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Abstract. Image registration for internal organs and soft tissues is considered extremely challenging due to
organ shifts and tissue deformation caused by patients’ movements such as respiration and repositioning.
In our previous work, we proposed a fast registration method for deformable tissues with small rotations.
We extend our method to deformable registration of soft tissues with large displacements. We analyzed the
deformation field of the liver by decomposing the deformation into shift, rotation, and pure deformation compo-
nents and concluded that in many clinical cases, the liver deformation contains large rotations and small defor-
mations. This analysis justified the use of linear elastic theory in our image registration method. We also
proposed a region-based neuro-fuzzy transformation model to seamlessly stitch together local affine and
local rigid models in different regions. We have performed the experiments on a liver MRI image set and showed
the effectiveness of the proposed registration method. We have also compared the performance of the proposed
method with the previous method on tissues with large rotations and showed that the proposed method out-
performed the previous method when dealing with the combination of pure deformation and large rotations.
Validation results show that we can achieve a target registration error of 1.87� 0.87 mm and an average center-
line distance error of 1.28� 0.78 mm. The proposed technique has the potential to significantly improve regis-
tration capabilities and the quality of intraoperative image guidance. To the best of our knowledge, this is the first
time that the complex displacement of the liver is explicitly separated into local pure deformation and rigid motion.
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.1.014001]
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1 Introduction
Soft organs such as the liver and the lungs can undergo large
organ shifts and tissue deformations in many medical proce-
dures due to patient repositioning, respiration, surgical manipu-
lation, or other physiological reasons such as differences in
bowel and stomach volume and weight loss.1–5 Accurate
deformable image registration is needed to compensate for
the deformation of these soft tissues.1,4,6–8 Although much
work has been done in the field of deformable registration, it
is still very challenging to efficiently achieve accurate deform-
able image registration of abdominal organs due to large organ
shift and tissue deformation. Effective deformable registration
techniques should be fast, accurate, physically consistent, top-
ology preservation, and robust.

Many research works studied deformable image registration
for clinical applications. Ahn and Kim9 performed soft tissue
experiments on porcine livers to measure the surface deforma-
tion and force response of soft tissues. The authors showed that
the surface deformation prediction with the soft tissue modeling
may not match with the real deformation in large deformation
cases. Rohlfing et al.7 used three-dimensional (3-D) MR image
sets of four volunteers. It was shown that much of the liver
motion is cranial–caudal translation, so the rigid transformation
captures much of the motion. However, there is still substantial
residual deformation not accounted for by simple rigid-body
motion, nearly 20 mm at one place in the liver of one volunteer.

Noorda et al.8 presented a subject-specific four-dimensional
liver motion model that is created based on registration of
dynamically acquired magnetic resonance image data. Several
deformation ranges for different directions are addressed; for
example, the authors pointed out that the most significant com-
ponent of liver motion is translation in the feet–head direction.

Both accuracy and speed are important factors that need to be
considered in deformable image registration. Until recently, the
majority of research on deformable registration of soft tissues
required a time-consuming process.4,8,10 For example, the
finite-element method (FEM) provides a plausible image regis-
tration based on biomechanical models.11 However, in addition
to the challenge of accurately determining the boundary condi-
tions for the complex shape of the organs and/or complex
interaction forces between the region of interest (ROI) and sur-
rounding tissues, which is required by FEM, FEM suffers from
the problem of slow convergence. In the case of liver surgery,
Lange et al.12 reported that registration accuracy in the range of
3 mm with a manual interaction time of about 10 min is reason-
able for clinical application. During radiotherapy treatment, it is
highly desirable to achieve an image registration accuracy of
better than 3 mm at the treatment target.13 Noorda et al.8 reported
that with an average vessel misalignment of 3 mm, each inten-
sity-based 3-DMRI to two-dimensional (2-D) MRI image regis-
tration took ∼50 s, whereas 2-D MRI to 2-D MRI registration
took 45 s. Based on these studies, to effectively make full use of
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the complementary images, the registration error between
images of the liver should be controlled to be <3.0 mm and
the registration time depends on the requirements of a specific
clinical application.

