of ρM1M3|M2 
decreases while N.N.StressM2|M1,M3

 does not change. 
This suggests in the application of partial correlation 
for identifying markers with genotyping errors, smaller 
cutoff values are preferable so that minor increases 
caused by genotyping errors of at least two markers in 
a triplet can still be captured.

4.	 When M2 has no genotyping error, there is no increase 
of ρM1M3|M2

, despite of genotyping errors occurring on 
either or both of M1 and M3. This shows partial correla-
tion is limited to filtering out markers that simultane-
ously satisfy three requirements:

(i)	 They are taken as conditioning variables;
(ii)	 they are intermediates in triplets of markers;
(iii)	 they have high error rates.

However, this limitation can be overcome by iterative 
implementation of partial correlation estimation on sequen-
tial triplets of markers. Specifically, assume that M1–M2–
M3–M4 is the true order of four markers, of which M3 has 
a high error rate. Then, the problematic marker M3 can be 
filtered out by investigating ρM2M4|M3

 instead of ρM1M3|M2
.

The PC‑stable algorithm

In the construction of PGMs, the conditional independence 
relationships among a set of variables are typically repre-
sented in the form of an undirected graph. The PC algo-
rithm (Spirtes et al. 2000) was originally designed to learn 
a Markov equivalence class of directed acyclic graphs that 
can be uniquely described as a completed partially directed 
acyclic graph (CPDAG) (Hauser and Buhlmann 2012). Its 
learning process consists of two phases: first, construct an 
undirected graph by means of a series of well-structured 
conditional independence tests; and second, assign direc-
tions to certain edges according to the determined v-struc-
tures and the acyclic constraint, so that the undirected 
graph is transformed into a CPDAG.

It should be noted that only the first phase of the PC 
algorithm is applicable to linkage map construction, since 
in such a context the directionality of edges between mark-
ers is meaningless. However, it has been pointed out that 
the first phase of the PC algorithm returns order-depend-
ent skeletons (Colombo and Maathuis 2014). That is, the 
resulting undirected graph is subject to the order of vari-
ables present in the input data. For this reason, a modi-
fied version of the PC algorithm, which is referred to as 
the PC-stable algorithm, has been presented to overcome 
the order-dependent issue (Colombo and Maathuis 2014). 
The PC-stable algorithm is implemented in the R package 
pcalg.

Frequentist diagonal ordering

In the application of the PC-stable algorithm to linkage 
mapping, the resulting undirected graphs usually capture 
the connectivity of markers to a large extent. Nonethe-
less, the linearity of markers could be a bit ambiguous at 
certain detailed parts. To eliminate such minor ambigui-
ties, here we have proposed a frequentist diagonal order-
ing algorithm, which serves as a complement to the PC-
stable algorithm for fine-ordering of markers. The logic 
behind this algorithm is rather straightforward: first, rep-
resent the undirected graph achieved by the PC-stable 
algorithm in the form of an adjacency matrix, which is 
typically a (0,1)-matrix with entries “1” indicating that the 
corresponding two (row & column) variables are directly 
connected in the graph; second, restructure the adjacency 
matrix so that as many “1” entries as possible are located 
on the first super diagonal of the new adjacency matrix; and 
third, convert the new adjacency matrix into input of a net-
work visualization tool (e.g. Cytoscape), and let the rela-
tionships between markers be presented graphically. Essen-
tially, this algorithm is to extract a marker string, as long 
as possible, from the constructed PGM. The related Mat-
lab source code is available at: https://github.com/Huange/
Frequentist-diagonal-ordering.

Simulated data

A doubled-haploid population was simulated using the 
R package hypred. Two homozygous parental lines with 
genotypes aa and bb at each of 200 loci, which were 
evenly distributed along a single chromosome of 300 cM, 
were simulated initially. The two parental lines were then 
crossed to give an F1 population with heterozygous geno-
type ab at each locus. Subsequently, 300 doubled-haploid 
individuals were simulated from the gametes produced by 
the F1 generation. No interference was simulated, and so 
Haldane’s mapping function was applicable to the marker 
data. The markers were numerically labelled from 1 to 200 
according to their relative positions along the chromosome. 
Among them, six markers, 34, 51, 63, 128, 155 and 184, 
were set to have genotyping errors at rates of 1, 3, 5, 1, 3 
and 5%, respectively.

