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Abstract. Intraoperative tissue classification is one of the prerequisites for providing context-aware visualization
in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in
conventional RGB medical images, we propose a classification method based on multispectral image patches.
In a comprehensive ex vivo study through statistical analysis, we show that (1) multispectral imaging data are
superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descrip-
tors and (2) combining the tissue texture with the reflectance spectrum improves the classification performance.
The classifier reaches an accuracy of 98.4% on our dataset. Multispectral tissue analysis could thus evolve as a
key enabling technique in computer-assisted laparoscopy. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:

10.1117/1.JMI.4.1.015001]
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1 Introduction
In contrast to traditional open surgery, laparoscopy is less inva-
sive, causing smaller incisions and providing shorter recovery
periods. One recent direction of research focuses on offering
context-aware guidance (e.g., Ref. 1), where computer assis-
tance is provided, depending on the current phase within the
medical procedure. Situation recognition from sensor data, how-
ever, is extremely challenging and requires a good understand-
ing of the scene. In this context, the classification of tissue
may provide important cues with respect to what is currently
happening.

In recent years, several methods for tissue or organ classifi-
cation, which are based on gray-value or RGB images, have
already been proposed (e.g., Refs. 2 and 3). More recently, mul-
tispectral (or hyperspectral) imaging techniques have achieved
success in cancer detection and tissue classification.4 Multi-
spectral images generally have tens or hundreds of channels,
each of which corresponds to the reflection of light within a cer-
tain wavelength band. Therefore, they can provide high spectral
resolution and reveal optical tissue characteristics. Multispectral
tissue classification methods, as mentioned in the literature so
far, mainly use the image pixel, which corresponds to a reflec-
tance spectrum at a specific position, as their feature
descriptor.5,6 Given the recent success of multispectral texture
analysis outside of the field of laparoscopy,7,8 the hypothesis

proposed by this paper is that texture-based methods can
improve multispectral organ in minimally-invasive surgery.

A preliminary version of this paper was presented at the SPIE
Medical Imaging Conference 2016.9 To our knowledge, we are
the first to address the problem of tissue classification based on
multispectral texture analysis for intraoperative laparoscopy.
The contribution is twofold: (1) we investigate organ tissue clas-
sification in a laparoscopic setup and perform a comprehensive
ex vivo study, showing that multispectral images are superior to
RGB images for tissue classification in laparoscopy, and (2) we
propose a feature descriptor combining texture and spectral
information based on only a small number of specified bands.

2 Materials and Methods
This section encompasses three central parts of our work: the
multispectral image acquisition using a custom-built laparo-
scope (Sec. 2.1), feature extraction and classification (Sec. 2.2),
and description of the experiments in Sec. 2.3. An overview of
the proposed approach is shown in Fig. 1.

2.1 Hardware

Multispectral images are captured using a custom-built multi-
spectral laparoscope, which is shown in Fig. 1. It combines a
Richard Wolf (Knittlingen, Germany) laparoscope and light
source with the 5 Mpixel Pixelteq Spectrocam (Largo, Florida).
Following the recommendation by Wirkert et al.,10 we use light
filters with the central wavelengths of 470, 480, 511, 560,
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580, 600, 660, and 700 nm. The full width at half maximum
(FWHM) of the bands is 20 nm, except for the 480-nm band,
where it is 25 nm. The camera runs at 20 fps and thus records
multispectral image stacks at 2.5 Hz. The pixel size is
6.45 μm2 per pixel. The opening angle of the laparoscopic
optics is 85 deg.

As the camera does not provide RGB images directly, we
select the channels of 470, 560, and 700 nm and regard them as
blue, green, and red, respectively. Note that our synthetic RGB
image contains more specific information than a true RGB
image as it is composed of bands with a FWHM of 20 nm,
thus being much narrower than true RGB bands.

2.2 Tissue Classification

Given the captured images, the workflow consists of three steps:
(1) preprocessing, (2) feature extraction, and (3) classification.
Each step is described in the following paragraphs.

