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Abstract
Post-translational modification (PTM) of proteins by ubiquitination is an essential cellular regulatory process.
Such regulation drives the cell cycle and cell division, signalling and secretory pathways, DNA replication and
repair processes and protein quality control and degradation pathways. A huge range of ubiquitin signals
can be generated depending on the specificity and catalytic activity of the enzymes required for attachment
of ubiquitin to a given target. As a consequence of its importance to eukaryotic life, dysfunction in the
ubiquitin system leads to many disease states, including cancers and neurodegeneration. This review takes
a retrospective look at our progress in understanding the molecular mechanisms that govern the specificity
of ubiquitin conjugation.

Introduction
Ubiquitination is a reversible post-translational modification
(PTM) that affects the fate, function or localization of
the modified protein. The conjugation of the 76-amino
acid ubiquitin polypeptide requires sequential action of
activating enzymes (E1s), conjugating enzymes (E2s) and
ligase enzymes (E3s) resulting in an isopeptide link between
the C-terminus of ubiquitin and a specific lysine on the
target protein [1,2]. The attached molecule can support
further building of chains from any of the seven lysines
present on the surface of ubiquitin or its N-terminus, thus
providing substantial signal diversity. Eukaryotic cells exploit
different ubiquitin signals to modulate crucial homoeostatic
processes. For example, at the onset of anaphase, Lys48-linked
polyubiquitin signals on Securin triggers its proteolysis to
induce chromosome segregation events [3]. In contrast, when
damaged DNA stalls replication, a monoubiquitin signal
on Lys164 of the proliferating cell nuclear antigen (PCNA)
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prompts recruitment of specialized polymerases that allow
the replication machinery to bypass the damage [4,5]. In
addition to the signal properties, the addition of just a single
ubiquitin molecule alters the physicochemical features of the
substrate surface [6].

Ubiquitin itself harbours different functional
surfaces, for example the Ile44-hydrophobic patch
(Leu8/Ile44/His68/Val70), which supports crucial non-
covalent interactions during ubiquitination and signal
recognition [7]. In polyubiquitin chains, the repetition
of these surfaces results in localized signal amplification.
Seven distinct ubiquitin chain types have been structurally
characterized revealing remarkable topological differences
and dynamic polymer conformations [8–17]. The
distinct surfaces of ubiquitin are ‘read’ by an array of
ubiquitin-binding domains (UBDs, ∼20 types) encoded
within hundreds of proteins [18]. The readers facilitate
signal propagation and formation of protein interaction
networks. The ubiquitin signals can be edited or erased by
deubiquitylating enzymes (DUBs) thus regulating the nature
and duration of the signal [18]. These enzymes cleave the
isopeptide bond at the end of a chain (exopeptidase activity)
or within the polymer (endopeptidase activity). DUB activity
screens have recently emerged as useful tools to examine
native ubiquitin linkages associated with proteins [19,20].
There is a large field of study exploring how ubiquitin signals
are read [21] and edited [22]. This review will instead focus
on mechanisms underlying the assembly of ubiquitin signals.

In humans, there are two E1s, 35 E2s and hundreds of
E3s responsible for ubiquitination (Figure 1A). The E1s
activate the C-terminus of ubiquitin and form an E1–
ubiquitin thioester intermediate. The E2s collect the activated
ubiquitin via a transthiolation reaction with the E1–ubiquitin
thioester resulting in an E2–ubiquitin thioester intermediate.
E3s either scaffold both the E2–ubiquitin thioester and the
substrate to affect ubiquitination or form an E3–ubiquitin
thioester intermediate prior to substrate conjugation. Recent
advances in proteomics have generated an in vivo inventory
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Figure 1 UBC pathway

(A) A schematic of the ubiquitin (Ub) pathway and the members involved

at each step; activation (E1), conjugation (E2) and ligation (E3). Ubiquitin

activation is catalysed by the E1 in an energy-consuming step. The

ubiquitin thioester conjugate is then passed onto the catalytic cysteine

site on the E2 and finally ligated on to a target lysine of a substrate, an

event mediated by E3 ligases. Also indicated is the numerical hierarchy

of the ubiquitin pathway in humans. (B) Ubiquitin E2s are classified into

four classes based on the N- or C- terminal extensions of the core UBC

domain. (C) Three classes of E3 ubiquitin ligases; RINGs, HECTs and RBRs

are classified based on their enzymatic mechanisms, with HECT and RBR

ligase possessing a catalytic cysteine for Ub–E3 intermediate formation.
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of the ubiquitin system, thus providing a systems-level
understanding of the pathway [23]. Similar PTMs can also
occur through eight distinct ubiquitin-like proteins (Ubls),
including the small ubiquitin-like modifier (SUMO) and
the neural precursor cell expressed developmentally down-
regulated protein 8 (NEDD8). Each of the Ubls has a similar,
but smaller, cohort of proteins that facilitate the modification.
The final steps of the cascade, i.e. cross-talk between E2 and

E3 enzymes, decide the nature and target of the modification.
The substantial number of possible combinations that
can occur between ubiquitin E2 and E3 ligases supports
a wide repertoire of ubiquitin signals across numerous
substrates.

The activation of the C-terminus of ubiquitin by the
E1 is the only energy-consuming step of the pathway.
Structure-function studies on ubiquitin/Ubl E1s reveal
multiple mechanistic details of the activation process. Briefly,
the E1s have a multidomain architecture; the adenylation
domain (binds Mg2 + /ATP and the ubiquitin/Ubl), catalytic
cysteine domain and the ubiquitin-fold domain (UFD,
E2 selection) [24–27]. A long flexible linker (‘cross-over
loop’) that connects the active adenylation domain with the
catalytic cysteine domain bears crucial residues involved in
ubiquitin/Ubl discrimination by the E1s [28]. Furthermore, a
β-sheet on the UFD supports interactions with the E2 [25,29].
However, this surface is blocked until the formation of a
ternary E1 complex (loading of both adenylate and thioester
intermediates of ubiquitin/Ubl) that is ready to offload
the ubiquitin/Ubl [30,31]. Conformational rearrangement
in the E1 then facilitates the E2 catalytic cysteine to attack
the E1 ubiquitin/Ubl thioester resulting in E2 loading (E2–
ubiquitin/Ubl) [32,33]. Ubiquitin can be activated by two
distinct E1s, ubiquitin activating enzymes (UBA) 1 and 6.
Whereas UBA1 can load majority of the ubiquitin E2s, UBA6
functions with smaller set and is the sole E1 for the E2 enzyme
Ube2Z [34–36].

