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Transformable topological mechanical
metamaterials
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Mechanical metamaterials are engineered materials whose structures give them novel

mechanical properties, including negative Poisson’s ratios, negative compressibilities and

phononic bandgaps. Of particular interest are systems near the point of mechanical

instability, which recently have been shown to distribute force and motion in robust ways

determined by a nontrivial topological state. Here we discuss the classification of and propose

a design principle for mechanical metamaterials that can be easily and reversibly transformed

between states with dramatically different mechanical and acoustic properties via

a soft strain. Remarkably, despite the low energetic cost of this transition, quantities such as

the edge stiffness and speed of sound can change by orders of magnitude. We show that the

existence and form of a soft deformation directly determines floppy edge modes and phonon

dispersion. Finally, we generalize the soft strain to generate domain structures that allow

further tuning of the material.
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T
he emergence of mechanical stability is a central theme in
many branches of condensed matter physics, ranging
from jamming of granular matter1,2 to strain stiffening

of biopolymer networks3–5 and structural phase transitions
in crystals6. A universal language, which dates back to
J. C. Maxwell, to characterize mechanical stability in various
systems is based on frame models, which contain rigid struts
connected by free-hinges7,8. The simple rule for the emergence of
mechanical stability in these frames is hzi¼ 2d, where hzi is the
average coordination number (number of struts that meet at a
hinge) and d is the spatial dimension. Because each hinge as a
point-like object in the model contributes d degrees of freedom
and each strut contributes one constraint, structures satisfying
hzi¼ 2d, now called Maxwell lattices9, contain just enough
constraints for all the degrees of freedom and thus are at the verge
of mechanical instability.

What is central to the understanding of mechanical stability is
the concept of floppy modes, which are normal modes of
deformation that do not stretch or compress any strut and only
involve rotations at the hinges in the frame. In general these
modes emerge when hzio2d and lead to instabilities, for
example, flow of granular matter. A particularly interesting case
is the generation of floppy modes by cutting a finite piece from an
infinite Maxwell lattice. Because the hinges on the boundary have
zo2d, the finite system must have as many floppy modes as the
length of the boundary. Recent studies reveal that these floppy
modes exhibit very rich physics. They can either appear as plane
wave modes that penetrate through the bulk2, or appear as modes
localized on the edge10. In particular, Kane and Lubensky found
that these floppy modes can reside on one side of a finite lattice,
leaving the other side with no floppy modes and that this is
controlled by the topology of the phonon bands11. This is
analogous to quantum topological states of electrons, such as the
quantum Hall effect and topological insulators, where edge modes
are determined by the topology of the electron bands12,13. The
phenomenon of floppy modes concentrating on one side of a
lattice, called topological polarization, is a property of the lattice
that is protected by topology, so it is highly robust against
disorder and noise. Recent works have considered topological
states of matter in a wide variety of mechanical and acoustic
networks, including not only just mechanical frames14–18 but also
biological microtubules19, coupled pendula20, gyroscopes21,22,

acoustic resonators23, origami/kirigami24 and cogs with coupled
orientations25. Because low-energy modes often dominate the
mechanical response of a structure, the rich spectrum of floppy
modes in Maxwell lattices provides a great opportunity to design
mechanical metamaterials in which novel mechanical responses
can be programmed.

Here we show that, interestingly, simple operations that cost
little energy can be utilized to induce transitions that change the
topological polarization in a structure, analogous to the change of
topological states in the quantum Hall effect through the change
of the magnetic field. This leads to a design principle for
mechanical metamaterials that can be easily and reversibly
transformed between states with dramatically different properties,
and we use example lattices to illustrate this (see Supplementary
Video). Recently there have been many interesting proposals
for tunable mechanical metamaterials26–35. What is unique to
this design is that, first, the unusual asymmetric properties in the
different states are protected by topological invariants of the
phonon bands and thus the system is more robust against
possible wear from repeated transformations, and second, the
operation is based on a soft deformation of the structure that
uniformly twists the angles at the hinges throughout the system
and thus costs little energy and involves little stress. Hence,
we refer collectively to such systems as transformable topological
mechanical metamaterials (TTMM). We further show that any
structure exhibiting such a uniform soft deformation can be
classified via whether this deformation is predominantly shear
(shear dominant) or dilation (dilation dominant), two regimes
with sharply different properties. This general classification
provides a guideline for the creation of new TTMMs.
We discuss possible experimental systems that can be used to
fabricate TTMMs. We also discuss how these soft deformations
can be used to create novel domain structures, in which
topological polarizations can be tuned locally, leading to
versatile control of stiffness along edges and domain walls.