2.2.1 Preprocessing

Image preprocessing converts multispectral raw images into
multispectral patches, involving noise removal and patch extrac-
tion. Since Gaussian noise usually exists in the raw image, we
apply total variation11 in this paper, which is able to remove
Gaussian noise while preserving sharp edges. Afterward, we
select several rectangular patches from the multispectral images.
These patches all have the same size.

2.2.2 Feature extraction

In the feature extraction step, a feature vector is extracted from
the spatial neighborhood and spectral profile of each pixel, serv-
ing as a (multispectral) fingerprint to enable tissue classification.
The appearance of the tissue at a pixel’s location can be repre-
sented by texture because the tissue surface usually has charac-
teristic patterns. The spectral profile of the tissue at the pixel
location is influenced by optical characteristics, such as absorp-
tion and scattering properties.12 As laparoscopic images are
captured from various viewpoints under various illumination
conditions, the extracted features should be robust to the pose
of the endoscope as well as to the lighting conditions. Further-
more, they should be computationally cheap to enable real-time
image processing in future applications. Numerous texture
descriptors have been proposed in the literature,13 but only a
few of them are suitable for our purposes. In this paper, we use
the local binary pattern (LBP)14 to extract texture information;
we also use the average spectrum (AS) to extract spectral
information.

Local binary pattern. LBP14 is a robust texture representa-
tion method, which encodes local primitive microstructures in
the image. It is already being successfully used for other pur-
poses such as face detection.15,16 In a 2-D gray-scale image
IðxÞ, a circle with radius R is centered at every pixel, and P
points on the circle are compared with the center pixel. One
can then extract a binary string at every location within the
image and obtain an LBP map, LBPP;R, which can be formu-
lated as follows:

EQ-TARGET;temp:intralink-;e001;63;112LBPP;RðxÞ ¼
XP−1
p¼0

δ½IðxpÞ − IðxÞ� · 2p; (1)

with

EQ-TARGET;temp:intralink-;e002;326;741δðsÞ ¼
�
1; s ≥ 0

0; otherwise
; (2)

where xp is the point on the circle, the gray value of which is
computed via interpolation. The occurrence histogram of the
LBP map is regarded as the feature descriptor.

LBP is gray-scale invariant and provides low computational
complexity, which is beneficial to the implementation of real-
time uses. The study of Ojala et al.14 proposes an advanced
version named LBPriu2P;R, which provides rotational invariance
and only contains uniform patterns for representative micro-
structures. One can refer to the study of Lahdenoja et al.17 for
more insights. In this paper, we use the uniform and rotationally
invariant version with multiresolution analysis and name it
briefly as LBP. To improve the robustness, we normalize the
feature vector from each occurrence histogram.

Average spectrum. Spectral reflectances of one location
within a multispectral image could be directly extracted and
used as the feature descriptor. Such a type of spectral feature
descriptor would offer a high spatial resolution. However, it
would only be feasible if all bands were already precisely
aligned and if no noise existed.

We average all the spectral reflectances around one location
in each channel, sacrificing high spatial resolution but improv-
ing the robustness against noise. Given one location x within a
multispectral image I, the spectral feature vector ϕ is given by

EQ-TARGET;temp:intralink-;e003;326;443ϕc ¼
1

jN j ·
X

y∈N ðxÞ
IcðyÞ; (3)

where N ðxÞ is the neighbor set of x, and c is the band index.
One can find a similar feature descriptor in the literature.6 Since
multispectral image patches are used in this paper, we set the
point x at the center of the patch with the neighbor set N con-
taining all remaining locations. To compensate for scaling in
cases where the illumination condition changes, we normalize
the feature vector to the unit length.

AS + LBP: Since the texture information mainly represents
spatial characteristics in each band and the spectral information
mainly represents underlying optical properties, we hypothesize
that AS and LBP represent complementary information. We
therefore propose the combined feature descriptor AS + LBP,
which is a concatenation of the two feature vectors.