To satisfy and improve on these requirements, avoid local
minima, and guarantee physical consistency, in our previous
work,1 we proposed a fast analytical solution to the deformable
registration problem of the liver constrained by 3-D curves and
minimal strain energy. The advantages of our method include
physically consistent alignment, analytical solution, and topol-
ogy preservation. This technique is based on the minimal strain
energy principle in linear elastic theory and is valid for defor-
mation with only small rotations. While small deformation with
small rotations can be approximated by a linear elastic model,
images of soft organs with large rotations pose a challenge to
this approximation, since the traditional linear elastic theory
cannot effectively deal with the deformation involving large
rotations as evidenced in liver resection procedures.3 This is
because in strain calculation, the high-order derivatives of the
displacement field cannot be ignored in the case of large rota-
tions. On the other hand, deformation with large rotations is a
problem that is often encountered in the clinical setting. For
example, to accurately localize the tumor for liver stereotactic
body radiation therapy,6 a deformable image registration method
was proposed to align the abdominal-compressed planning CT
image to diagnostic MR images. The authors noticed that there
is a large difference in liver shape between the CT image taken at
the planning stage and the diagnostic MR images, which is
mainly caused by abdominal compression, a procedure per-
formed to reduce tumor motion induced by breathing. In this
paper, we will specifically address the deformable image regis-
tration with large rotation/motion.

Deformation patterns are an important research problem
since a good understanding of the deformation patterns can
help us to choose a suitable registration method for deformable
tissue registration. However, there are few works in the literature
to address and analyze the deformation pattern of the abdominal
organs. Heizmann et al.3 observed that, for 11 patients who
underwent liver resection procedures, there is a significant
shape discrepancy or deformation between the livers before
the surgery and during the surgery, which is caused by natural
mobility, flexibility, and surgical manipulation for resection. A
solely rigid alignment of the preoperative and intraoperative
images of the whole liver results in a large misalignment of ana-
tomical positions by several centimeters due to varying tissue
deformation patterns in different regions of the liver. How-
ever, the local deformation of the segmental structure of the
liver can be depicted by smooth variation of the displacements,
and after a local rigid alignment of the local anatomical struc-
ture, the residual discrepancy (i.e., pure deformation) is reduced
to <5 mm. Therefore, based on the above results, the overall
large displacement of the liver during liver resection can be
modeled as different large rigid local motions plus relatively
small local deformations in different regions of the liver. In this
paper, we will analyze the deformation pattern of the liver and
use the acquired knowledge of the pattern to formulate our regis-
tration method. We observed that although surgeries often
involve large displacements, in many scenarios, large rotations
with small deformation are a valid deformation model. For
example, the displacement due to breathing or positioning
can be modeled locally as large motion with small deformation.
Moreover, in the nonsurgical applications such as diagnosis or

follow-up and in minimal invasive or noninvasive procedures
such as radiotherapy and high intensity focused ultrasound abla-
tion,6 the assumption of large rotation with small deformation is
often valid.

In this study, we extend our previous fast registration
technique1 to align deformable images involving large motion
of soft tissues using a region-based neuro-fuzzy transformation
model. In this study, in each region, a rigid transformation rep-
resents the local rigid motion while an affine transformation
models the local deformation of soft tissues. As a result, we
derive an analytical global optimal solution to the deformable
registration problem by minimizing tissue strain energy con-
strained by 3-D curves and point marks. The proposed method
is fast and can overcome the local minima problem. Minimiza-
tion of strain energy provides the resulting smooth deformation
field and good generalization properties, prevents the issue of
unnatural deformation, and leads to a physically consistent
deformable match of the images. We have validated our pro-
posed technique with MR image data of human subjects. We
have demonstrated the effectiveness of our deformable tech-
nique in registering MR liver images. This technique has the
potential to significantly improve the registration capability and
the outcomes of clinical procedures. The contributions of this
paper are three fold. First, we analyzed the deformation field
of the liver and proposed locally decomposing the total displace-
ment into large rotations and relatively small deformations, so
the assumption of a linear elastic model is valid. Second, region-
based neuro-fuzzy transformation models for large rotations are
proposed to seamlessly piece together the local transformation
models involving large rotations. Finally, we extended our
method to deformable registration with large rotations for the
liver to guarantee the analytic globally optimal solution.