The E2 conjugating enzymes share a core ubiquitin
conjugation (UBC) fold, along with possible N-terminal
and C-terminal extensions (Figure 1B) [37,38]. The UBC
domain comprises an N-terminal helix, followed by a four-
stranded meander that is surrounded by three α-helices.
Tethered to the β-meander is a ‘flap-like’ β-structure that
bears the catalytic cysteine, supported by a conserved HPN
motif (histidine, proline, asparagine). In the ubiquitin/Ubl
loaded E2 intermediate the ubiquitin/Ubl tail packs into the
β-flap and the HPN motif asparagine supports ubiquitin
conjugation of the target lysine [39–42]. In addition, residues
surrounding the catalytic cysteine influence reactivity of
ubiquitin loaded E2 with thiol or amine acceptors [43].
Beyond the active site, the N-terminal surface on the
UBC fold (helix1, Loops 1 and 2) scaffolds both E1 and
E3 interactions. This ensures E1–E2 and E2–E3 binding
events are mutually exclusive and regulate the flow of the
pathway [29,44–46]. The interactions between E2 and E3
are usually weak and transient in nature. Structures of E2–
E3 complexes reveal how this E2 surface affords plasticity
[47–49] as well as specificity [50] in its E3 interactions.
A sub-set of E2s have intrinsic mechanisms for building
linkage specific polyubiquitin chains (Lys11, Lys48 and
Lys63 linked) using distinct non-covalent interactions with
ubiquitin [51–54]. A further E2 surface is the ‘backside’
on the β-meander opposite the active site. On certain
E2s, this surface supports non-covalent interactions with
ubiquitin/Ubls thereby enhancing chain formation via E3-
independent [55,56] and E3-dependent mechanisms [57].
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Finally, there are three classes of E3 ubiquitin ligases;
homologous to the E6–AP C-terminus (HECTs) [58], really
interesting new genes (RINGs) [59] and RBRs [60], classified
based on their enzymatic mechanisms. The RING domain
ligases, the largest of E3 ligase family (∼600 members),
facilitate direct transfer of ubiquitin from the E2 to the
substrate. They contain a RING domain (Figure 1C, left)
that co-ordinates two zinc ions in a cross-brace topology
[61–63]. The U-box domain, a RING variant, also adopts
a cross-brace topology stabilized instead by a hydrogen-
bonding network [64,65]. In RING domains, the loops
bearing the first and last pair of zinc-binding sites together
with a central helix create an E2 binding cleft on the
RING surface [45]. Structures of E2–E3 complexes reveal
conserved hydrophobic residues on both the RING and
E2 surface participate at the interface [66]. Furthermore,
RING-type E3s rely on the associated E2 to generate
different ubiquitin signals. The transient nature of E3–E2
interactions allow for E2 switching between initial ubiquitin
conjugation and subsequent chain elongation events [67–69].
In addition, RING domain E3s can function as monomers
(e.g. FANCL [70], Cbls [71], RNF168 [72]), homodimers
(e.g. RNF4 [73], cIAPs [74], CHIP [49]) or heterodimers (e.g.
BRCA1/BARD1 [75], RING1b/Bmi1 [76], MDM2/MDMX
[77]). Substrate recognition is varied among the E3s. They
can occur directly through the RING and E2 domains as seen
in the structure of the PCGF4/RING1B–UbcH5c complex
bound to the nucleosome [78] or through flanking regions
such as the N-terminal tyrosine kinase-binding domain of
c-Cbl RING E3 ligases [71]. Recent structures of RING
domain E3s in complex with ubiquitin loaded E2s (E2-
Ub) [79–82] demonstrate how the E3 induces a ‘closed’ or
active E2-Ub conformation, stabilized by additional E2–
ubiquitin (Ile44 patch) and RING–ubiquitin (Ile36 path)
contacts, thus priming the complex for ubiquitin conjugation.
Additional non-RING based E2 interaction elements are
found in some RING ligases. The RING E3s gp78 and Cue1p
both contain distal helical domains, Ube2g2-binding region
(G2BR) and Ubc7p-binding region (UB7R) respectively,
which bind the E2s ‘backside’ surface. The backside binding
of the helical domains have different allosteric effects at their
respective E2 active sites [83,84] nevertheless, both enhance
RING affinity and facilitate processive ubiquitination
events [84,85].

In addition, RING domains also appear in multi-subunit
protein complexes such as the Cullin RING ligase (CRL)
family. The CRLs are a modular complex comprising an
elongated cullin scaffold protein (six types) interacting with
monomeric RINGs (Rbx1/Roc1/Hrt1) at the C-terminus
and a wide range of substrate recognition modules (cullin
adaptor proteins and substrate receptors) at the N-terminus
[86]. CRLs adapt numerous substrate recognition modules to
recognize specific target proteins thus resulting in over 500
distinct E3 ligase complexes. As the substrate and E2-binding
sites reside on opposite ends of a CRL complex [87], a site-
specific neddylation event induces a conformational release of
the RING domain from Cullin’s C-terminal domain, thereby

activating the E3 for substrate ubiquitination [88,89]. The
assembly and regulation of CRLs are reviewed elsewhere [90].
The anaphase promoting complex or cyclosome (APC/C) is
another large multi-subunit cullin-RING ligase that contains
13 core subunits including a cullin-like scaffold (Apc2), a
small RING protein (Apc11) and two co-activator subunits,
Cdc20 and Cdh1, which recognize distinct substrates [91,92].
The CRLs and APC/C are active during different phases
of the cell cycle and regulate critical cellular events through
degradative ubiquitination. These functions are discussed in
greater detail in other reviews [92,93].