Results
Topological transitions induced by uniform soft twistings.
We start our discussion of the topological transitions using
the example of the deformed kagome lattice, which is the first
two-dimensional lattice that was shown to exhibit topological
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Figure 1 | Topological transitions of a deformed kagome lattice by uniform soft twisting. Two types of triangles (red and blue) are connected by

free hinges at their corners, forming a deformed kagome lattice with primitive vectors a1, a2. The angle y between the triangles defines the twisting

coordinate. The blue curve shows det~E (defined in equation (1)) as a function of y. The 3 white dots on the y axis represent three critical angles (ya2 � a1
, ya1

and ya2
) where sides of the triangles form straight lines (yellow stripes on the lattices) and topological polarization RT (shown as black arrows above the

axes) changes.
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polarization11. This lattice is constructed by connecting rigid
triangles with free hinges as shown in Fig. 1 (the term deformed
refers to the fact that this lattice consists of triangles of shapes
that differ from those in the regular kagome lattice, and does not
mean the lattice is stressed). This structure is a Maxwell lattice
because each triangle can be viewed as three struts and thus each
hinge connects four struts, so z¼ 2d. The lattice in Fig. 1 has
chosen side lengths (1, 1, 1), (0.72, 1, 0.57) for the two triangles.

The topological polarization RT, as introduced in ref. 11, is a
vector that represents topological invariants of the phonon modes
in the first Brillouin zone of the lattice, and is determined by the
lattice geometry. When RT¼ 0 the lattice has floppy modes on all
edges, but when RTa0, the direction it points towards is the edge
that gains extra floppy modes, whereas the opposite edge lacks
floppy modes.

As first shown by Guest and Hutchinson36, all two-
dimensional periodic Maxwell lattices must exhibit at least one
homogeneous deformation (that is, all repeating units deform in
the same way) that is soft (no stretching or compression of struts
and only rotations at hinges), regardless of the specific unit cell
geometry (more detailed discussion in Supplementary Note 2).
The deformed kagome, as a Maxwell lattice, must exhibit such a
mode, as shown in Fig. 1. We find that as the lattice follows this
nonlinear soft deformation the topological polarization RT can
change, which dictates that the edge floppy modes have to move
from one edge to the opposite edge at the transition. In the
following discussion, we call such uniform floppy deformations
uniform soft twistings, and we use a bond angle y (Fig. 1) as the
coordinate to label states along the path of the uniform soft
twisting.

As shown in Fig. 1 the deformed kagome lattice experiences
three topological transitions at ya2 � a1 , ya1 , ya2 (labelled by the
associated lattice directions in terms of the primitive vectors of
the lattice marked in Fig. 1), with their order dependent on lattice
geometry. At twisting angles below the first or above the last
transition, the lattice has RT¼ 0 where floppy edge modes reside
on all edges. As y-y�a2 � a1

edge modes on the bottom edge
penetrate deeper and deeper into the bulk and eventually become
bulk modes (with zero decay rate) at y¼ ya2 � a1 . Upon further
increasing y, these modes transform into edge modes on the top
edge, doubling the number of floppy modes there. This evolution
of floppy modes as y increases is illustrated in Fig. 2a–c. The
transitions at ya1 and ya2 are of the same nature, where floppy
modes shift from certain edges to edges on the opposite side of
the system. As y crosses the three critical angles ya2 � a1 , ya1 , ya2 ,
the change of RT follows 0-(a2� a1)-a2-0, so the two
regimes ya2 � a1oyoya1 and ya1oyoya2 have distinct nonzero
RT and are topologically polarized. The transitions at ya2 � a1 , ya1 ,
ya2 are called topological transitions because a topological index
RT changes its value across them. At a transition, edges of the
triangles form straight lines along a particular direction, which is
intimately related to the rise of bulk floppy modes at the
transition. As discussed in refs 9–11, straight lines in the bulk
allow states of self stress (ways to distribute internal stress without
net forces on any parts) such that floppy bulk modes can arise.
This shares interesting similarities with the quantum Hall effect,
where the system must pass through a metallic state as it
transforms between insulating states of different topological
indices. It is also reminiscent of the process whereby the
topological polarization of a one-dimensional Maxwell frame
lacking translational invariance may be altered gradually by a
soliton, a nonlinear local deformation14.