2 Analysis of Deformation Field of the Liver
Linear elastic theory is the best known and most widely used
branch of solid mechanics due to its simplicity,11 and linear elas-
tic theory-based image registration can achieve a physically
consistent solution that leads to a fast analytical solution to
deformable registration.1 The use of linear elastic theory
requires that the deformable material is subject to small defor-
mation and small rotation. However, in many clinical applica-
tions, the overall displacement of soft tissues, which may be
caused by the breathing motion or patient positioning, is large.
For example, many clinical procedures require the registration
of multimodality images involving ultrasound images such as
MR-to-ultrasound registration and CT-to-ultrasound registra-
tion. During these procedures, the patient is often repositioned
to obtain high-quality ultrasound images, and, as a result, we
need to register two images involving large rotations or motion.
In this study, we will analyze the deformation patterns of differ-
ent regions of the liver and investigate whether the linear elastic
theory can be employed for the rapid deformable registration of
liver images. The comprehensive analysis of deformation pat-
terns will also provide guidelines for proper selection of regions
and their parameters in region-based deformable registration. In
particular, we will first analyze the deformation patterns of the
liver of the human subjects and then use polar decomposition to
separate the displacement of the liver into pure deformation and
rigid motion. As a result, we justify that the real-large displace-
ment of the liver can be locally decomposed into relatively small
pure deformation and large rigid motion.

Journal of Medical Imaging 014001-2 Jan–Mar 2017 • Vol. 4(1)

Huang et al.: Deformable image registration for tissues with large displacements



In this paper, we partition the liver into finite regions. The
main advantage of this division is to create multiple region-
based submodels to represent the local motion and the local
deformation for each region individually. Then, we combine
the transformations of the submodels to form a unified transfor-
mation model of the entire liver using the neuro-fuzzy tech-
nique, which will be discussed in details in Sec. 3.1.

To effectively analyze the deformation patterns of soft tis-
sues, in this section, we propose a technique to decompose over-
all displacements of soft tissues into rigid motion (rotation and
translation/shift) and pure deformation (scaling and shearing)
region-by-region. To the best of our knowledge, this is the
first time that the complex displacement of the liver is explicitly
separated into local pure deformation and rigid motion. This
separation also provides deep understanding of the characteris-
tics of the complex motion and deformation of the liver. The
procedure to analyze the deformation patterns of the liver is
as follows.

Step 1: For each region, we employ an affine transformation
y ¼ Axþ t to depict displacements uðxÞ ¼ y − x in
the neighborhood of a selected vessel bifurcation

point, where A is a 3 × 3 matrix, t is the 3 × 1 trans-
lation vector, x is the 3 × 1 vector of coordinates
before transformation, and y is the 3 × 1 vector of
transformed coordinates after affine transformation.
Note that the origin of the coordinate system x is
located at the center of the region.

Step 2: We employ a polar decomposition technique to
decompose the affine 3 × 3 matrix A into two com-
ponents: a 3 × 3 rotation matrix R and a 3 × 3
stretching matrix P,14 i.e.,

EQ-TARGET;temp:intralink-;e001;326;642A ¼ RP: (1)

In this study, we employ the singular value decomposition
A ¼ USVT (Ref. 15) to perform the polar decomposition A ¼
RP (Ref. 14) as follows:

EQ-TARGET;temp:intralink-;e002;326;573R ¼ UVT; (2)

EQ-TARGET;temp:intralink-;e003;326;542P ¼ VSVT; (3)

where A, R, P, S, U, V are all 3 × 3 matrices, S is a diagonal
matrix with positive diagonal elements for real deformation, and
U and V are the orthogonal matrices. Furthermore, this decom-
position also gives the principal scaling magnitudes represented
by the diagonal elements of S in the three orthogonal directions,
which are defined by the three columns of V. Note that the rota-
tion transformation R does not produce any deformation of soft
tissues. However, the component P represents the stretches of
the soft tissues along a set of orthogonal axes. Therefore, the
stretching matrix P represents the pure deformation of soft tis-
sues in the ROI, which contributes to the elastic potential energy
stored in the soft tissues.