The HECT domain ligase family (28 members) have a
C-terminal catalytic HECT domain that forms a catalytic
intermediate with ubiquitin prior to substrate modification
[58,94]. The N-terminal extensions of the HECT domain
carry out substrate recognition functions. The catalytic
HECT domain has two structural ‘lobes’, the E2 binding
N-lobe and catalytic cysteine bearing C-lobe, tethered by
a flexible linker (Figure 1C, middle) [44,58]. Structures of
the NEDD4-family HECT domains reveal how dramatic
conformational changes orient the C-lobe towards the E2
docking site during ubiquitin loading and subsequently rotate
the C-lobe–ubiquitin intermediate towards the substrate for
ubiquitin conjugation events [95–97]. Furthermore, most
HECT E3s have an intrinsic capacity to build ubiquitin
chains that is independent of the E2 pairing [98,99]. Auto-
inhibition is a notable feature of HECT E3s, mediated via
intramolecular interactions between domains/motifs located
on the N-terminal extensions and the HECT domain [100–
103].

Finally, the RBR family (13 members) features a RING
domain and also bears a catalytic cysteine that forms a
thioester–ubiquitin intermediate (Figure 1C, right) [43].
The RBRs function through a unique two-step RING–
HECT hybrid mechanism whereby interaction between a
RING domain and the ubiquitin loaded E2 facilitates the
ubiquitin loading of a catalytic domain. Thus, a HECT-
like ubiquitin–thioester intermediate occurs prior to the
substrate conjugation event. Notably, the interaction between
the RING domain and the E2–ubiquitin thioester does not
directly support substrate ubiquitin conjugation [104,105].
An interesting example of RBRs is the linear ubiquitin
chain assembly complex (LUBAC) consisting of the haem-
oxidized IRP2 ubiquitin ligase-1 (HOIL-1) isoform HOIL-
1L, HOIL-1L interacting protein (HOIP) and SHARPIN
[106–109]. The LUBAC complex is only E3 ligase that can
synthesize linear polyubiquitin chains with a range of E2s.
Interestingly, the catalytic cysteine domain of HOIP has an
additional zinc finger that cooperates with a linear ubiquitin
chain-determining domain (LDD) to position the acceptor
ubiquitin during linear ubiquitin chain formation [110].
Structural and enzymatic features of RBRs, in particular
Parkin, will be discussed in more detail later in this review.

Hundreds of E3 ligases confer specificity of ubiquitination
and play crucial roles in almost every cellular process.
Unsurprisingly, deregulation of these enzymes is linked
to several human diseases. Mutations in Mdm2 [111],
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Von Hippel–Lindau (VHL) [112], BRCA1 [113], TRIMs
[114] and other E3s have been linked to multiple cancers.
Further, deregulation of E3 ligases such as Parkin and
E6–AP are linked to Parkinson’s disease (PD) [115] and
Angelman syndrome [116] respectively. Understanding the
molecular mechanisms of ubiquitin signal assembly requires
a biochemical and structural understanding of the event. We
are focused on understanding specificity in the ubiquitin
system, at every level. This includes specificity of the pathway
components, specificity for substrates and target lysines and
type of modification. To address these questions we use model
systems that represent opposite ends of the spectrum of
specificity. One system, the Fanconi Anaemia (FA) DNA
repair pathway, has one modification, one target lysine,
one E3–E2 pair. A second system has a broad spectrum of
targets, modifications and components. Importantly, both
systems have broad significance in fundamental biology and
disease settings and the remainder of this review describes
our contributions to answering these questions.

FANCL: a selective and specific E3 ligase
mutated in Fanconi anemia
The multi-step process of DNA damage repair relies on
distinct ubiquitin signals to co-ordinate the damage response.
Several RING E3 ligases play crucial roles in these pathways
[117]. DNA inter-strand cross-link (ICL) repair is one such
example where a specific monoubiquitin signal is required
for the recruitment of repair factors [118]. ICLs are lethal
lesions that block strand separation during DNA replication
and transcription. The damage can be induced by various
environmental or chemical mutagens and the toxicity of
intercalating agents is widely exploited during chemotherapy
[119]. The FA pathway is required for ICL repair [120].
Mutations in this pathway give rise to FA, a devastating
childhood genome instability disorder, typified by bone
marrow failure and a high predisposition to cancers [121,122].
FA patient cells are highly susceptible to ICL mutagens and
display higher levels of chromosomal abnormalities [123].

Eighteen proteins (FANC-A–C, D1, D2, E to G, I,
J, L to Q, S and T) along with several FA-associated
proteins (FAAPs) participate in the FA pathway. Mutations
in any of the FANC genes are linked to a failure in
ICL repair [124–127]. A critical pathway signal is the site-
specific monoubiquitination of FANCD2 and to a lesser
extent a structurally homologous protein FANCI [128–131].
A large, nuclear, multi-protein core complex regulates the
monoubiquitination event [132]. The core complex comprises
eight FANC proteins (FANC-A, B, C, E, F, G, L and M)
and five FAAPs (FAAPs 10, 16, 20, 24 and 100). FANCL
has a RING domain and is the E3 ligase subunit of the FA
core complex that functions with Ube2T, the E2 for the
FA pathway [133,134]. Mutations in Ube2T have recently
been linked to a FA phenotype, which is now denoted as
FANCT [125–127]. The exquisite specificity of this ligase
ensures the strict monoubiquitination of a single lysine

on two related substrates thus making it an attractive
model system to understand the underlying mechanisms of
ubiquitination (Figure 2A).

FANCL was initially predicted to contain three WD
(tryptophan-aspartate dipeptide) 40 repeats and a C-
terminal plant homoeodomain (PHD) zinc-finger [135,136].
A FANCL fragment containing the PHD zinc-finger was
capable of in vitro auto-ubiquitination. However, PHD
zinc-fingers are not associated with ubiquitin E3 ligase
activity [137] suggesting that FANCL may not harbour a
PHD. Further, the loss of FANCD2 monoubiquitination
in FANCL-null cells can be rescued by ectopic expression
of wild-type FANCL, but not by zinc-finger mutants,
confirming its E3 ligase activity [136]. Studies also put
forth a role for FANCL WD40 repeats in mediating
core complex interactions, whereas FANCE was linked
to substrate recognition [138,139]. These observations
together suggest a modular architecture for the FA core
complex, similar to multi-subunit E3 ligase complexes [66],
where substrate binding and ubiquitin ligase activity are
undertaken by different subunits. However, invertebrates
(fly, worms and slime moulds) have an apparently simpler
system comprising FANCM, FANCL and FANCD2
and FANCI [140–143]. This suggests, at least in early
evolution, FANCL is sufficient for both substrate recognition
and the ubiquitination events. Furthermore, biochemical
reconstitution of FANCD2 monoubiquitination using only
recombinant chicken FANCL and Ube2T indicates that
the rest of the core complex is not needed in vitro
[144]. The same study also identified a RWD fold [145] in
the predicted WD40 repeat region. This suggests FANCL
has a different molecular architecture to that originally
predicted.