Cucumber data

This set of marker data was obtained from an RIL population 
derived from an inter-subspecific cross between the North 
American processing market type cucumber cultivar Gy14 
(C. sativus var. sativus) and the wild accession PI 183967 
(C. sativus var. hardwickii) originating from India. The RIL 
population consisted of 77 F6–F8 individuals, each of which 
was genotyped with 995 SSR markers. For more details, see 
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Ren et al. (2009). To deal with missing values in the marker 
scores, we used a hidden Markov model approach (Jiang and 
Zeng 1997) implemented in Genstat to estimate the marker 
genotypes. It appeared interesting to investigate these data 
because our pre-processing results showed that genotyping 
errors were widely present across the whole dataset; besides, 
redundant markers existed in the sense that some markers 
were located on more or less the same locus.

Barley data

This set of marker data is obtained from DH1 population 
developed from a cross between the barley varieties ‘Albacete’ 

and ‘Barberousse’. ‘Albacete’ is known for containing a recip-
rocal translocation between chromosomes 1H and 3H. The 
dataset consisted of 231 lines and 30 markers, of which 13 
markers were located on chromosome 1H and 17 markers on 
chromosome 3H. For more details, see Farré et al. (2011).

Results

Simulated data

By applying the PC-stable algorithm to the simulated 
marker data, we obtained a linkage map as shown in 

Fig. 1   a A PGM constructed 
with the PC-stable algorithm 
for the simulated data. The six 
markers designed with genotyp-
ing errors are pulled aside from 
the linear string and coloured 
in red, and another six markers 
pulled aside from the linear 
string are coloured in cyan. 
Enlargements of two detailed 
parts of the PGM are given 
above the linear string, though 
the whole graph itself can be 
enlarged dramatically to show 
all details clearly. b An MST 
constructed with Genstat for the 
simulated data. The diagram 
was projected on the first two 
principal axes obtained by a 
principal coordinate analysis. 
Only the six markers designed 
with genotyping errors are 
marked out and coloured in red 
(colour figure online)
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Fig. 1a. In the map, all the six markers having genotyping 
errors (i.e. nodes coloured in red) were successfully identi-
fied, as they were pulled aside from the linear string formed 
by the vast majority of all other markers. Meanwhile, a 
couple of markers without genotyping errors (i.e. nodes 
coloured in cyan) were also pulled aside from the linear 
string. This should be attributed to the inherently weak con-
nectivity between those markers and their flanking markers.

For comparison, we also reconstructed a linkage map 
from the simulated data with JoinMap 4.1. Table S1 gives 
the map position and the N.N.Stress of each marker in cM. 
It shows that the 200 markers were perfectly sequentially 
ordered, though a few markers possessed high N.N.Stress 
and, thus, should be removed from the reconstructed 
map. Table  4 lists the top six markers with the highest 
N.N.Stress, which are, as expected, exactly those markers 
designed with genotyping errors. Furthermore, a minimum 
spanning tree (MST) was constructed with Genstat from 
the same dataset (Fig.  1b), since MST has been claimed 
as another promising tool for efficient and accurate recon-
struction of linkage maps (Wu et al. 2008b). Similarly, the 
200 markers were substantially linearly arranged in the 
MST, except that only three markers 51, 63 and 184 were 
clearly shown in branches, indicating that they should be 
excluded from the reconstructed linkage map.

Cucumber data

Data pre‑processing

In a single seed descent (SSD) procedure, the percentage of 
heterozygotes is halved in each generation. In the cucumber 
data, the proportion of heterozygotes was according to the 
expectation for most individuals, but high for about 10% 
of the individuals (Fig.S1). Considering that the intention 
of SSD is to make all heterozygotes disappear eventually, 
we made all heterozygous scores missing and treated the 
entire population as an RIL∞ population, i.e. an RIL popu-
lation obtained after infinitely many generations of SSD. 
This might lead to some individuals with a high propor-
tion of missing data. Afterwards, we first excluded markers 

with more than four (>5.2%) missing data. This concerned 
132 markers, leaving 863 markers for further analysis. We 
then excluded individuals with >10% missing data. These 
concerned only two individuals, leaving 75 individuals for 
further analysis. It should be noted that the number of indi-
viduals is small for accurate map construction.