2.2.3 Classification

In this paper, we apply a support vector machine (SVM) model
with a Gaussian kernel to discriminate tissues. Due to its advan-
tages mentioned in the literature,18 it is suitable to address the
classification problem in our scenario. First, it is less prone to
the “curse-of-dimensionality.” Since high-dimensional data such
as ours are explicitly handled by the kernel function, parameter
proliferation is prevented in the high-dimensional feature space,
leading to trackable computation and limited over-fitting.
Second, derived from the statistical learning theory, the SVM
model can provide complex decision functions and therefore
can fit the data well. Third, the SVM solution is only determined
by the support vectors, so its performance is potentially repeat-
able when the training data have small disturbances.

Given a set of training data fðxi; yiÞgni¼1 with yi ∈ f1;−1g,
the SVM model can be given by its dual formula as19
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EQ-TARGET;temp:intralink-;e004;63;752

α� ¼ max
αi

�Xn
i¼1

αi −
1

2

Xn
i;j¼1

αiαjyiyjkðxi; xjÞ
�

subject to 0 ≤ αi ≤
C
n
; ∀ i ¼ 1; 2; : : : ; n

Xn
i¼1

αiyi ¼ 0: (4)

and the decision function f can be given by

EQ-TARGET;temp:intralink-;e005;63;643fðxÞ ¼ sgn

�Xn
i¼1

α�i yikðx; xiÞ þ b

�
; (5)

where the threshold b can be computed by an averaging pro-
cedure, the kernel function kðx; yÞ ¼ e−γ·jx−yj2 , and C is the
hyperparameter governing the regularization weight.

The Gaussian kernel-based SVM only has two hyperpara-
meters, namely the Gaussian kernel size γ and the regularization
weight C, to specify and usually achieves satisfactory perfor-
mances in practice. To perform multiclass classification, we
use a “one-against-one” scheme for SVM. Since SVM is sensi-
tive to the data scale, we normalize the feature vector of each
sample to the unit length and perform standardization within
each feature dimension.

2.3 Experiments

The goal of our experiments was to evaluate our method with
respect to our hypothesis, which combined textural and spectral
features extracted from multispectral images to benefit organ tis-
sue classification. For these purposes, we discriminated in our

experiment four types of porcine organ tissues typically encoun-
tered during hepatic laparoscopic surgeries: liver, gallbladder,
colon, and kidney, which have been collected from three different
pigs. All the porcine organs used in our experiments were col-
lected from the butcher. The interval between organ dissection
and imaging was less than 4 h. During this period, all these organs
were covered with ice and stored in a cooling chamber. The lap-
aroscopic setup is shown in Fig. 2, showing the process of cap-
turing multispectral images of kidney tissue. When capturing
images, the light was only provided by the laparoscopic light
source. We targeted the rod lens to a smooth region of each
organ whose mean surface normal was approximately
perpendicular to the horizontal plane and captured images by
varying the camera pose. The camera pose is defined by
ðθ; dÞ, where θ is the angle between the rod lens and the horizon-
tal plane, and d is the distance between the lens tip and the organ
surface. We specify ðθ; dÞ ∈ f30 deg; 60 deg; 90 degg ×
f4 cm; 5.5 cm; 7 cmg, as these distances and angles are
typically encountered during laparoscopic surgeries.20 There-
fore, we obtained an image set containing 27 subsets for
each organ denoted by ðpigi; θj; dkÞ ∈ fpig1; pig2; pig3g ×
f30 deg; 60 deg; 90 degg × f4 cm; 5.5 cm; 7 cmg in which
the images feature diverse anatomical structures and illumina-
tion conditions.

After capturing multispectral raw images, we performed the
preprocessing procedures mentioned in Sec. 2.2.1. For training
purposes, we annotated regions in each multispectral image as
reference and marked invalid regions such as exposure caused
by specular reflection. We then assigned a label to the image
reference. Some image annotation results are shown in Fig. 3.
Each multispectral image was cropped into several patches of a
size 300 × 300 pixels. From these, 100 patches were randomly
selected, following the criterion that at least 80% of each image

Fig. 1 Concept for multispectral tissue classification. After multispectral image acquisition, noise is
removed and the resulting image is cropped into patches (1). From each of these patches, the LBP tex-
ture feature and the AS are calculated (2) and fed into an SVM model to classify the organ characterized
by the patch under investigation (3).
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patch needed to overlap with the annotated reference. These
selected patches were then stored in a multispectral patch set
named S, which is shown by Fig. 4. Consequently, the patch
set S is well balanced.