In order to understand how FANCL functions we set out
to structurally characterize the E3 ligase. Numerous attempts
to express the full-length human FANCL using various
solubility tags and expression systems yielded little success.
Subsequently, we shifted our efforts to FANCL homologues
from invertebrates that appear to have the minimal FA
pathway components. We successfully expressed and purified
Drosophila melanogaster (Dm) FANCL, which shares ∼20 %
sequence identities with human FANCL. This proved crucial
to our success as we could purify DmFANCL and obtain
diffraction quality crystals. The resulting structure, refined
to 3.2 Å (1 Å = 0.1 nm; PDB 3K1L), revealed a remarkably
different molecular architecture of FANCL to that predicted.
FANCL comprises three domains (Figure 2B), an N-terminal
E2-like fold (ELF), a novel double-RWD (DRWD) and
a C-terminal RING domain [70]. Given the unexpected
architecture, our first question was which domain, if any,
supports substrate binding. In vitro pull-down analyses
show that FANCL fragments bearing the DRWD–RING
are necessary and sufficient to establish the binding of
substrates FANCD2 and FANCI. The FANCL structure is
extended, in particular, the ELF domain makes no contacts
with the rest of the protein. The ELF domain bears the
β-meander found in all E2 enzymes. However, instead of
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Figure 2 Specificity of the E3 ligase FANCL

(A) Schematic of the FANCL and Ube2T-mediated specific substrate monoubiquitination. (B) Ribbon diagram depicting the

FANCL structure (PDB 3K1L). The ELF, DRWD and RING domains are coloured light brown, green/lime and blue respectively.

Zinc atoms are represented as grey spheres. (C) Surface representation of the protein interaction surfaces on FANCL. The

binding patch for ubiquitin (orange) and substrate (red) reside on the ELF and DRWD domains respectively (left). The E2

binding surface (light blue) is on the RING domain (right).
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a catalytic cysteine β-flap, it has a fifth strand that packs
against the meander [70]. Interestingly, we find an exposed
surface of the ELF domain to interact non-covalently with
the Ile44-hydrophobic patch of ubiquitin [146]. Several E2s
also support non-covalent interactions with ubiquitin/Ubls
[55,147,148]; however, the ELF surface involved (Figure 2C)
is distinct from the ‘backside’ surface used by E2s. The ELF
residues at this region share weak sequence homology across
FANCL species, yet retain ubiquitin-binding, indicating a
conserved functional role. In cells, mutation of this ubiquitin
binding patch of FANCL impairs the monoubiquitination
of both FANCD2 and FANCI suggesting another layer of
regulation in the FA pathway [146].

The DRWD domain was a surprise on several levels. First,
it is made up of RWD repeats (found in three major families:
RING-containing proteins, WD-repeat-containing proteins
and yeast DExD-like helicases [145]) and not of WD40 blades.

Two RWD folds are linked via a long kinked helix to form the
DRWD domain. This domain has a compact structure, with
a continuous hydrophobic core and neither lobe could be
expressed separately. Furthermore, a DALI search with the
DRWD domain yielded no structural homologues suggesting
a novel domain [70]. Second, the DRWD domain is required
for substrate recognition. We also determined the structure
of human DRWD, resolved to 2.0 Å (PDB 3ZQS) [149]. It
shares the bilobal architecture as the DmDRWD domain
but with a β-element in the N-terminal lobe, helical in
DmDRWD, and hence more similar to a UBC fold. Analysis
of solvent-exposed residues of human DWRD reveals several
hydrophobic patches conserved between the human and
fly proteins [132]. Mutation of these patches reveals that
lobe2 is the substrate-binding domain [132] and induces
substrate monoubiquitination [150] (Figure 2C). Notably,
the isolated DRWD domain is sufficient to interact with
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substrates FANCD2 and FANCI. The fact that mutations
of surface exposed residues affect FANCL interactions with
both FANCD2 and FANCI suggests that substrate specificity
is driven by FANCL [149].

Structural and biophysical studies of other protein
complexes have revealed how different RWD domain
arrangements (homo/hetero dimers or as tandem repeats)
are integral building blocks of multi-protein assemblies.
Subsequent to our discovery of the DRWD domain, the
same double-RWD architecture has been observed in multi-
subunit protein complexes at both the inner and the outer
kinetochore [151–153]. Within the ubiquitin conjugation
pathway, single RWD domains have been linked to enhancing
E2 activity [154,155] and for positioning the E3 ligase Listerin
at the 60S ribosome for degradative ubiquitination of stalled
translation products [156]. Curiously, RWD domains are
predicted in several E3 ligase proteins, however we currently
have limited appreciation for their roles in regulating
ubiquitination.

The inherent substrate specificity exhibited by FANCL
helps explain how the E2–E3 pair of Ube2T–FANCL
mediates FANCD2 monoubiquitination in absence of the FA
core complex [144]. Interestingly, analytical size-exclusion
chromatography reveals that Ube2T forms a stable complex
with the isolated FANCL RING domain [149]. Similar
experiments between the RING domain and several different
E2s (Ube2-B, D3, H, K, L3, L6 and R1) show no
complex formation [50]. Furthermore, the FANCL RING
can selectively complex with Ube2T from a pool of E2s.
Interactions between RINGs and E2s are generally of
low affinity (high micromolar range) and typically involve
conserved, hydrophobic side chains (for example, Ile309 and
Trp341 on FANCL RING domain and Phe63 on Ube2T) [66].
Mutation of the conserved hydrophobic E2 residue (Phe63)
results in a significant binding defect (>10 fold) in RING–
Ube2T interaction [149]. Indeed, only a FANCL–Ube2t pair
results in the site-specific monoubiquitination of FANCD2
and the pair form a tighter complex than other E3–E2 pairs
[50].