Figure 1 shows the schematic of the decomposition of
the deformation transformation to a rotation and a stretching
transformation.

Figure 2 shows the typical decomposition of a deformed
ellipsoid object into pure stretching deformation and pure rota-
tion. The green ellipsoid represents a part of soft tissues in the
ROI under deformation, the purple ellipsoid stands for the
deformed one after pure deformation (i.e., stretching in this
study) consisting of scaling and shearing, its long axis represents

Fig. 1 Schematic of how to decompose the deformable image.
(a) Original sample vessel centerline, (b) scale image, and (c) the
deformable transformation produced by applying scaling and
shearing.

Fig. 2 The typical decomposition of a deformed ellipsoid object into pure stretching deformation and pure
rotation. The blue ball is a reference, the green ellipsoid represents a part of soft tissues in the ROI under
deformation, the purple ellipsoid stands for the deformed one after pure deformation/stretching consisting
of scaling and shearing, its long axis represents the principal stretching direction, and its short axes stand
for the directions that are compressed. The red ellipsoid is obtained by rotation from the deformed purple
one. (a) Green: original, (b) purple: after strectching, and (c) red: after rotation.
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the principal stretching direction, and its short axes stand for the
directions that are compressed. The red ellipsoid is obtained by
applying a pure rotation to the deformed purple one. Figure 3
shows the deformation patterns within selected regions of the
liver. We observe that the principal stretching orientations in dif-
ferent regions are different, and most regions deform in similar
orientations.

Now, we demonstrate the decomposition of total displace-
ments of the liver due to patient repositioning or respiratory
motion in Fig. 4. The total displacement uðxÞ of soft tissues
at point x within a region is decomposed into three parts:

pure deformation (i.e., stretching) usðxÞ, rotation urðxÞ, and
translation (i.e., shift) utðxÞ. In the affine transformation of
a region y ¼ Axþ t, where t is the translation, A stands for
the linear transformation, which can be further decomposed
into two parts: pure deformation and pure rotation by using
polar decomposition.

Figure 4 shows a schematic diagram for calculating different
components of the overall displacement vector at a point.

2.1 Observations and Analysis

In this study, we employed two typical scenarios to demonstrate
the deformation pattern results for the liver. The following pro-
cedure is used to obtain displacement components. We first
employed our proposed approach (see Sec. 3 for details) to
do deformable registration of two images, and we, therefore,
obtain the displacement field in the whole ROI. Second, for
each region, we obtain 1000 sample points of the displacement
field and perform affine registration. Next, we perform polar
decomposition to separate the resulting local affine transforma-
tion into stretching, rotation, and translation components. The
sample displacement points are then employed to calculate
the corresponding displacement components with each decom-
posed transformation component. Table 1 shows the decompo-
sition of displacements for two typical scenarios (see Sec. 4 for
the details of MR images used for this experiment). uM stands
for the total average displacement of regions, uS represents the
pure deformation, uR is the displacement caused by the rotation
component, and ut stands for the displacement from shift.
Rotation angle is the local rotation in the angle-axis form con-
verted from rotation matrix R, and s1, s2, s3 stand for the scales
of pure deformation along three principal axes. The first sce-
nario (denoted as DS1) is the deformation between the two
images of the liver acquired at different positions with breath-
hold; the second scenario (denoted as DS2) is the deformation
between the two images of the liver acquired at the end of inha-
lation and the end of exhalation. For the first scenario, we have
the following observations. First, the average displacement
caused by pure deformation is ∼5.27 mm, and the average of
maximal scaling is 9.3%. Next, the average displacement caused
by pure rotation is ∼60.15 mm, and the average rotation angle is
101.85 deg. Finally, the average displacement caused by shift is
∼79.66 mm. Therefore, tissue shift dominates the overall dis-
placements in each region. We observe the similar deformation

Fig. 3 Deformation patterns within selected regions of the liver. For
each region, a sphere is placed at the region center before deforma-
tion. Then, each sphere is transformed by the corresponding local
affine transformation to obtain the ellipsoid shown after deformation.
The individual magnitude and orientation of both stretching and rota-
tion for each region.