For each multispectral image patch, we extracted its texture
feature LBP, its spectral feature AS, and its combined textural/
spectral feature AS + LBP, where we extracted patterns with three
ðP;RÞ combinations, namely ðP ¼ 8; R ¼ 1Þ, ðP ¼ 16; R ¼ 2Þ,
and ðP ¼ 24; R ¼ 3Þ, for multiple resolutions14 and repeated
this computation at each image channel to capture texture infor-
mation at every spectral band. For comparison purposes, we also
used two other commonly used feature description methods: the
Gabor filter bank (GFB) and the gray-level cooccurrence matrix
(GLCM).13 Their hyperparameters were selected heuristically
according to the natural image analysis literature, while consid-
ering the computational speed, memory consumption, and the
final recognition accuracy in our scenario. The GFB used
frequencies ranging from 0.1 to 0.6 and four orientations: 0,
π∕4, π∕2, and 3π∕4. The parameters of GLCM were set to
angle ¼ 0 and distance ¼ 5, and we chose contrast, dissimilar-
ity, homogeneity, angular second moment, energy, and correla-
tion as the property set. The pixel window of GFB was
automatically determined by “Python scikit-image” according
to the frequencies. As with LBP, these methods were applied
to each channel, and the feature vectors were concatenated.
The number of features for each descriptor and each image
type is given in Table 1.

The classification test was performed on every subset of S
in turn, i.e., when the performance was tested on ðpigi; θj; dkÞ,
the classifier is trained on fðpigi 0 ; θj 0 ; dk 0 Þji 0 ≠ ig. To test the
influence of camera pose changes, we excluded the camera
pose in the testing set from the training set. Specifically,
when testing on ðpigi; θj; dkÞ, the classifier was trained on
fðpigi 0 ; θj 0 ; dk 0 Þji 0 ≠ i; j 0 ≠ j; k 0 ≠ kg.

During the training phase, the two hyperparameters C and γ
in the SVM model were optimized via grid search and cross
validation on all 27 subsets. The parameter C had 10 candidates
ranging from −5 to 10 in the two-based logarithm coordinate,
and the parameter γ had 10 candidates ranging from −15 to 3 in
the two-based logarithm coordinate (in our Python implemen-
tation, we specified C ∈ numpy:logspaceðstart ¼ −5; stop ¼
10; num ¼ 10; base ¼ 2Þ and γ ∈ numpy:logspaceðstart ¼
−15; stop ¼ 3; num ¼ 10; base ¼ 2Þ). The determined values
for the hyperparameters were subsequently used in the testing
phase. The classification performance was evaluated by the
accuracy rate which is the ratio of correctly classified samples
to all samples in the testing set. This evaluation did not give
biased results in our scenario since our dataset was balanced.
Note that C and gamma would ideally have been optimized sep-
arately on each training data set used in this study. However, the
focus of the experiments was on relative changes in accuracy
when using multispectral vs. RGB data rather than on absolute
accuracy rates. Further, varying the parameters had only a very
moderate effect on the classification results. Finally, any other

Fig. 3 Image annotation is completed by excluding areas not covered by tissue and high/low exposure
regions. These exposure regions (e.g., specular reflections) do not contain tissue-specific information
and can be excluded automatically21 in future work. The red overlay indicates regions to classify.
From left to right: colon, gallbladder, liver, and kidney.

Fig. 2 Setup for capturing multispectral images of kidney tissue. From left to right: the multispectral lap-
aroscope. The three porcine kidneys originating from three different pigs. Camera pose, where the red
region denotes the tissue and the black bar denotes the rod lens. Additionally, the yellow region denotes
the light, and the dark background indicates that images are captured in a dark environment.
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classification algorithm (e.g., random forests) could have been
applied instead of SVMs for our purposes.