In order to understand the molecular basis of the apparent
E3–E2 specificity, we set out to structurally characterize the
FANCL–Ube2T complex. Our initial attempts to crystallize
the RING–Ube2T complex resulted in poorly diffracting
(∼11 Å) crystals. Despite numerous efforts we could not
improve the crystals. As an alternative strategy, we expressed
and purified a RING–Ube2T fusion protein bearing a short
and flexible linker sequence between the E3 and E2 domains.
The E3–E2 chimera successfully crystallized and diffracted
to 2.4 Å (PDB 4CCG) [50]. Incidentally, this fusion strategy
has been subsequently employed in resolving structures of
other RING–E2 complexes [78,157]. In our FANCL RING–
Ube2T structure, individual RING and E2 domains adopt
similar folds to those observed in the isolated DmFANCL
(PDB 3K1L) and Ube2T (PDB 1YH2) structures respectively.
Thus, no major conformational changes occur during RING–
E2 complex formation. The buried interface area in our
structure (∼700 Å2) however, is markedly greater than other

RING–E2 complexes (PDBs 2YHO, 3EB6, 3RPG, 4AUQ,
4ORH, 4V3K and 5AIE interface area range: 450–600 Å2).
Accordingly, our structure reveals the RING–E2 interactions
are extended beyond the generic E3–E2 interface to include an
extended hydrophobic interface and an extensive network of
polar and electrostatic contacts that stabilize the complex. In
particular, Tyr311 of FANCL docks within an Ube2T pocket
embraced by Arg6, Arg9 and Asn103 side chains. This residue
is highly variable in other RINGs and is absent from the
canonical RING–E2 interface. Furthermore, a critical basic
residue on Ube2T (Arg60), predominantly acidic in other
E2s, forms a salt bridge with Glu340 of FANCL serving as
the positive selector for the FANCL RING–Ube2T pairing.
Mutating residues at the canonical RING–E2 interface, as
well as those unique to our structure (Figure 2C) disrupts
the FANCL RING–Ube2T complex and results in loss of
FANCD2 monoubiquitination.

Our FANCL–Ube2T structure also offers insights into
the site-specific substrate monoubiquitination events. A
shared E2 interaction surface is required for both ubiquitin
loading via the E1 and offloading via the E3 [46]. Following
monoubiquitination of FANCD2/I, the low Ube2T off-
rate exhibited by FANCL can limit E2 dissociation and
thus prevent ubiquitin reloading of the E2 and recurrent
ubiquitination. In a related scenario, the E3–E2 complex
can specify the FANCD2/I surface that exhibits the target
lysine. Site-specific monoubiquitination can then occlude
this surface from subsequent FANCL–Ube2T recognition.
Our RING–Ube2T structure also reveals pockets outside of
the generic E3–E2 interface for designing small molecules
that could selectively interfere with the pair. The targeted
disruption of the FANCL–Ube2T complex, when used in
conjunction with chemotherapy, would inhibit FANCD2
and FANCI ubiquitination and hence the ICL repair
pathway, thereby enhancing efficacy of chemotherapeutics.

E3 interactions with E2 govern the type of the ubiquitin
signal that is conjugated on substrates and this is critical
for the downstream outcomes of the signal. Our work
on structure-function characterization of FANCL reveals
how this E3 encodes inherent specificity for its substrates
FANCD2 and FANCI. Further, we uncover the selective
features on FANCL RING that control interactions with
its physiological E2 partner Ube2T. This exquisite selectivity
determines how the correct ubiquitin signal is generated for
the ICL repair pathway to progress.

Parkin: a broad-spectrum promiscuous E3
ligase mutated in Parkinson’s disease
A second model for understanding specificity in ubiquitin-
ation is Parkin, an E3 ligase mutated in heritable forms of
PD. As an E3 ligase, Parkin is reported to have hundreds of
putative targets including itself, can function with multiple
E2 enzymes and is apparently capable of effecting multiple
types of ubiquitin signals [158] (Figure 3A).

PD is the second most prevalent neurological disorder. PD
affects approximately 1 % of the population above the age of
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Figure 3 The broad-spectrum E3 ligase Parkin

(A) Schematic of the variety of substrate ubiquitination events mediated by Parkin through several E2 enzymes. (B) A cartoon

depicting the domain/motif arrangement of full-length Parkin (top) and the multiple inter-domain interactions that stabilize

the tertiary structure (bottom). The RBR module comprises RING1, BRcat and Rcat domains with the catalytic cysteine (yellow

star) present in the Rcat domain. Additional regulatory domains/motifs are the Ubl domain, a zinc-chelating RING0 domain

and the small helical REP. (C) Surface representation of Parkin (grey, PDB 5C23) shows the distal location of phospho-serine

(pink) on the Ubl (lime) domain and basic patch (dark blue) created on the surface of the RING0/RING1 interface (left).

Binding of phospho-ubiquitin (orange, PDB 4WZP) to the basic patch on Parkin (right) leads to the complete displacement

of the phospho-Ubl domain exposing the ubiquitin-binding patch on Parkin’s RING1 domain (brown). This exposed patch on