Fig. 4 Displacement decomposition, uðxÞ ¼ UsðxÞ þ Ur ðxÞ þ Ut ðxÞ.

Table 1 Deformation patterns of 10 different regions.

Displacement (mm) Rotation Stretching

uM uS uR ut (deg) s1 s2 s3

DS1 Deformation between lateral decubitus position and supine position

Mean
�STD

84.225� 23.247 5.274� 2.099 60.146� 20.384 79.655� 17.556 101.846� 3.451 1.093� 0.035 1.008� 0.028 0.911� 0.030

DS2 Deformation between end of inhale and end of exhale

Mean
�STD

33.632� 5.559 3.409� 2.156 7.771� 2.953 31.174� 4.710 14.351� 4.133 1.078� 0.052 0.961� 0.0250 0.883� 0.0493

Note: uM , total displacement; uS , from pure deformation; uR , from rotation; ut , from shift.
s1, s2, s3 stand for the scales along three principal axes, respectively.
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patterns in the second scenario. In summary, the pure deforma-
tions are small; therefore, the assumptions of linear elastic
theory are satisfied in each region. This justifies that we can
apply the linear elastic theory to develop our deformable regis-
tration algorithm.

3 Deformable Image Registration for Large
Rotations

In deformable image registration, in general, no closed-form sol-
utions exist to find the optimal registration parameters due to
nonlinear and nonconvex registration energy functions. Further-
more, the optimization methods often get trapped in a local min-
imum if the starting point is not close to the correct registration.
To address the challenge of deformable image registration for
soft tissue deformation involving large motion, we propose
using a multiple-region-based model to separately represent
local motion and local deformation (see Fig. 5). Specifically,
a region-based neuro-fuzzy transformation model is proposed
to depict the displacement field in the ROI that is partitioned
into N regions. For each region, a local transformation is pro-
posed to model the corresponding two components: pure defor-
mation is modeled by an affine transformation, and large rigid
motion is represented by a local rigid transformation. This local
model is a global function, which has good generalization
within the region, and its effect range can be effectively local-
ized by selecting the appropriate membership functions of the
fuzzy set associated with the region, and the neuro-fuzzy infer-
ence system ensures the smooth transition across the regions. By
the proper design of registration components, we derive an ana-
lytical global optimal solution to the deformable registration
involving large motions. The combination of the region-based
neuro-fuzzy transformation model and minimizing strain energy
leads to a physically consistent and analytical solution to
deformable registration.

In this paper, we optimize a physics-based composite energy
function. Our registration technique is based on elastic solid
mechanics and the minimum strain energy principle. We aim
to minimize the following energy function:

EQ-TARGET;temp:intralink-;e004;63;332J ¼ weEe½TðxÞ� þ wcEc½TðxÞ� þ wmEm½TðxÞ�; (4)

where TðxÞ is the overall deformable transformation model,
Ee½TðxÞ� is the strain energy produced by deformation of soft
tissues, Ec½TðxÞ� is the distance energy between pairs of 3-D
vessel centerlines extracted from the fixed and moving images,
Em½TðxÞ� is the distance energy between corresponding point
marks such as bifurcation points, and wi is the weight relative
importance of each term. This energy function measures the
quality of alignment between two sets of blood vessels, the
alignment between two sets of point marks, and the strain
energy produced by soft tissue deformation. We discuss differ-
ent registration components in detail in the following sections.

