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The computational algorithms used in the design of artificial proteins have become
increasingly sophisticated in recent years, producing a series of remarkable successes.
The most dramatic of these is the de novo design of artificial enzymes. The majority of
these designs have reused naturally occurring protein structures as ‘scaffolds’ onto which
novel functionality can be grafted without having to redesign the backbone structure. The
incorporation of backbone flexibility into protein design is a much more computationally
challenging problem due to the greatly increased search space, but promises to remove
the limitations of reusing natural protein scaffolds. In this review, we outline the principles
of computational protein design methods and discuss recent efforts to consider back-
bone plasticity in the design process.

Introduction
A variety of different strategies have been developed to engineer novel globular proteins. These range
from directed evolution, simple residue patterning methods, to atomic-level computational protein
design. There has been less progress in the design of membrane proteins due to the difficulty in
experimental characterisation [1], so this review concentrates mainly on the design of globular
domains. Directed evolution methods are well established and have produced notable successes [2].
These methods generally require a starting protein sequence with some initial activity from which to
generate and select variants. Mutations that increase the desired activity may be very rare, requiring
high-throughput screening. The rational design of proteins using residue patterning has been particu-
larly successful in the design of de novo helical bundle proteins [3], self-assembling coiled-coil pep-
tides [4], and repeat proteins [5]. These proteins have been functionalised by intuitive manual design
to introduce chemical activity [6,7].
In contrast with the previously described methods, computational protein design algorithms con-

struct detailed full-atom models. The ability to place chemical moieties with atomic-level precision
enables applications not possible with other protein engineering methods. Initial computational
protein design work focussed on finding optimal sequences for fixed-backbone scaffolds taken from
natural proteins [8–10]. These fixed-backbone computational design algorithms have been extended to
introduce novel functionality, such as binding sites [11], libraries of fluorescent proteins [12], and de
novo designed enzymes that catalyse reactions not found in nature [13,14]. In parallel to these devel-
opments, entirely de novo proteins, consisting of mainly canonical secondary structure and minimal
loops, have been created by assembling backbone fragments from known protein structures, followed
by iterated sequence design using the fixed-backbone approximation and energy minimisation
[15–17]. However, in general, the rules, governing the designability of a given arbitrary backbone con-
formation, are not well understood. An outline of a typical computational protein design process is
shown in Figure 1.
Given the rough landscape of full-atom potential energy functions, sequence design on a fixed-

backbone artificially restricts the possible amino acid residues capable of being accommodated at a
given position. Even small changes in backbone conformation may permit residues that were
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previously sterically hindered, and therefore improve the diversity in designed sequences [18]. The incorpor-
ation of larger scale backbone plasticity in computational designs will also allow further optimisation of engi-
neered proteins [19], and the greater freedom will allow the implementation of more complex functionalities.
For these reasons, flexible backbone protein design is an increasingly important area of research.

Computational protein design with the fixed-backbone
approximation: the inverse folding problem
Computational protein design can be considered to be composed of two linked problems. The first problem is
selecting or generating a plausible and designable backbone conformation. The second problem is finding
sequences capable of specifically stabilising that backbone structure, also known as the inverse folding problem.
The latter of these two problems will be discussed in this section.
Most modern methods use full-atom models of protein structure and molecular mechanics potential energy

functions, consisting of a sum of covalent and non-covalent terms. These potential energy functions are often
derived from force-fields developed for molecular dynamics simulations and may be supplemented with
additional statistically derived terms [20]. Given a fixed-backbone, only side-chain identities and conformations
are allowed to vary. Discrete libraries of side-chain conformations, known as rotamers [21], are commonly used
to simplify the sampling and computation of potential energies. While the potential energy functions used in
protein design are far from perfect, it has been observed that structures close to the native state almost always
have the lowest potential energies, and it appears that conformational sampling is the bigger problem [22,23].
Stable proteins have a large energy gap between their native structure and all other possible structures. To

rigorously determine whether a particular sequence specifically stabilises a given conformational state, it is
necessary to evaluate the potential energy of that sequence over all possible (backbone and side-chain) confor-
mations to calculate the partition function (i.e. the normalising constant required to ensure a probability distri-
bution sums to 1). It is, then, possible to calculate the probability of any particular conformational state being
occupied using the Boltzmann distribution (eqn 1, where Pi is the probability of the system being in state i, Ei
is the energy of state i, k is the Boltzmann constant, T is the temperature, and the denominator is the partition

Figure 1. A typical computational protein design workflow.

Initial backbone structures can be either generated de novo or taken from solved protein structures. Sequences that stabilise

the designed backbone structure are then computationally designed, and the backbone may be permitted to move as part of

an iterative design cycle. Finally, promising designs are selected for experimental characterisation.
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function, a sum over all states). Optimising this probability by searching sequence space would then solve the
protein design problem for a given backbone conformation. Unfortunately, this is computationally intractable,
so, in practice, a variety of approximations have been used. Most common methods approach this problem by
optimising a potential energy function by trialling different side-chain identities and rotamers without explicitly
considering alternative backbone conformational states. It has been proposed that it is less important to con-
sider alternative conformations in three dimensions as most low-energy decoys will have dissimilar structures,
making mutations that stabilise the native state unlikely to stabilise the other conformations [24]. Side-chain
identity and rotamer search may be conducted by deterministic methods, such as dead-end elimination [25,26],
or by stochastic methods [27–29].