Parkin can support interactions with multiple E2–Ub intermediates and hence catalyse diverse ubiquitin signals.
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50, with 5 % of the cases being rare familial forms with an
earlier onset (<45 years). Symptoms include bradykinesia,
resting tremor and muscular rigidity, associated with the
progressive loss of dopaminergic neurons in the substantia
nigra. Research in the last two decades has uncovered multiple
genetic causes underlying what was previously considered

to be sporadic disease [159–161]. Linkage and genotype
analyses of familial PD cases have identified a subset of
genes, including PARK2 and PTEN induced putative kinase
(PINK)1, associated with autosomal-recessive patterns of
inheritance [162]. Mutations in PARK2, which encodes
the RBR E3 ligase Parkin, are linked to nearly half of
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the recessive early-onset PD cases [163,164]. In addition
mutations in PARK2 are also found in several cancer states
[165,166]. Parkin belongs to the RBR family of E3 ligases,
which were originally classified due to inclusion of two
predicted RING domains (RING1 and RING2) separated
by an in-between-RING domain, collectively termed the
‘RBR’ module [167]. However, a solution structure of the
RING2 domain from HHARI suggested that RING2 did
not adopt a canonical RING fold [168] and recent structures
of RING2 domains from RBR proteins HHARI [104,169],
Parkin [170–172] and HOIP [110] reveal that RING2 is
not a RING domain at all. In fact, the RING2 domain
is a linear zinc-chelating domain, which bears a cysteine
required for catalysis [43] and adopts the same fold as the
‘in-between-RING’ domain [173]. The in-between-RING
domain is neither between RINGs nor bears a catalytic
residue; therefore, we refer to the domains as RING1,
required-for-catalysis (Rcat) and ‘Benign’ Rcat (BRcat) to
retain the RBR nomenclature [166]. There are 13 eukaryal
RBR proteins and they all have varied domains outwith the
common RBR module [167]. Parkin has an N-terminal Ubl
domain and a zinc-chelating RING0 domain [174] additional
to the RBR (Figure 3B). Importantly, at least 80 pathogenic
amino acid substitutions that lead to autosomal recessive
PD are found throughout the primary sequence of Parkin,
clustering in domains, but also in the linkers between domains
[175]. We set out to determine the structure of Parkin in
order to understand its apparent promiscuity, mechanism of
ligase activity and how disease mutations affected its function.
As with any crystallographic project, our first challenge was
to produce large quantities of stable and pure protein. To
achieve solubility we fused the small ubiquitin-like modifier,
Smt3 (suppressor of MIF2, SUMO in mammals) to the N-
terminus of Parkin [176]. Removal of Smt3 is achieved via
a SUMO-specific protease, ubiquitin-like-specific protease
(Ulp)1 [177], which recognizes the tertiary fold of Smt3
and cleaves at the exact C-terminus, leaving no overhang
or leader sequence. However, the purified recombinant
protein lacked ubiquitination activity. Historically, auto-
ubiquitination assays are used to assess the E3 ligase
potential of a protein [1,178,179]. Parkin was reported to
be a constitutively active E3 ligase [180,181] and the auto-
ubiquitination readout was extensively used to characterize
the effects of its pathogenic mutations in Parkin [182–186].
Despite extensive efforts to reproduce the assays reported
by many others, our Parkin preparations were not active for
auto-ubiquitination. Puzzled by the apparent lack of activity,
we noticed that a common feature among all ‘active’ Parkin
reports was the presence of epitope or solubility tags at the N-
terminus of the protein. Thus, we assayed the fusion protein
for activity and found to our surprise that it was competent for
auto-ubiquitination activity. Indeed, we fused multiple tags
to the N-terminus of Parkin and found that when tagged,
Parkin was capable of auto-ubiquitination and removal
of the tag rendered Parkin inactive [187,188]. These data
suggested Parkin activity was linked to perturbations of its
N-terminus. Interestingly, Parkin’s Ubl domain bears several

pathogenic mutations that influence its stability and is also
involved in mediating putative substrate ubiquitination and
proteasomal interactions [189–194]. Surprisingly, deletion
of the Ubl domain species dramatically improves its
auto-ubiquitination activity [187]. Furthermore, multiple
pathogenic point mutants within the Ubl domain also trigger
auto-ubiquitination both in vitro and in vivo. Thus, wild-type
Parkin appears to be a dormant E3 ligase that is inhibited
by a native Ubl domain. A series of experiments further
uncovered an intramolecular interaction between an Ile44-
centred surface on the Ubl domain and the rest of molecule.
Structurally similar to ubiquitin, the Ubl domain also boasts
an Ile44 hydrophobic surface. Interestingly, we find this
ubiquitin surface to be required for auto-ubiquitination
and Parkin variants with compromised intramolecular states
enhance offloading of the E2–ubiquitin intermediate. The
auto-regulation exerted by the Ubl domain thus involves the
obscuring of catalytic interactions between Parkin and the
ubiquitin loaded E2 [187].

Our finding that Parkin is an auto-inhibited protein and
hence constitutively inactive was not initially met with
universal enthusiasm, despite several cell-based observations
that hinted at a ‘latency’ in Parkin that required activation
[195–197]. A growing body of evidence had revealed roles
for PINK1, a kinase also mutated in autosomal recessive PD,
and Parkin in mitophagy, whereby damaged mitochondria
are processed via ubiquitination and subsequent autophagic
clearance [198,199]. Interestingly, the kinase activity of
PINK1 is required for Parkin translocation to damaged
mitochondria and was also suggested to activate its E3 ligase
potential [195–197]. A direct functional link was uncovered
when PINK1 was reported to phosphorylate Parkin at Ser65

in the Ubl domain, leading to Parkin activation [200,201].
In fact, activated Parkin triggers ubiquitination on dozens of
different mitochondrial proteins with various polyubiquitin
signals (Lys27, Lys48 and Lys63-linked chains) [202–205]. An
earlier breakthrough study describing the RING–HECT
hybrid mechanism for all RBR ligases could not capture
the Parkin Cys431–ubiquitin thioester intermediate [43]
and a number of studies subsequently showed that both
mitochondrial damage and the kinase activity of PINK1
is required to induce the Parkin–ubiquitin intermediate. In
addition, multiple E2s can trigger the ubiquitin charging
and consequent ubiquitination of mitochondrial proteins by
Parkin [206–208]. Thus a consensus emerged of PINK1–
Parkin cross-talk as a pre-requisite for mitochondrial
homoeostasis.