These transitions lead to a dramatic change in the edge stiffness
because an edge becomes rigid as it loses floppy modes.
We perform conjugate-gradient minimization calculations of
the response to a point force on one edge of a lattice with other

edges held fixed (for details see Supplementary Note 3), and find
that the edge stiffness increases by orders of magnitude as floppy
modes leave the edge (Fig. 2d).

Classification of structures with soft twistings. The example of
the deformed kagome lattice provides a simple design for
mechanical metamaterials that are transformable between states
of sharply different but topologically protected mechanical
properties. To explore new structures that exhibit such topolo-
gical transitions, here we also study the general classification of
structures that exhibit uniform soft twistings.

To achieve this general classification, we first analyse the
consequences of the uniform soft twisting, which (around a given
state) can be written in terms of the left Cauchy–Green strain
tensor

~E¼ ~Exx ~Exy

~Exy ~Eyy

� �
; ð1Þ

which is homogeneous in space and is a function of y. As proved
in Supplementary Note 4, utilizing the fact that any elastic
deformation in flat space must have zero curvature, the existence
of the zero energy uniform deformation ~E leads to two families of
spatially varying floppy modes described by strain tensors

Eþ rð Þ¼~E fþ xþ lþ yð Þ;
E� rð Þ¼~E f� xþ l� yð Þ;

ð2Þ

where r¼ (x, y) is the coordinate, f±(w) are two arbitrary scalar
functions and l± are two constants determined by ~E

l�¼ ~Exy �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det~E
p� �

=~Exx; ð3Þ

where det~E¼~Exx~Eyy � ~Exy
� �2

is the determinant of ~E.
The characteristics of these floppy modes are dictated by the

sign of det~E, which distinguishes two different regimes: the
dilation dominant regime, det~E40 and the shear dominant
regime, det~Eo0. Because det~E is independent of the choice of
coordinates, it measures an intrinsic property of the uniform soft
twisting. In addition, structures in the dilation dominant regime
are necessarily auxetic31 because they have ~Exx~Eyy40, which gives
a negative Poisson’s ratio.

In the dilation dominant regime (det~E40), the floppy modes
are edge modes localized on all edges of the system. This
conclusion is transparent after we decompose the two arbitrary
functions f± into Fourier series f� wð Þ¼

P
k
f� kð Þeikw, so that the

functions in equation (2) turn into

f� xþ l� yð Þ¼
X

k

f� kð Þeikxþ il� ky: ð4Þ

For any real number k, along the x direction, the exponential
factor eikx describes a plane wave with wave number kx¼ k.
However, along y, because l± is complex for det~E40, its
imaginary part, Iml±, yields a factor e� ky with k¼ k Iml±,
so that the amplitude of this deformation decays exponentially
along the y axis. If the system has an open edge parallel to the x
axis, this is a plane wave along the edge whose amplitude decays
exponentially from the edge into the bulk of the system, that is,
an edge mode with zero sound velocity. The decay rate for this
edge mode is proportional to the wavevector, kpk. Because the x
direction here is chosen arbitrarily, the same conclusion applies to
arbitrary edge directions and thus floppy modes arise on all edges.
Because the elastic theory shows no bulk floppy modes, the bulk
is in general rigid and has no floppy mode except the uniform soft
twisting, which we assumed from the beginning. One special case
in the dilation dominant regime, the twisted kagome lattice,
was discussed in ref. 10, where the uniform soft twisting is a pure
dilation ~Exy¼0 and ~Exx¼~Eyy. For that special case, the system has
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an emergent conformal symmetry and the floppy edge modes are
conformal deformations. As we prove here, the same qualitative
properties shall always arise as long as det~E40.