Forming linkage groups

With a threshold of 0.2 for the recombination frequency, 
two linkage groups were formed, consisting of 719 and 144 
markers, respectively. With a threshold of 0.15, the linkage 
group consisting of 144 markers remained intact, while the 
linkage group consisting of 719 markers was split into five 
subgroups, consisting of 340, 108, 107, 95 and 69 markers, 
respectively. With a threshold of 0.10, the linkage group 
consisting of 340 markers was further split into three groups 
of 177, 162 and 1 markers, respectively. With a threshold 
of 0.10, also the linkage group consisting of 69 markers 
was split into three groups of 38, 30 and 1 markers, respec-
tively. Given the estimated six linkage groups obtained with 
a threshold of 0.15, we used the ML algorithm of JoinMap 
(Stam 1993) five times to check the stability of the result-
ing genetic maps. The results indicated that only the link-
age group consisting of 340 markers should be split into 
two groups (Fig. S2): the first 177 markers at the upper part 
of the map (0–350 cM), and the remaining 163 markers at 
the lower part of the map (370–750 cM). The reason is that 
although there was a small gap between the two groups, 
there was no exchange of markers between the two groups 
in repeated runs of the ML algorithm. In summary, the 863 
markers could be divided into seven linkage groups consist-
ing of 177, 163, 144, 108, 107, 95 and 69 markers, respec-
tively. Notably, this grouping was consistent with the one 
shown by the data providers, who assigned indicators Chr.6, 
Chr.3, Chr.5, Chr.2, Chr.1, Chr.4 and Chr.7 to the seven 
linkage groups, respectively. Table 5 offers, for each linkage 
group, a summary of the total number of markers, the num-
ber of unique markers, average map length across five map-
ping runs, and the highest value of N.N.Stress. The lengths 
of the preliminary maps constructed for each linkage group 
were fairly consistent over five mapping runs. Nonethe-
less, they were always large and especially so for Chr.3 and 
Chr.6. Also, the highest N.N.Stress is generally quite high. 
Both phenomena are indicators of genotyping errors in the 
marker data. Genotyping errors inflate pairwise recombina-
tion frequencies between markers (Goring and Terwilliger 
2000), and subsequently inflate map lengths and harm the 
accuracy of marker ordering (Hackett and Broadfoot 2003; 
Shields et al. 1991).

In this study, we will focus on the map construction for 
Chr.5, which is an example involving issues of genotyp-
ing errors in combination with locally high marker density. 

Table 4   The top six markers with the highest N.N.Stress obtained by 
JoinMap 4.1 from the simulated marker data

Locus Position N.N.Stress (cM)

1 Marker63 96.145 11.01

2 Marker184 296.883 10.939

3 Marker155 243.352 6.318

4 Marker51 70.273 5.629

5 Marker128 195.223 2.046

6 Marker34 43.34 2.041
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The original 144 markers of Chr.5 contained 104 mark-
ers, which were unique when accounting for the pattern 
of missing data alongside with the observed marker phe-
notypes. After missing data imputation 64 unique markers 
remained. Hereafter, we will use the imputed data of the 
64 markers (but the marker numbers refer to the set of 104 
markers) to illustrate our method.

Identifying representative markers having genotyping 
errors for Chr.5

Initially, we focused on a subset of 20 markers that were 
representative of Chr.5. The 20 markers were obtained as 
cluster centres of a K-medoids clustering as implemented 
in the QMKSELECT procedure of Genstat. According to 
the expectation, the cluster centres should either be:

(i)	 High-quality markers (i.e. markers virtually without 
errors), in which case markers assigned to be a cluster 
are similar to the cluster centre, with a few more errors;

(ii)	 low-quality markers (i.e. markers with many errors), 
in which case the cluster is equivalent to its centre. 
Indeed, we observed that some of the 20 markers only 
represented themselves, that is, clusters of size 1.