At this point, we understood that Parkin was auto-
inhibited and could be activated by phosphorylation of
the Ubl domain by PINK1. We also knew that pathogenic
mutations in the Ubl domain lead to constitutively active
Parkin and that the number of putative Parkin substrates
was increasing rapidly. The inheritance of Parkin-related
Parkinsonism is currently accepted to be autosomal recessive
[164]. There are PD cases where the patient is a compound
heterozygote and one question our observations immediately
provoked is how activating mutations lead to a recessive
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inheritance when ‘gain-of-function’ mutations might be
expected to be dominant? We hypothesized that activating
Parkin mutations lead to self-ubiquitination and subsequent
degradation, thus resulting ultimately in loss of Parkin. We
tested our theory through a series of in vitro and cell-based
experiments. What we found is that not only are Parkin
mutants rapidly degraded in cells, but that Parkin can only
ubiquitinate Parkin in cis, not in trans. In other words, an
active pathogenic mutant of Parkin only ubiquitinates itself,
but does not modify another molecule of Parkin. In the
heterozygous context, the mutant Parkin (unstable, active or
inactive) would regulate its own status without influencing
another copy, thus clarifying the recessive phenotype linked
with the majority of pathogenic Parkin mutants [169].

In 2013, several groups reported the structure of the
RING0–RING1–BRcat–Rcat (R0RBR) domains of Parkin
(residues 141–465) [170–172]. These structures reveal a
complex arrangement of the four domains (Figure 3B),
with the interface between the R0–Rcat domains reportedly
occluding the catalytic cysteine (Cys431) and a small helical
element, termed repressor element of Parkin (REP) that
packs against the predicted E2-binding site. Thus, even
in the absence of the first 140 amino acids, including
the Ubl domain, Parkin adopts an apparently auto-
inhibited conformation. Biochemical and structural studies
of several multi-domain RBRs reveal auto-inhibition to be
a characteristic feature of this enzyme family [104,105,170–
172,209,210]. Although these structures revealed the compact
and interdependent nature of Parkin domains and explained
the molecular basis of many pathogenic mutations, it was
still not clear how the Ubl domain inhibits Parkin or
how activation could be achieved. In 2014, an exciting
new regulatory layer within the PINK1–Parkin and
mitophagy pathway was revealed. In addition to Parkin
Ser65 phosphorylation, PINK1 directly phosphorylates
ubiquitin at an equivalent Ser65 residue, thus uncovering
an unprecedented functional link between phosphorylation
and ubiquitination pathways [211–214]. The dual Parkin–
Ubiquitin phosphorylation events are both required for
optimal Parkin activation and for amplifying ubiquitin signals
on damaged mitochondria. Importantly, phospho-ubiquitin
activates Parkin E3 ligase activity. PINK1 phosphorylation
of pre-existing ubiquitin on the mitochondria also triggers
the mitochondrial translocation and activation of Parkin.
Recurrent PINK1 phosphorylation of ubiquitin signals
mediated by active Parkin augments the entire cycle, leading
to suggestions of a feed-forward mechanism [211,214].
Quantitative ubiquitin proteomics further reveal that the dual
Parkin–Ubiquitin phosphorylation events generate diverse
polyubiquitin signals (Lys6, Lys11, Lys48 and Lys63-linked
chains) on damaged mitochondria. In fact, activated Parkin is
catalytically productive with nearly two-dozen E2s in vitro
and ubiquitinates numerous outer mitochondrial membrane
proteins in cells (>30 high confidence targets) [205,214,215].

In order to understand the mechanisms of Parkin
inhibition and activation, we needed to understand the
molecular details of how the Ubl domain maintains the auto-

regulated conformation and how the dual phosphorylation
events offset this confirmation. Numerous crystallization
trials with human full-length Parkin failed, however both
the Ubl domain and the R0RBR region can be independently
crystallized [170–172,216]. The Ubl–RING0 linker is poorly
conserved across species, highly susceptible to proteolysis
and not visible in a low-resolution structure of full-length
rat Parkin [171,174]. Thus in order to crystallize all five
domains, we removed this linker. UblR0RBR (Ubl residues
1–83 linked to R0RBR residues 144–465) displays an E3
ligase activity profile similar to full-length Parkin, but in
contrast yields high-quality crystals that diffract to 1.8 Å
(PDB 5C1Z) [217]. The refined UblR0RBR structure reveals
a similar global structure to the R0RBR structures and in
addition, the Ubl domain that packs tightly against the
RING1 domain (Figure 3B). An extensive interface is formed,
the largest domain/domain interface in Parkin. Notably
the Ubl Ile44-centred surface is central to the interface,
including many of the residues we previously observed
to be activating when mutated [187]. However, we also
observe a previously overlooked interface, burying 730 Å2

surface area, between the RING0–RING1 domains. In the
structures of Parkin lacking the Ubl domain, this distant
site is remodelled when compared with intact Parkin. In
particular, a trio of residues His227-glu300-His302, have
side chains pointing north towards the interior of the
protein when the Ubl is present, which diametrically flip
to point south towards the surface of Parkin when the
Ubl is absent. Using isothermal titration calorimetry, we
had previously observed stable interactions in trans between
the Ubl domain and the rest of Parkin (residues 77–465)
whereas activating Ubl mutants weaken this connection [187].
Using a similar setup we examined how the Parkin R0RBR
interacts with different Ser65 variants of the Ubl domain and
ubiquitin. The binding of Ubl to R0RBR, regardless of Ser65

status, is an exothermic process driven by negative enthalpic
and small entropic changes. However, altering the Ubl
Ser65 side chain diminishes the R0RBR binding event (∼2-
fold with Ser65Asp/Glu and ∼10-fold with phospho-Ser65).
Interestingly, interactions between ubiquitin (wild-type and
Ser65 variants) and R0RBR have endothermic signatures. In
particular, phospho-ubiquitin binding with R0RBR binding
is driven by large positive changes in enthalpy ( + 32 kJ/mol)
and entropy ( + 261 J/mol◦K), suggesting an increase in
disorder of the system. Changes in ubiquitin Ser65 also
dramatically improve its affinity with R0RBR (∼10 fold with
Ser65Asp/Glu and ∼4000-fold with phospho-Ser65). Taken
together, the affinity profiles suggest that although wild-
type Ubl stabilises the tertiary conformation, Ser65 variants
counter this effect. Furthermore, contrasting thermodynamic
profiles of phospho-ubiquitin binding suggest it interacts
with a distinct Parkin surface and alters its structural integrity
[217].