For the shear dominant regime det~Eo0, the floppy modes are
bulk plane waves along two special directions ky¼ lþkx and
ky¼ l�kx, as can be seen directly from equation (4) with real
valued lþ and l� . For bulk sound waves along these two special
directions, the sound velocity vanishes, which is the key acoustic

signature of the shear dominant regime. On the edge of the
system, our general elastic theory neither requires nor prevents
the existence of floppy edge modes, implying that the fate of the
edge is not universal and relies on the architecture of the lattice.
Generally in a solid, surface or edge sound waves, known as
Rayleigh waves, could arise and the frequencies of these Rayleigh
waves are lower than those of waves in the bulk (surface waves
can also have frequencies located in a phonon bandgap, but
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Figure 2 | Transformation of edge modes and stiffness. (a–c) Evolution of a pair of floppy modes (red and black arrows) as the example deformed

kagome lattice shown in Fig. 1 traverses its soft twisting coordinate y across the critical angle ya2 � a1
, where the lattice develops a topological polarization.

Periodic boundary conditions are applied to left-right edges and open boundary conditions to top-bottom edges. (d) Numerical results for the dramatic

change of stiffness of the hard (bottom) edge against local displacements as y changes and floppy modes move to the opposite edge. Data is from a

60� 60 generic kagome lattice with the structure shown in (a) with free hinges and fixed boundaries except the measurement edge (see Supplementary

Note 1).

Table 1 | General classification of lattices with uniform soft twistings.

Soft twisting 
characteristic

Shear dominant
det < 0

Dilation dominant
det > 0

Spatially varying 
floppy modes

= ± + ( )
with ±

= Re ± + Im ±

+ ( )

Bulk phonon spectra
Vanishing speed
of sound in 
two directions 

Positive speed
of sound in 
all directions

Floppy 
edge
phonons
(FEP)

Example 
lattices

= > = >

Frequency = 0

FEP NOT 
guaranteed 
to exist

= 0 = ( )

Decay rate 
Can be 0 in some 
cases (bulk phonon)

( ) ( )

FEP 
features

Can be 
topologically 
polarized

FEP appear in pairs at opposite 
edges and can be described by 
generalized conformal 
transformations

The spatially varying floppy modes are expressed in terms of the wave number in the y direction when a plane wave of wave number k propagates in the x direction (see discussions after equation (4)).
The bulk phonon spectra show example phonon frequency contour plots (darker colour for lower frequency) as a function of kx, ky. The example lattices are shown as rigid polygons (triangles or
parallelograms) connected by free hinges at their corners45, and they can be directly mapped into strut-hinge frames by replacing the triangles by three connected struts on their edges and the
parallelograms by five connected struts with four on edges and one on the diagonal to make them rigid. Thus the structures consisting of triangles (deformed kagome lattices as defined the text) have
hzi¼4¼ 2d and the structures consisting of parallelograms (deformed checkerboard lattice) have hzi¼ 542d.
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because we only focus on low-frequency phonon modes, this case
will not be considered here)37. Because their frequencies are lower
than the bulk ones, including the floppy bulk plane waves with
zero sound velocity, these surface waves will also be soft and have
zero sound velocity. At long wavelengths (small k), these floppy
edge modes have decay rate kBk2 and penetrate much deeper
into the bulk, in comparison with the floppy edge modes in the
dilation dominant regime discussed above, which have kBk.

We summarize this classification in the table in Table 1. It is
worth pointing out that the analysis here is not limited to frames.
The only assumption we make is the existence of a soft uniform
deformation that only costs elastic energy to O E3ð Þ, as opposed to
normal elastic deformations which cost energy O E2ð Þ. As we show
in Supplementary Note 4, the elastic energy of these resulting
spatially varying floppy modes also have E�O E3ð Þ. In this sense
they are called floppy modes or soft modes. Knowledge of the
microscopic structure provides more information on these floppy
modes. In particular, floppy modes of exactly zero energy (zero
frequency) are guaranteed to exist in finite Maxwell lattices, as we
discussed earlier. In contrast, if a structure with hzi42d has a
uniform soft twisting (by fine-tuning of its architecture, such as
the example of the deformed checkerboard lattice in Table 1),
these modes are floppy E�O E3ð Þ but not guaranteed to be zero
energy. Although we focus here on elastic and low-frequency
properties of the material, past work has that twisting of a regular
kagome lattice induces bandgaps and other interesting features in
the full phonon dispersion35.