For the 20 markers, we constructed an MST with Gen-
stat and a PGM with the PC-stable algorithm, respec-
tively (Fig. 2; a linearized version of the MST is shown in 
Fig. S3). Most links present in the two graphs were consist-
ent, except that markers 44 and 59, 59 and 65 were con-
nected while markers 77 and 80 were disconnected in the 
PGM. We also constructed a series of linkage maps with 
JoinMap 4.1 by sequentially deleting the markers with the 
highest, positive N.N.Stress (Fig.  S4). The deleted mark-
ers shown at the top of Fig.S4 were almost identical to the 
problematic markers revealed in Fig. 2, i.e. markers deviat-
ing from the linear tree. Notably, N.N.Stress analysis indi-
cated that marker 77 had large genotyping error and thus 
should be excluded from an accurate linkage map. In this 
regard, the obtained PGM is considered a bit more precise 

Table 5   A summary of the total number of markers, the number of unique markers, the average map length across five mapping runs, and the 
highest values of N.N.Stress for each of the seven linkage groups constructed from the cucumber data (before missing data imputation)

Linkage group Number of markers Number of unique markers Average map length in 5 runs (cM) Highest N.N.Stress (cM)

Chr.1 107 103 195.1 8.0

Chr.2 108 103 269.8 11.7

Chr.3 163 151 343.9 22.3

Chr.4 95 67 115.4 11.8

Chr.5 144 104 155.0 9.1

Chr.6 177 157 333.1 12.0

Chr.7 69 66 176.7 9.5

Total 863 751

Fig. 2   a An MST constructed 
with Genstat for 20 representa-
tive markers of Chr.5. The dia-
gram was projected on the first 
two principal axes obtained by 
a principal coordinate analysis. 
b A PGM constructed with the 
PC-stable algorithm for the 
same set of 20 markers. The 
significance level for condi-
tional independence tests was 
set at 0.05
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than the MST, since in the former a string of markers was 
disconnected from marker 77, whereas the latter did not 
uncover the error issue underlying marker 77.

Constructing framework map for Chr.5

Instead of being restricted to the 20 representative mark-
ers, we then investigated the set of 64 unique markers on 
Chr.5 after missing data imputation. A graphical display of 
all pairwise recombination frequencies implied that some 
of the 64 markers were genetically closely or completely 
coinciding (Fig.  S5a). Results of five independent map-
ping runs in JoinMap 4.1 further showed that the majority 
of genetically similar markers were located on the first half 
of Chr.5 and they led to chaos in the ordering of markers 
(Fig. S5b). An MST and a PGM were constructed, respec-
tively, from the same set of marker data (Fig. 3; a linearized 
version of the MST is shown in Fig.S6). The connectivity 
patterns revealed in the two graphs were generally similar 
to each other. Specifically, the lower parts of both graphs 
had roughly vertical linear structures, whereas the upper 
parts expanded horizontally instead of vertically and there 
was no obvious clue to the linearity of markers in this 
region. By further applying frequentist diagonal ordering to 
the adjacency matrix of the PGM, we obtained the graph 
shown in Fig.  4. The long string on the left of the graph 
clearly indicated the linearity of markers at the second half 

of Chr.5. The short strings at the upper right of the graph 
were mainly extracted from the nested part of the PGM, 
i.e. the first half of Chr.5. Though each of the short strings 
revealed, to some extent, the linearity between a couple of 
markers, as a whole they failed to form a coherent string 
and thus, were, not very informative to an accurate map 
construction. Isolated markers at the lower right of the 
graph should be excluded from map construction anyway, 
because of the fact that they occurred either with big geno-
typing errors or they were genetically very similar to other 
markers. Again, a series of linkage maps were constructed 
by sequentially deleting the markers with the highest, posi-
tive N.N.Stress (Fig.  S7). Not surprisingly, the deleted 
markers shown at the top of Fig. S7 overlapped, to a large 
extent, with those markers excluded from the long string in 
Fig. 4. It is worth noting that in addition to the first half of 
Chr.5, a few other problematic markers on the second part 
of this chromosome, i.e. markers 75, 77, 86 and 97, were 
also unanimously diagnosed by all three approaches.