In order to understand how changes at Ubl Ser65 lead to
Parkin activation, we attempted to crystallize Ser65 variants of
UblR0RBR (Ser65Asp/Glu or phospho-Ser65). Whereas the
phospho-Ser65 UblR0RBR crystallization proved fruitless,
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we successfully obtained Ser65Asp UblR0RBR crystals and
refined the structure to 2.4 Å (PDB 5C23). Superposition
of Ser65Asp UblR0RBR and UblR0RBR (RMSD 0.58 Å)
reveals no global conformational changes. Remarkably,
however, inclusion of a negative charge at position 65 of the
Ubl domain causes the His227-Glu300-His302 side chains
in the RING0/RING1 interface to adopt the south facing
orientation observed in the absence of the entire Ubl domain.
This subtle remodelling serves to create a continuous basic
patch at the RING0/RING1 interface (residues His302, Arg305

and Lys151), which is presented on the surface of Parkin. Our
study, as well other independent studies, shows the
phospho-ubiquitin binding patch to be at the
RING0/RING1 interface of Parkin [217–220]. A recent
study shows that binding of phospho-ubiquitin to the
R0RBR fragment of insect Parkin (body louse) leads
to destabilization of a kinked RING1 helix [220].
The destabilizing of the RING1 helix confirms the
thermodynamic profile we observe during phospho–
ubiquitin interactions with the human R0RBR [217]. These
observations reveal a model for Parkin activation where Ser65

phosphorylation of the Ubl domain weakens its packing
with RING1 domains thus optimizing the RING0/RING1
interface for phospho–ubiquitin interactions.

In an elegant series of competitive binding spectroscopy
experiments carried out by Gary Shaw’s laboratory, the
consequence of phospho-ubiquitin binding was shown to
be the displacement of the Ubl domain. First, the titration
of R0RBR Parkin triggers a spectral peak transition of
a labelled Ser65Glu Ubl species from an unbound to a
bound state. Remarkably, these signals revert back to the
unbound state when Ser65Glu ubiquitin is subsequently
added into the system. In a reverse setup, titration of
R0RBR Parkin reveals the unbound to bound transition
of the labelled Ser65Glu ubiquitin species. However these
signals are unaffected upon addition of Ser65Glu Ubl
domain. These data show that R0RBR Parkin is unable
to simultaneously bind both phospho-ubiquitin and the
Ubl domain. Whereas phosphorylation of the Ubl domain
optimizes the binding of phospho-ubiquitin, interaction
with phospho-ubiquitin induces the complete displacement
of the weakened phospho/Ubl interface from the RING1
surface (Figure 3C). Furthermore, phospho-Ubl cannot
rebind Parkin until the phospho-ubiquitin is released, thus
sustaining an activated E3 conformation.

In our UblR0RBR structure, the largest buried interface
is formed between the Ubl domain and the rest of Parkin
(∼2150 Å2). The complete release of phospho-Ubl is
predicted to expose a large interaction area including a
RING1 surface that was once bound to the Ile44-hydrophobic
patch on the Ubl domain. We had previously shown that a
similar Ile44-hydrophobic patch on ubiquitin was required
for Parkin auto-ubiquitination [187]. Thus, the displaced
phospho-Ubl could expose a ubiquitin-binding surface on
Parkin that is required for productive interactions with the
E2–ubiquitin intermediate (Figure 3C). Consistent with this,
a phospho-Parkin–phospho-ubiquitin complex displays a

∼20-fold increase in affinity with the ubiquitin loaded E2
compared with the isolated E2. Further, this increase in
affinity requires an intact RING1 helix1 surface [217]. These
insights suggest a model for Parkin activation whereby the
Ubl domain maintains Parkin in an auto-inhibited state in
the absence of phospho-ubiquitin signals. Upon activation
of PINK1, both Parkin and ubiquitin are phosphorylated
at Ser65, giving rise to the allosteric displacement of the
Ubl domain. This displacement, along with the presumed
displacement of the REP creates the E2-binding surface,
presents a ubiquitin-binding site that simultaneously recruits
the E2–Ub intermediate. This model provides a molecular
explanation for the apparent lack of E2 specificity displayed
by Parkin, since association with the common denominator,
ubiquitin, contributes to most of the binding energy. The
ability to scaffold different E2s also explains how Parkin can
support catalysis of diverse ubiquitin signals.

Concluding remarks
Our studies show that achieving specificity within a given
pathway can be established by specific interactions between
the enzymatic components of the conjugation machinery,
as seen in the exclusive FANCL–Ube2T interaction. By
contrast, where a broad spectrum of modifications is required,
this can be achieved through association of the conjugation
machinery with the common denominator, ubiquitin, as seen
in the case of Parkin. There are many outstanding questions to
understanding the mechanisms governing substrate selection
and lysine targeting. Importantly, we do not yet understand
what makes a particular lysine and/or a particular substrate
a good target for ubiquitination. Subunits and co-activators
of the APC/C multi-subunit E3 ligase complex recognize
short, conserved motifs (D [221] and KEN [222] boxes)
on substrates leading to their ubiquitination [223–225].
Interactions between the RING and E2 subunits reduce
the available radius for substrate lysines in the case of a
disordered substrate [226]. Rbx1, a RING protein integral
to cullin-RING ligases, supports neddylation of Cullin-
1 via a substrate-driven optimization of the catalytic
machinery [227], whereas in the case of HECT E3 ligases,
conformational changes within the E3 itself determine lysine
selection [97]. However, when it comes to specific targets
such as FANCI and FANCD2, how the essential lysine is
targeted is unclear. Does this specificity rely on interactions
between FA proteins? Are there inhibitory interactions
that prevent modification of nearby lysines? One notable
absence in our understanding of ubiquitin signalling is
a ‘consensus’ ubiquitination motif. Large-scale proteomic
analyses of ubiquitination sites have revealed the extent of
this challenge, with seemingly no lysine discrimination at
the primary sequence level in the case of the CRLs [228].
Furthermore, the apparent promiscuity of Parkin suggests
the possibility that ubiquitinated proteins are the primary
target of Parkin activity. It is likely that multiple structures
of specific and promiscuous ligases in action will be required
to understand substrate specificity in full.
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