In our experiments, images were annotated manually using
the Medical Imaging Interaction Toolkit (MITK) software.22

After the image patch set S was established, feature extraction
and classification algorithms were implemented using Python,
based on the modules “scikit-image” and “scikit-learn.”

3 Results
The accuracy rates are shown in terms of box plots in Fig. 5.
Comparing the two box plots in each row, one can observe

that: (1) the performance using the multispectral imaging data
is better than the performance using the RGB imaging data for
all feature descriptors; (2) when excluding the camera pose used
in the testing data from the training data, all performances
deteriorate; and (3) the proposed feature descriptor AS +
LBP performs best in each case.

The median accuracy rates given in Table 2 correspond to the
bands inside the boxes in Fig. 5. For each feature, the percentage
change of recognition accuracy from the RGB image to the mul-
tispectral image is equal to the accuracy rate difference divided
by the accuracy rate of RGB data. The median improvement in
accuracy obtained by using multispectral data as opposed to
RGB data is 7% on average.

One can also see the benefit of combining texture informa-
tion and spectral information. For multispectral imaging data,
the feature AS + LBP outperforms AS by 8% and LBP by 2%
when all camera poses are considered. When one camera pose is
excluded from training, the feature AS + LBP outperforms AS
by 8% and LBP by 14%.

We investigated differences in classification performance
among various feature sets. For this purpose, we computed
the mean differences along with bootstrapped 95% confidence

Table 1 The number of features for different image types and
descriptors used in our experiments.

AS LBP AS + LBP CLGM GFB

Multispectral image 8 432 440 48 320

RGB image 3 162 165 18 120

Fig. 4 Eight patches from two subsets in S and the associated AS of each patch. The patches on the left
and right side correspond to tissue areas of ∼12 mm × 12 mm and 25 mm × 25 mm, respectively. They
had been extracted from the image corresponding to the central wavelength of 470 nm. In each spectrum
plot, the x -axis denotes the wavelengths (470, 480, 511, 560, 580, 600, 660, and 700 nm) and the y -axis
denotes the image intensity.
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intervals (bootstrapping was applied due to the skewness of the
underlying data). Moreover, the Wilcoxon signed-rank test (for
paired samples) was used to test the null hypothesis that the dif-
ference is zero. To assure a nominal significance level of 5%,
Bonferroni adjustment was applied and p values obtained
from the Wilcoxon signed-rank test were multiplied by the num-
ber of independent tests to yield corrected p values p�. We
observed that the proposed method outperformed the other
investigated methods by at least two percentage points. In all
experiments, the null hypothesis of no difference could be
rejected. The quantitative results of our comparisons can be
found in Table 3.

4 Discussion
To our knowledge, we are the first to investigate organ tissue
classification in a laparoscopic setup based on multispectral tex-
ture analysis. Our method classifies image patches based on
both textural (LBP) and spectral (AS) features. The experimen-
tal results show that when using equal feature descriptors and
classification methods, the multispectral image leads to sta-
tistically significant higher accuracy rates than the RGB
image in all of the cases. We therefore conclude that the multi-
spectral image is superior to the RGB image in our scenario.
This fact further indicates that the multispectral image contains
more information than the RGB image.

Fig. 5 Accuracy obtained for different descriptors using RGB data (rose) and eight channels of multi-
spectral data (red). Each box extends from the first quartile to the third quartile. The whiskers denote the
range from the fifth percentile to the 95th percentile. Outliers are visualized as well. In each figure, the
horizontal axis shows the feature description methods. The vertical axis indicates the accuracy rate. The
black point and the bar within each box denote the mean and the median of accuracy rates, respectively.
The first row: all camera poses are incorporated in the training set. The second row: the camera pose
used in testing set is excluded from the training set.

Table 2 Median accuracy rates, which correspond to the bands inside the boxes in Fig. 5.