Barley data

Linkage map construction involving a reciprocal 
translocation

Figure 5 presents the PGM constructed from the barley data 
by the PC-stable algorithm in combination with frequentist 

Fig. 3   a An MST constructed with Genstat for 64 unique markers 
of Chr.5. The diagram was projected on the first two principal axes 
obtained by a principal coordinate analysis. b A PGM constructed 

with the PC-stable algorithm for the same set of 64 markers. The sig-
nificance level for conditional independence tests was set at 0.05
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diagonal ordering. Impressively, instead of finding a 
‘pseudo-linkage’ between markers of chromosomes 1H and 
3H, as obtained with standard methods, we obtained a 
cross-like configuration between the given markers. The 
translocation breakpoint was located around markers 12, 
19, 20 that belong to chromosome 1H and markers 1, 22 
that belong to chromosome 3H. Moreover, markers on the 
distal parts of the two chromosomes were perfectly linearly 
ordered. Our findings were in full agreement with the refer-
ence map (Table S2) supplied by the data providers.

Discussion

Our proposed method in principle can be applied to link-
age mapping involving large numbers of markers. More 
generally, whatever the number of markers is, a three-step 
framework for achieving an accurate genetic map is as 
follows. First, cut up the set of markers into a number of 
linkage groups corresponding to the number of a single 
set of chromosomes. Second, for markers within a single 
linkage group, whatever the size, use K-medoids cluster-
ing to produce a limited set of clusters corresponding to 
the number of markers required for a framework map for 
that linkage group. Probably best to define the number of 
clusters slightly larger than the number of markers required 
for the framework map. This makes it possible to throw out 
clusters that are small or consist of isolated markers. Third, 
take the cluster centres, i.e. representative markers, of the 
larger groups, and start with the construction of PGMs at 
that point.

We have shown through the barley example that it is pos-
sible to simultaneously realize marker grouping and order-
ing with PGMs, which are constructed through a series of 
well-structured conditional independence tests, e.g. the 
PC-stable algorithm. Of course, the estimated number of 
linkage groups is subject to the significance level α adopted 
in the conditional independence tests. Empirically, smaller 
values of α tend to lead to sparser graphs (Colombo and 
Maathuis 2014) that are equivalent to conservative group-
ing of markers, i.e. more linkage groups of smaller size.

By definition, the map distance is measured in cM; 
1 cM approximately corresponds to 1% recombination fre-
quency. Constructing PGMs from the observed genotype 
data involves the calculation of partial correlation coef-
ficients, which essentially measure the combined effect of 
recombination frequencies between all markers, error rates 
of markers and marker order. Consequently, once marker 
grouping and ordering have been achieved using PGMs, 
one still has to calculate recombination frequencies and 
genetic distances to obtain a complete genetic map.

Like most existing approaches to linkage map con-
struction, our method is based on the assumption of 

Fig. 4   An adjusted PGM obtained by further applying frequen-
tist diagonal ordering to the adjacency matrix of the PGM shown in 
Fig. 3b

Fig. 5   A PGM constructed from the barley data by the PC-stable 
algorithm in combination with frequentist diagonal ordering. Yellow 
nodes stand for markers on chromosome 1H and green nodes stand 
for markers on chromosome 3H. The significance level for condi-
tional independence tests was set at 0.05
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independent recombination events. In reality, however, 
chiasma interference (hereafter simply referred to as inter-
ference) occurs when the occurrence of one crossover (or 
chiasma) influences the probability of another crossover 
occurring nearby, especially in regions of high marker 
density (Weeks et  al. 1994). Assuming no interference 
simplifies the construction of linkage maps but it leads to 
considerable overestimation of map distances (Speed and 
Waterman 1996). In contrast  to Haldane’s mapping func-
tion that is applicable in the absence of interference, Kosa-
mbi’s mapping function has been invented and empirically 
verified to well describe the mathematical relation between 
recombination frequency and map distance in the case of 
interference. And yet, the performance of PGMs in con-
structing linkage maps in the face of interference together 
with data perturbations caused by genotyping errors and 
reciprocal translocations is currently unclear and deserves 
further investigation.