3.1 Region-Based Neuro-Fuzzy Transformation
Model Involving Large Rotation

The nonrigid transformation model is a key component in the
deformable image registration, which determines the computa-
tional complexity of the image registration process and the
capability to depict the real deformation of soft tissues. In
this study, we extend a region-based neuro-fuzzy transformation
model proposed in our previous work1 to model the deformation
of soft tissues involving large rotation and shift. This model

consists of two parts: multiple different local models for differ-
ent regions and a neuro-fuzzy system that is used to seamlessly
and smoothly integrate multiple local models into a unified
deformable transformation model.16 Based on the characteristics
of deformation in each region, we can select a different local
model that best depicts the local deformation of that region.

In this study, for each region i, the following transformation
is employed to depict the local deformation with large motion (i.
e., rotation and translate):

EQ-TARGET;temp:intralink-;e005;326;370yi ¼ TiðxÞ ¼ TiRðxÞ þ TiAðxÞ; (5)

EQ-TARGET;temp:intralink-;e006;326;343TiRðxÞ ¼ AiRðx − CiÞ þ biR þ Ci; (6)

EQ-TARGET;temp:intralink-;sec3.1;326;318TiAðxÞ ¼ AiAðx − CiÞ þ biA þ Ci;

where
EQ-TARGET;temp:intralink-;sec3.1;326;281

AiR ¼

2
64
AiR11 AiR12 AiR13

AiR21 AiR22 AiR23

AiR31 AiR32 AiR33

3
75;

AiA ¼

2
64
AiA11 AiA12 AiA13

AiA21 AiA22 AiA23

AiA31 AiA32 AiA33

3
75;

and
EQ-TARGET;temp:intralink-;sec3.1;326;164

biR ¼

2
64
biR1
biR2
biR3

3
75; biA ¼

2
64
biA1
biA2
biA3

3
75; Ci ¼

2
64
ci1
ci2
ci3

3
75:

Ci is the rotation center for both the rigid and affine transfor-
mations in region i. TiRðxÞ is a fixed rigid transformation for
the local rigid motion part, and TiAðxÞ is the centered affine
transformation that mainly depicts the deformation part caused

Select region parameters 
(#regions, centers, size) 

Compute strain energy coefficients (offline) 

 Extract and match centerlines and branch points 

Compute coefficients of linear equation 

Calculate strain energy term using only affine part 
Calculate curves and marks terms using full local models

Solve linear equation to obtain optimal transformation 

 Calculate registration accuracy TRE & ACD 

Compute rigid transformation for each local model by 
locally registering centerlines  

Fig. 5 The flowchart of the proposed method.
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by scaling and shearing and possibly including residual small
motion that is not modeled by TiRðxÞ in region i. Since rigid
motion does not cause any deformation of soft tissues, it will
not produce any strain energy. Therefore, only the affine part
is taken into account when the strain energy term in the regis-
tration energy function is calculated. This local transformation
model is mathematically equivalent to the small deformation
represented by TiAðxÞ followed by a large motion of TiRðxÞ.
In this study, we can still use linear elastic solid theory17 to
locally calculate the strain energy in each region, which avoids
the inaccuracy caused by a large rotation in the strain energy
calculation. The overall transformation of the entire ROI should
be represented in a single coordinate system. In this section, cen-
tered rigid and centered affine transformation are used to re-
present the local displacement for each region since it is
more intuitive to represent rotation, scaling, and shearing rela-
tive to the center of each region.

To facilitate the derivation of an analytical solution to our
deformable registration problem [Eq. (4)], we need to rewrite
the local transformation TiðxÞ as an explicit linear function
of transformation parameters. We define the local transforma-
tion parameters as follows:

EQ-TARGET;temp:intralink-;e007;326;752

pTiA ≡ ½AiA11; AiA12; AiA13; AiA21; AiA22;AiA23;

AiA31; AiA32;AiA33; biA1; biA2; biA3�T; (7)

EQ-TARGET;temp:intralink-;e008;326;712

pTiR ≡ ½AiR11; AiR12; AiR13; AiR21; AiR22; AiR23;

AiR31; AiR32; AiR33; biR1; biR2; biR3�T; (8)

where pTiA is the corresponding 12 parameters ðAiA; biAÞ of
TiðxÞ and TiAðxÞ, i.e., the variables to be optimized during
image registration, and pTiR is the corresponding 12 parameters
ðAiR; biRÞ of the local rigid transformation TiRðxÞ, which are
determined locally before deformable registration.