All camera poses are considered One camera poses is excluded

GLCM (%) GFB (%) LBP (%) AS (%) AS + LBP (%) GLCM (%) GFB (%) LBP (%) AS (%) AS + LBP (%)

RGB 68.5 57.5 95.8 81.3 97.8 57.0 48.7 74.8 80.2 93.3

Multispectral 77.7 60.5 96.3 91.2 98.4 65.0 51.7 82.5 87.0 94.3

Improvement 13.4 5.2 0.52 12.2 0.61 14.0 6.2 10.3 8.5 1.1
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To represent texture information, we used LBP, which is
gray-scale invariant, and accounts for multiple resolutions.
We also investigated GLCM and GFB texture features as base-
line methods. The GLCM lacks robustness to illumination and
geometry variations in nature, which probably causes its weaker
performance in comparison with LBP. The GFB also performs
worse than LBP, which could be caused by the nonoptimal
parameters of the filter bank. According to the literature,23

the filter bank parameters determining the feature quality are
highly dependent on the texture type. In our tissue classification
scenario, the texture is diverse from image to image, even from
training images to test images. This issue causes parameter
selection to be a highly challenging task. From the computa-
tional perspective, high computational load for GLCM24 and
GFB23 are reported, while LBP can be calculated rapidly and
has low memory consumption.14 Thus, we conclude that LBP
is the best texture descriptor among the three commonly used
texture descriptors, both from a performance and a computa-
tional standpoint.

The feature AS is proposed to capture spectral information.
Due to the averaging operation, AS is potentially robust to noise
and of low spatial resolution. Due to the applied l2-normaliza-
tion, it is also robust to multiplicative changes in illumination.
During computer-assisted surgeries, however, tissues usually
deform in a nonrigid manner, and real-time image registration
in this scenario is highly challenging.25 Future work should thus
investigate whether simple averaging is sufficient for ensuring
descriptor robustness in the presence of motion. Furthermore,
we extract the feature AS from the square image patch at the
current stage. We expect that using a circular patch would
improve the robustness to rotation.

As shown in the experimental results, the proposed texture-
spectral feature AS + LBP outperforms other features as well as
its own individual components, verifying that the texture infor-
mation complements the spectral information. In our experi-
ments, we captured images from multiple viewpoints with
different illumination conditions to simulate challenges encoun-
tered during laparoscopic interventions; however, the classifier
cannot cover all geometrical variations encountered during sur-
geries. This is verified by the accuracy decreasing when one
camera pose is excluded from the training data, as shown in
Fig. 5 and Table 2. The results also suggest that complicated
geometric variations can, and should, be learned.

We performed a comprehensive ex vivo study on organ tissue
classification to provide a basis for tissue classification in the
clinical intraoperative scenario. However, our study has some
limitations. First, compared with the ex vivo experiment, in
vivo laparoscopic interventions cause new challenges, such as
organ deformation during image capturing, internal bleeding,

and optical characteristic shifting due to tissue perfusion. To
address these challenges, we aim to collect more data using an
in vivo setting and to create a benchmark for multispectral organ
classification in laparoscopy.

Second, although we have chosen efficient textural and spec-
tral descriptors, an in-depth run-time analysis to investigate the
real-time capabilities of the proposed approach has not yet been
performed. These were not the focus of this study, which used
Python implementation of the algorithms. The runtime analysis
will be made after the approach has been ported to real clinical
uses for which we expect the implementation to be optimized
using an efficient programming language.

Third, it would be interesting to investigate different classi-
fiers, such as random forests and deep neural networks, espe-
cially when the amount of data is large. Additionally, if in
vivo and ex vivo data are combined, the covariate shift due to
the translation to perfused tissue could be combated by applying
domain adaptation methods.26

5 Conclusion
This paper provides a comprehensive study of organ tissue clas-
sification based on multispectral texture analysis. According to
our experiments, we show that, compared to RGB feature
descriptors multispectral descriptors is superior for tissue clas-
sification. Therefore, we suggest that using multispectral
imaging data is beneficial for organ tissue classification in
laparoscopy.
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