Pi ¼ e(�Ei)=kT

PN
j¼1 e

(�Ej)=kT
(1)

Previously, it was found that proteins designed using hydrophobic patterning methods, did not seem to fold
into well-defined native states and appeared to be more similar to molten globules. For this reason, early com-
putational work concentrated on improving the specific packing in the hydrophobic cores of proteins [8]. This
was followed by the ground-breaking automated sequence redesign of an entire small protein [9]. A larger scale
test showed that this approach could successfully produce well-folded proteins by redesigning a range of differ-
ent proteins [10]; however, it was notable that the redesigned proteins composed primarily of β-sheets appeared
to be aggregated or unfolded.
The fixed-backbone assumption has proved to be sufficient to successfully create proteins with novel func-

tionality without considering backbone flexibility. If a constellation of side-chain chemical groups can be
defined that are predicted to carry out a given function (e.g. a transition state model), it is then possible to
search existing protein structures for backbone positions capable of hosting this geometric arrangement, while
taking into account side-chain degrees of freedom and steric clashes. Various algorithms have been developed
to accomplish this [30,31]. The RosettaMatch algorithm uses an ‘outside-in’ approach by constructing the tran-
sition state model at the ends of each catalytic side-chain rotamer at all possible positions in the scaffold and
recording the six-dimensional position of the transition state model in a hash table. If all catalytic geometric
constraints can be satisfied simultaneously with a given selection of residue positions, this would result in the
transition state model being reconstructed in the same position from all catalytic side-chain residues. Hits can
be rapidly determined by scanning the hash table [31]. This algorithm enables the search of a large database of
potential scaffolds, and its utility was dramatically demonstrated by the successful design of de novo enzymes
using theoretic transition state models [13,14].

Backbone sampling methods in protein design
Despite the achievements of fixed-backbone design, it is clear that this approximation is not sufficient to accur-
ately sample sequence space and, more importantly, greatly limits the opportunities to optimise functional
interactions. Backbone motion is also known to be functionally important in many natural proteins in molecu-
lar recognition [32,33] and enzymes [34].
The active site search algorithms described in the previous section are only able to search putative scaffolds

for three to four catalytic residue geometries which are probably not enough to recapitulate extraordinary cata-
lytic activities of natural enzymes [35]. The ability to redesign backbone structures around the catalytic site is
likely to offer opportunities to optimise enzymes in ways that are not available to fixed-backbone approaches.
In a previous paper, Foldit players were able to redesign a 24-residue backbone section and increase the activity
of an artificially designed Diels–Alderase enzyme >18-fold [19].
The consideration of backbone plasticity in protein design requires the sampling of both backbone conform-

ational space and side-chain identities/rotamers, and this enormously expands the search space. Additionally,
unlike side-chains, backbone conformations are not amenable to discretisation. For these reasons, initial work
on flexible backbone design was based on parameterised coiled-coil backbones [36], rigid body movements of
secondary structural elements [37], and the introduction of small random backbone dihedral angle perturba-
tions during the design process [38].
In parallel to the advances in computational protein design, a number of groups working in the related field

of protein structure prediction found that short backbone fragments taken from previously solved protein
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structures could be used to explore backbone conformational space in an efficient way [39]. The backbone frag-
ments are defined in terms of internal dihedral co-ordinates then as part of a Monte Carlo search procedure,
random sections of the backbone are replaced with dihedral angles from the fragment in process called ‘frag-
ment insertion.’
In an extraordinary achievement, this fragment insertion process was used to assemble an entirely de novo

backbone fold not observed in nature with a computationally design sequence. A high-resolution crystal struc-
ture confirmed that the protein did indeed fold into the designed structure with atom-level precision [15]. This
approach was subsequently generalised and extended to other folds using emergent rules [16,17]. These de
novo folds consisted of idealised secondary structural elements linked with loops of minimal length. The use of
existing backbone fragments in this way ensures that the local structural features of the designed protein repli-
cate those observed in real proteins and increases the chance that the new backbone structures are designable.
Recently, these computational design methods have been successfully applied to the design of more complex
artificial coiled-coil proteins [40–43].
Fragment insertion is a non-local move as replacing dihedral angles in a particular backbone segment results

in a move that propagates down the entire polypeptide chain. This is an inherently highly disruptive move,
resulting in low acceptance rates in Monte Carlo simulations. However, fragment insertion can be turned into a
local move by combining it with methods that can close chain breaks. A fragment is inserted midway along the
chain, and a break is introduced at the N- or C-terminal end of the insertion so that the rest of the polypeptide
chain is not moved. Adjustments then need to be made to the dihedral angles in the fragment such that the
chain recloses. There are various algorithms that solve this loop closure problem, many of which are related to
methods used to control robotic arms. These include cyclic co-ordinate descent (CCD), where each backbone
dihedral angle is optimised in turn until the correct geometry at the break is restored [44], kinematic closure,
where all dihedral angles in the loop may be freely varied except six dihedrals which are solved for loop closure
using polynomial resultants [45], and stochastic closure methods [46].
Fragment-based approaches have been used to computationally design loop structures on natural protein