A few other studies have also applied graph-theoretic 
approaches to genetic map construction for plant species 
(Ronin et al. 2012; Wu et al. 2008a; Yap et al. 2003). How-
ever, they all concentrated on map integration, aiming at 
producing a consensus genetic map using maps from dif-
ferent populations. We have shown that PGMs present great 
potential for constructing a reliable genetic map for a sin-
gle population, by constructing a genetic map in combina-
tion with tackling problems that are caused by genotyping 
errors and reciprocal translocations in the data.

Author contribution statement  FE conceived the study. 
HW conducted the theoretical derivation. HW and JJ ana-
lysed the data and interpreted the results. HW, FE and JJ 
wrote the paper. All authors have read and approved the 
final manuscript.

Acknowledgements  We would like to acknowledge Prof. S. Huang 
of Institute of Vegetables and Flowers, Chinese Academy of Agricul-
tural Sciences, for kindly providing us with the cucumber data, and 
Dr. A. Farré and Prof. I. Romagosa of Department of Plant Production 
and Forest Science, University of Lleida, for kindly providing us with 
the barley data.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflicts 
of interest.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

Airoldi EM (2007) Getting started in probabilistic graphical models. 
PLoS Comput Biol 3:2421–2425

Bowers JE, Bachlava E, Brunick RL, Rieseberg LH, Knapp SJ, Burke 
JM (2012) Development of a 10,000 locus genetic map of the 
sunflower genome based on multiple crosses. G3 Genes Genom 
Genet 2(7):721–729

Cartwright DA, Troggio M, Velasco R, Gutin A (2007) Genetic 
mapping in the presence of genotyping errors. Genetics 
176:2521–2527

Cheema J, Dicks J (2009) Computational approaches and software 
tools for genetic linkage map estimation in plants. Brief Bioin-
form 10:595–608

Colombo D, Maathuis MH (2014) Order-independent constraint-
based causal structure learning. J Mach Learn Res 15:3741–3782

Falk CT (1989) A Simple Scheme for Preliminary Ordering of Mul-
tiple Loci: application to 45 Cf Families. Prog Clin Biol Res 
329:17–22

Farré A, Benito IL, Cistue L, de Jong JH, Romagosa I, Jansen J 
(2011) Linkage map construction involving a reciprocal translo-
cation. Theor Appl Genet 122:1029–1037

Friedman N (2004) Inferring cellular networks using probabilistic 
graphical models. Science 303:799–805

Gaspin C, Schier T (1998) Genetic algorithms for genetic mapping. 
Lect Notes Comput Sci 1363:145–155

Goring HHH, Terwilliger JD (2000) Linkage analysis in the pres-
ence of errors II: marker-locus genotyping errors modeled 
with hypercomplex recombination fractions. Am J Hum Genet 
66:1107–1118

Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, miss-
ing values and segregation distortion in molecular marker data 
on the construction of linkage maps. Heredity 90:33–38

Hauser A, Buhlmann P (2012) Characterization and greedy learning 
of interventional markov equivalence classes of directed acyclic 
graphs. J Mach Learn Res 13:2409–2464

Iwata H, Ninomiya S (2006) AntMap: constructing genetic linkage 
maps using an ant colony optimization algorithm. Breed Sci 
56:371–377

Jansen J, de Jong AG, van Ooijen JW (2001) Constructing dense 
genetic linkage maps. Theor Appl Genet 102:1113–1122

Jiang C, Zeng ZB (1997) Mapping quantitative trait loci with domi-
nant and missing markers in various crosses from two inbred 
lines. Genetica 101:47–58

Lander ES, Green P (1987) Construction of multilocus genetic link-
age maps in humans. Proc Natl Acad Sci U S A 84:2363–2367

Liu DY, Ma CX, Hong WG, Huang L, Liu M, Liu H, Zeng HP, Deng 
DJ, Xin HG, Song J, Xu CH, Sun XW, Hou XL, Wang XW, 
Zheng HK (2014) Construction and analysis of high-density 
linkage map using high-throughput sequencing data. PLoS One 
9(6):e98855