This classification sheds light on topological states of a
structure. One straightforward relation is that there can be no
stiff edge in the dilation dominant regime. This is because all
edges must have floppy modes in this regime, as we have shown
above. For example, in Fig. 1 the deformed kagome lattice enters
the shear dominant regime shortly before the first topological
transition and returns to it after the last topological transition
returns it to an unpolarized state. The phenomenon of stiff edges
only shows up in the polarized configurations, ya2 � a1oyoya2 .

Furthermore, there are lattices that exhibit a transition between
dilation dominant and shear dominant regimes but never exhibit
a topological phase. One example is the deformed square lattice
with two hinges and four struts of different length per unit cell (as
shown in Fig. 3 where strut lengths (1.3, 1, 0.9, 0.7) was used).
This structure also has one uniform soft twisting, which changes
the angle y uniformly. As y increases, the system undergoes one

transition from the dilation dominant regime to the shear
dominant one. Agreeing with our elastic theory, the dilation
dominant regime shows a rigid bulk and soft edges, while the
shear dominant regime has floppy bulk modes. Interestingly, in
contrast to the deformed kagome lattice, the deformed square
lattice shows no floppy edge modes. Instead it has bulk modes
with exactly zero energy. These floppy bulk modes follow the
predicted directions (1, l±) at small k, but deviate at larger k
(zero frequency lines in Fig. 3 are curved). Thus this lattice
provides a different class of structures that exhibit uniform soft
twisting.

Creation of domain structure. We now show that the critical
configurations of a Maxwell lattice may be used to generate a
new family of domain structures that provide local control of
the topological polarization and hence mechanical response. As
we’ve discussed, twisting a Maxwell lattice through a topological
transition moves zero modes into the bulk as they pass from one
edge to the other, altering the edge stiffness. Interestingly,
uniquely at the critical point, these floppy modes are in the bulk,
and there is an opportunity to use them to systematically alter the
structure of any Maxwell lattice, as discussed in detail in
Supplementary Note 5. Such modes were previously used in the
special case of the standard kagome lattice to take edge zero
modes into the bulk10 and to alter the finite-frequency wave
structure35. As shown in Fig. 4, when the twisting angle reaches
ya1 , the point at which a1 reaches maximum, (ya2 corresponds to
a maximum of a2 and ya2 � a1 to the third lattice direction a1� a2),
either slightly increasing or slightly decreasing the twisting angle
y results in the decrease of a1. The same primitive vector a1 can be
reached by two choices of twisting angle yt and yb which are
above and below ya1 . Thus, two domains of the deformed kagome
lattice at twisting angle yt and yb may be joined together at a
domain wall interface as shown in Fig. 4c. Hence, from the
homogeneous critical configuration one may choose for each of
the Ny rows separately one twisting direction or the other,
resulting in a domain wall structure that then passes on a fixed
course (represented as a blue line in Fig. 4) as the lattice twisting
is continued until another homogeneous critical point is reached
(full traversal of this path requires tiles to pass through or over
one another). Note that the structure cannot jump from one path
to another path (different blue lines). The only way to change the
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Figure 3 | Evolution of a non-topological lattice and its bulk floppy modes upon uniform soft twisting. (a) Uniform soft twisting of a deformed square
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modes in the deformed square lattice when det~Eo0 are bulk instead of floppy edge phonons. Unlike the deformed kagome lattice of Fig. 1, the shear
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number of rows in each domain is to return to the critical lattice
at ya1 .

By choosing the fraction of the system subject to one twisting
or the other, one can tune the effect on the average lattice
primitive vectors, resulting in a new nonlinear soft strain, which
we call domain soft twisting. The domain soft twistings can be
used to generate a desired mechanical response. For example,
choosing a path such that |a2| remains nearly unchanged while
|a1| changes by a significant fraction allows the material to
undergo stress-free deformations that dilate significantly along
one lattice direction while leaving the other unchanged (and also
undergoing some general shear). We emphasize that this response
is not set by the material but tuned by the domain structure it is
placed in at the critical point.