scaffolds. By selecting backbone fragments from the PDB with endpoints that superimpose with the anchor
residues in the scaffold, Hu et al. were able to graft 10-residue loops on to the protein tenascin. The inserted
loops ranged from 0.9 to 1.6 Å backbone RMSD from the wild-type loop. The loop endpoints were close
enough to the anchor residues that the loops could be closed by gradient minimisation. Two loops were solved
using X-ray crystallography, and one was found to match the designed loop conformation with sub-Angstrom
RMSD [47]. CCD has been used together with fragment insertion to design a de novo loop that alters the sub-
strate specificity of an enzyme [48]. In this work, short backbone fragments were inserted before and after a
fixed anchor residue predicted to alter substrate binding followed by CCD to close the chain breaks. This
approach produced a design with a four-residue sequence change which was confirmed to be in the correct
conformation by X-ray crystallography.
While larger scale backbone motions can be modelled using fragment insertion, more subtle backbone move-

ments are also very important in protein modelling. Natural proteins can be quite tolerant to mutations as the
backbone can adjust to accommodate side-chains that would not be permitted using the fixed-backbone
approximation. Several methods have been developed to model small backbone perturbations. In many protein
design applications, cycles of sequence design followed by potential energy minimisation of the whole structure
(including the backbone) are carried out to permit some degree of backbone flexibility. Other methods include
extensions to the dead-end elimination algorithm to include backbone flexibility [49]. While these methods
result in designs with lower potential energies, they do not always recapitulate the natural sequence variation
observed in these proteins. A novel local backbone move called ‘backrub’ was developed after inspecting very
high-resolution crystal structures for alternative backbone conformations [50]. This move rotates the backbone
around the axis connecting Cαi−1 and Cαi+1, followed by compensating rotations of the Cαi−1 to Cαi and the
Cαi to Cαi+1 peptide bonds. This results in a shift in the direction of the central side-chain but with minimal
changes to backbone hydrogen-bonding geometry. This method was generalised and implemented in the
Rosetta software package and, when coupled to sequence design, was shown to significantly improve the recap-
itulation of experimentally observed sequence variation in protein–protein [51] and protein–ligand [52] inter-
faces compared with fixed-backbone design methods.
In the past few years, we have developed new algorithms and software for the fragment-free sampling of

backbone loop conformations using a coarse-grained model [53]. This method uses a coarse-grained potential
energy function [54] to rapidly sample plausible backbone conformations at the carbon-α level, then accurately
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reconstructs the full backbone model using a structural alphabet derived using Gaussian mixture models [55].
The potential energy function consists of a pseudo hydrogen-bonding term, a soft steric repulsive term, a
pseudo Cα-Cα bond term, and local structural terms. The local terms were derived using a structural alphabet
and include a pseudo Cα-Cα-Cα bond angle term, a pseudo Cα-Cα-Cα-Cα dihedral angle term, and reference
terms to ensure that the equilibrium distributions of each structural alphabet letter reproduce those observed in
a high-resolution training set. An ensemble of loop conformations can be sampled by running successive simu-
lated annealing Monte Carlo trajectories using only local moves that do not propagate down the rest of the
chain (Figure 2). When side-chains were added, and the structure was energy gradient minimised using the
Rosetta software package, this approach produced results that were equivalent to fragment insertion methods
[53]. We propose that the ability to sample directly using coarse-grained potential energy functions enables the
efficient incorporation of functional geometric restraints and the use of more sophisticated sampling methods
that are more difficult to achieve with fragment insertion methods. Recently, we have successfully applied this
fragment-free method to the design of de novo backbone protein design [56].

Conclusion
In the present paper, we have described the methodological advances in computational protein design in the
past few decades. Initial approaches to computational design considered only fixed-backbone structures. It has
become clear that the incorporation of backbone flexibility is essential to fully explore sequence space and to
enable more complex designs. This backbone flexibility can range from small-scale motions, that permit slightly
different side-chain orientations, to the large-scale redesign of complete sections of the protein backbone. The
rules governing whether a given arbitrary backbone conformation is designable are not well understood. In par-
ticular, the computational design of de novo backbone loops has proved to be particularly challenging. There
has been more success in the design of de novo folds composed of secondary structural elements and minimal
loops as there are well-understood rules governing the packing of these elements. To date, the vast majority of
successful computationally designed functional proteins have relied on fixed-backbone design methods. A
better understanding of backbone designability and new design algorithms will enable the complete remodel-
ling of large sections of the protein scaffold resulting in improved enzymes.

Figure 2. Sampling backbone loop conformations using a coarse-grained model.

Conformational space can be rapidly sampled using a reduced representation before being rebuilt into a full-atom model as

part of a hierarchical design strategy. The grey atoms are the fixed anchor atoms at the N- and C-terminal ends of the loop

being sampled, and the red/blue chains are alternative loop structures.
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Abbreviation
CCD, cyclic co-ordinate descent.
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