Therefore, we rewrite Eq. (5) as follows:

EQ-TARGET;temp:intralink-;e009;326;601yi ¼ TiðxÞ ¼ AT
pTiAðxÞpTiA þ BpiðxÞ; (9)

where

EQ-TARGET;temp:intralink-;sec3.1;326;557BpiðxÞ ¼ AT
pTiRðxÞpTiR þ 2Ci;

EQ-TARGET;temp:intralink-;sec3.1;63;498

AT
pTiAðxÞ ¼ AT

pTiRðxÞ ¼

2
64

x1 − Ci1 x2 − Ci2 x3 − Ci3 0 0 0 0 0 0 1 0 0

0 0 0 x1 − Ci1 x2 − Ci2 x3 − Ci3 0 0 0 0 1 0

0 0 0 0 0 0 x1 − Ci1 x2 − Ci2 x3 − Ci3 0 0 1

3
75:

From Eq. (9), we clearly see that TiðxÞ is a linear function of
local transformation parameters pTiA.

3.1.1 Computation of the local rigid transformation for
each region

To obtain the local rigid transformation TiRðxÞ in region i, we
minimize a weighted square distance error between correspond-
ing centerlines within the neighborhood of each region center as
follows:

EQ-TARGET;temp:intralink-;e010;63;327EcRðpÞ ¼
XNC

i¼1

XNCi

k¼1

1

2
wðXfikÞkTiRðXfikÞ − Xmikk2; (10)

EQ-TARGET;temp:intralink-;sec3.1.1;63;278wðxÞ ¼ exp

�
−
�ðx1 − cixÞ2

2σ2x
þ ðx2 − ciyÞ2

2σ2y
þ ðx3 − cizÞ2

2σ2z

��
;

where ðcix; ciy; cizÞ are the region center, ðσx; σy; σzÞ are the con-
stants to control the point weight in the region, fXfik; Xmikg are
the resampled equidistant points on the i’th centerline, that is,
for each matched pair of fixed and moving centerlines, the same
number of points are resampled with equidistance. In this case,
when the points of centerlines are far away from the region
center, the corresponding weights wðxÞ will decrease, that is,
the distant centerline points have less effect on the resulting
rigid transformation. Therefore, the resulting rigid transforma-
tion reflects the dominant local rotation and translation of the
soft tissues. Note that we do not need a very accurate local
rigid transformation because the residual rigid transformation
errors that include small rotations and translations can be further
addressed by the affine term. According to the linear elastic
theory, the affine term is employed to achieve an accurate

registration under the condition of small rotations by minimiz-
ing the stain energy.

Based on the analysis of deformation patterns of the ROI, we
partition the whole ROI into multiple regions, as shown in
Fig. 6, each having a different local transformation model TiðxÞ.
Since the real deformation of the ROI within the organ is smooth
in the applications under consideration, a neuro-fuzzy system is
employed to seamlessly integrate multiple local models into a
unified deformable transformation model to ensure smooth tran-
sition across the different regions.16 Our neuro-fuzzy system has
the following NR rules:

EQ-TARGET;temp:intralink-;sec3.1.1;326;313

Fuzzy rule 1∶ If point x is in regionR1; then y ¼ T1ðxÞ:
Fuzzy rule 2∶ If point x is in regionR2; then y ¼ T2ðxÞ:

: : : : : :

Fuzzy ruleNR∶ If point x is in regionRNR
; then y ¼ TNR

ðxÞ ;

Fig. 6 Configuration of local regions.
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where x is a 3-D point in the fixed image space, y is the cor-
responding transformed point, TiðxÞ is the local transformation
model specifically tailored to region i.