Mester D, Ronin Y, Minkov D, Nevo E, Korol A (2003) Construct-
ing large-scale genetic maps using an evolutionary strategy algo-
rithm. Genetics 165:2269–2282

Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, Li X, Lu J, Miao H, 
Kang H, Xie B, Gu X, Wang X, Du Y, Jin W, Huang S (2009) An 
integrated genetic and cytogenetic map of the cucumber genome. 
PLoS One 4:e5795

Ronin Y, Mester D, Minkov D, Belotserkovski R, Jackson BN, Schna-
ble PS, Aluru S, Korol A (2012) Two-phase analysis in consen-
sus genetic mapping. G3-Genes Genom Genet 2(5):537–549

Shields DC, Collins A, Buetow KH, Morton NE (1991) Error filtra-
tion, interference, and the human linkage map. Proc Natl Acad 
Sci USA 88:6501–6505

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


444	 Theor Appl Genet (2017) 130:433–444

1 3

Speed TP, Waterman MS (1996) Genetic mapping and DNA sequenc-
ing. Springer, New York

Spirtes P, Glymour CN, Scheines R (2000) Causation, prediction, and 
search, 2nd edn. MIT Press, Cambridge

Stam P (1993) Construction of integrated genetic-linkage maps by 
means of a new computer package: Joinmap. Plant J 3:739–744

Ting NC, Jansen J, Nagappan J, Ishak Z, Chin CW, Tan SG, Cheah 
SC, Singh R (2013) Identification of QTLs associated with cal-
logenesis and embryogenesis in oil palm using genetic linkage 
maps improved with SSR markers. PLoS One 8(1):e53076

Van Ooijen JW, Jansen J (2013) Genetic mapping in experimental 
populations. Cambridge University Press, Cambridge, UK

Van Os H, Stam P, Visser RG, Van Eck HJ (2005) RECORD: a novel 
method for ordering loci on a genetic linkage map. Theor Appl 
Genet Theor Angew Genet TAG 112:30–40

Vision TJ, Brown DG, Shmoys DB, Durrett RT, Tanksley SD (2000) 
Selective mapping: a strategy for optimizing the construction of 
high-density linkage maps. Genetics 155:407–420

Weeks DE, Lange K (1987) Preliminary ranking procedures for mul-
tilocus ordering. Genomics 1:236–242

Weeks DE, Ott J, Lathrop GM (1994) Detection of genetic inter-
ference: simulation studies and mouse data. Genetics 
136:1217–1226

Wilson SR (1988) A major simplification in the preliminary ordering 
of linked loci. Genet Epidemiol 5:75–80

Wu Y, Close TJ, Lonardi S (2008a) On the accurate construction of 
consensus genetic maps. Comput Syst Bioinform Life Sci Soc 
Comput Syst Bioinform Conf 7:285–296

Wu YH, Bhat PR, Close TJ, Lonardi S (2008b) Efficient and accurate 
construction of genetic linkage maps from the minimum span-
ning tree of a graph. PLoS Genet 4(10):e1000212

Yap IV, Schneider D, Kleinberg J, Matthews D, Cartinhour S, 
McCouch SR (2003) A graph-theoretic approach to compar-
ing and integrating genetic, physical and sequence-based maps. 
Genetics 165:2235–2247


	The potential of probabilistic graphical models in linkage map construction
	Abstract 
	Key message 
	Abstract 

	Introduction
	Materials and methods
	Partial correlation coefficient vs N.N.Stress in identifying markers having genotyping errors
	Partial correlation coefficient
	N.N.Stress

	The PC-stable algorithm
	Frequentist diagonal ordering
	Simulated data
	Cucumber data
	Barley data

	Results
	Simulated data
	Cucumber data
	Data pre-processing
	Forming linkage groups
	Identifying representative markers having genotyping errors for Chr.5
	Constructing framework map for Chr.5

	Barley data
	Linkage map construction involving a reciprocal translocation


	Discussion
	Acknowledgements 
	References