Changing the domain structure through the domain soft
twistings has very interesting effects on the edge floppy modes of
the Maxwell lattices. To demonstrate this, we show the spatial
extent of zero modes, obtained by directly calculating the zero
modes of a finite Maxwell lattice and measuring the amplitude of
zero modes projected into every lattice site. The total amplitude
fi of zero modes fuj

0g, which projects into a site i’s two degrees of
freedom is

fi¼
X

j

x̂i � uj
0

� �2
þ ŷi � u

j
0

� �2
; ð5Þ

where j labels zero modes, and fi varies from 2 for completely
free particles in two dimensions to 0 for completely pinned
particles. The spatial extent of zero modes fi is an indicator of
the local ‘floppiness’, because stress-free spatially localized
deformations such as the edge indentation considered in Fig. 1d
require spatially localized zero modes, which is measured by fi.

We show the effect of the domain soft twisting on the edge
floppy modes in Fig. 5. We examine a collection of domain
structures created from the same lattice, with the domain twisting
angles shown in the top row, and the effect on the edge modes is
shown in Fig. 5b–g where green indicates area with high fi and
thus higher floppiness.

For a homogeneous unpolarized state, the zero modes are
distributed roughly evenly around the edge, as shown in Fig. 5a.
Upon twisting the lattice to the critical angle ya1 and creating top
and bottom domains only one of these domains is polarized along
the a1 direction, as shown in Fig. 5b. This can be used to create
edge stiffnesses that change along the length of the edge in desired
ways. For example, in Fig. 5c the middle domain of the left edge
has been given zero modes, creating a soft spot in an otherwise
stiff surface.

The domain structure can also be used to enlarge the crystal
basis of a cell and reduce its symmetry, similar to the ‘multiple
folding mechanisms’ considered previously in regular kagome
lattices35. Rather than creating large domains, one may twist each
row oppositely from its two neighbours, as shown in Fig. 5d. The
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particularly interesting consequence for having these repeating
domains is that it provides us with a method to shift a fraction of
the edge zero modes from edge to edge. In the example shown in
Fig. 4d, half of the edge floppy modes that were originally on the
left edge are shifted to the right edge, resulting in a lattice that is
‘half’ polarized by its original unit cell (though it still has integer
polarization as defined consistently with its now-larger unit cell).
In this way, by choosing a finite fraction of domains to twist in
one direction one may robustly decrease the edge stiffness by a
controlled fraction, rather than the exponential loss of edge
stiffness shown previously for fully uniform polarization. Thus,
the domain structure selected at the critical angle may be used to
‘continuously’ tune the edge stiffness. Twisting away from the
critical angle fixes the domain structure and hence provides
topological protection for this stiffness.

Furthermore, different domains can undergo additional
topological polarizations separately, as shown in Fig. 5, which
depicts a path of allowed pairs of domain-specific twisting angles
yt, yb as one or the other passes through topological transitions
(dashed lines). In this way, one may create topological

polarizations pointing towards domain walls, resulting in domain
walls that contain zero modes and hence may be used as channels
to convey motion across an otherwise rigid bulk, as shown in
Fig. 5e. Hence, we have shown a way to create in an initially
homogeneous lattice zero modes as desired of the sort first
identified by Kane and Lubensky11 in static interfaces between
dissimilar lattices. That work also identified structures known as
self stresses along such domain boundaries, which we may
similarly create as shown in Fig. 5(VI) by choosing a different
spatial order for the domains. It has been shown that such self
stresses are capable of bearing external stress independent of the
rest of the structure16. Hence, the chosen domain structure allows
the creation of channels across the bulk of the material that
convey both motion and stress. Other works have engineered zero
modes and self stresses via static defects15 rather than exploiting
nonlinear domain soft twistings of the materials.

This method of creating domains should be fully extendable to
analogous three-dimensional (3D) structures. A domain plane in
such a structure would require that that the amplitudes of and the
angle between the two primitive vectors in the plane be equal
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Figure 5 | Manipulating edge modes via domain structure. (a) Blue lines depict allowed configurations of a deformed kagome lattice, parametrized by the

twisting angles (yt, yb) of two types of domains. At critical (red) points the two domains may be twisted in opposite directions, and continuing this twisting

allows them to be separately polarized, passing through dashed lines. Green points denote the configurations shown in the remaining panels, wherein the

spatial extent of the lattice’s zero modes is shown in green. (b) Homogeneous, unpolarized lattice, with zero modes evenly distributed along the

boundaries. (c) Lattice in which the domain below the dashed line has polarization pointing to the right, so that there are no zero modes on the left edge in

the lower domain. In states such as (d), the domain structure may be chosen, so that only desired portions of the left edge (in this case, the middle of the

edge) have zero modes and are deformable, while the rest are rigid. In (e), alternating rows are twisted in opposite directions, as though each row is its own

micro-domain, such that half of the zero modes originating on the left wall have been shifted to the right. In (f), the configuration from (c) is twisted further,

so that the bottom edge undergoes a second topological transition (passing through the dashed line in the top diagram), shifting zero modes onto

the domain wall itself. In (g), the order of the domains is reversed as compared with (f), so that the domain wall acquires a line that can support stress

(a self stress) rather than a zero mode.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14201 ARTICLE

NATURE COMMUNICATIONS | 8:14201 | DOI: 10.1038/ncomms14201 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


across the domain. However, 3D Maxwell lattices have three
Guest modes, and hence these three requirements should result in
a unique path through configuration space for a given set of
domains. It has recently been shown that 3D Maxwell lattices can
be topologically polarized and have other nontrivial properties18.

Discussion
In summary, we have examined TTMMs, a broad class of systems
characterized by their uniform soft elastic deformations. As we
have shown, this soft deformation can be activated to reversibly
tune, without the application of significant stress, between states
with dramatically different edge stiffnesses, bulk speeds of sound
and location and spatial extent of floppy edge modes. All of these
properties are robust, with some protected by the system’s
topological state and others guaranteed by the form of the soft
elastic deformation. Domain structures may be implemented at
certain lattice configurations, allowing generalized nonlinear
modes and localized control of elastic properties through the
change of topological states in domains. These materials reveal a
deep connection that endures between structure and function
even as both are altered, and have broad potential applications.
Realization of the full phenomenology, including inserting
domain wall structures, requires flexible hinging motions capable
of undergoing large deformations without significant resistance
and fine manipulation of the edge or bulk.

In the Supplementary Video, we demonstrate a dramatic
change of the edge stiffness at the topological transition using a
macroscopic prototype built with K’nex, hard plastic parts joined
by literal hinges. More generally, because topological transitions
discussed here only require periodic arrangements of rigid
building blocks connected by relatively soft junctions (bending
stiffness at junctions can be treated as a perturbation, which
gradually increase elastic energy of the floppy surface modes),
TTMMs may be realized in a broad range of experimental
systems. For example, the lattices studied in this Article can be
produced via 3D printing or lithography16,38, in which hinges can
be approximated by thin joints between struts or polygons. The
TTMMs may also be self-assembled39,40 from polygons at the
microscale. If tip-to-tip binding can be realized between polygons
through some form of directional interactions such as capillary
force41,42, these lattices may also be self-assembled, and the
flexibility at the tip binding sites between the polygons would
exhibit very small bending stiffness.

Examples of future applications of TTMMs include materials
with tunable ability to conform to a surface, a quality that affects
adhesion and grip in systems as varied as rubber tires that can be
switched to perform on hard or soft surfaces43, gecko pads and
nanotechnology inspired thereby44, as well as car components
that are rigid in their nominal state as load-bearing elements but
become more compliant and energy-absorbing to reduce load
impulse to the passenger compartment.

Methods
Our primary methods were analytical theories aided by computer-aided symbolic
analytical and numerical computations in the program Mathematica. The
prototype was generated from assembling commercially available plastic parts,
known as K’Nex and other simple load-bearing elements (metal rods).

Data availability. Further details are available in the Supplementary Notes. The
datasets generated and protocols used and analysed during the current study are
available from the corresponding authors on reasonable request.
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