The overall deformable transformation y ¼ TðxÞ ¼ TNFðxÞ
within the entire ROI can be derived as in Ref. 16

EQ-TARGET;temp:intralink-;e011;63;466y ¼ TðxÞ ¼
XNR

i¼1

MiðxÞTiðxÞ∕
XNR

i¼1

MiðxÞ; (11)

EQ-TARGET;temp:intralink-;e012;63;417MiðxÞ¼ exp

�
−
�ðx1−cixÞ2

2σ2x
þðx2−ciyÞ2

2σ2y
þðx3−cizÞ2

2σ2z

�CGn
�
;

(12)

where MiðxÞ is the membership function of a fuzzy set associ-
ated with region Ri. In this study, the generalized Gaussian
membership function (see Fig. 7) is chosen for each local region,
ðcix; ciy; cizÞ are the region center, and ðσix; σiy; σizÞ and CGn are
used to control the effective range of the local model TiðxÞ; large
CGn will effectively limit the local model within the range
of ðσix; σiy; σizÞ.

Using Eq. (9), we can rewrite the overall transformation (11)
for the entire ROI in the following form:

EQ-TARGET;temp:intralink-;e013;63;263TðxÞ ¼ Tðx; pÞ ¼ AT
pðxÞpþ BpðxÞ; (13)

where

EQ-TARGET;temp:intralink-;sec3.1.1;63;219p ≡ ½pT
T1A pT

T2A · · · pT
TNRA �T;

EQ-TARGET;temp:intralink-;sec3.1.1;63;192AT
pðxÞ ¼ ½Mn1ðxÞAT

pT1A
;Mn2ðxÞAT

pT2A
; : : : ;MnNR

ðxÞAT
pTNRA

�;

EQ-TARGET;temp:intralink-;sec3.1.1;63;159BpðxÞ ¼
XNR

i¼1

MniðxÞBpiðxÞ;

EQ-TARGET;temp:intralink-;e014;63;114MniðxÞ ¼ MiðxÞ∕
XNR

r¼1

MrðxÞ: (14)

p is the adjustable parameters in the overall transformation
model TNFðxÞ, including all the parameters of local affine trans-
formations. Note that the TNFðxÞ is a nonlinear transformation
with respect to spatial coordinates x but is linear with respect to
transformation parameters p. Combined with the constraints of
3-D curves, point marks, and strain energy, this linearity of
parameters p leads to a fast analytical optimal solution.

Furthermore, we can easily calculate the derivative of TNFðxÞ
with respect to the parameters p as follows:

EQ-TARGET;temp:intralink-;e015;326;653

∂TNFðxÞ
∂p

¼ AT
pðxÞ: (15)

Analytical optimal solution to registration energy func-
tion. In this section, we briefly define each term in the regis-
tration energy function [Eq. (4)] and provide the equations for
their derivatives with respect to the transformation parameters p.
The derivation is similar to our previous work.1

Strain energy

The strain energy term prevents issues such as overfitting and
leads to physically consistent deformable match results. Based
on elastic solid mechanics, strain energy Ee is generated only by
the deformation of soft tissues and can be calculated using the
Saint–Venant model,11 as follows:

EQ-TARGET;temp:intralink-;e016;326;457Ee ¼
ZZZ

Ω
WðEÞdx dy dz; (16)

EQ-TARGET;temp:intralink-;sec3.1.1.1.1;326;415WðEÞ ¼ 0.5λ½trðEÞ�2 þ μ × trðE2Þ;

EQ-TARGET;temp:intralink-;sec3.1.1.1.1;326;390trðEÞ ≡ e11 þ e22 þ e33;

EQ-TARGET;temp:intralink-;sec3.1.1.1.1;326;365eij ≈
1

2

�
∂TNFAi

∂xj
þ ∂TNFAj

∂xi
− 2δij

�
;

whereWðEÞ is the strain energy density, E ¼ ðeijÞ3×3 is a strain
tensor, and ðλ; μÞ is the tissue elastic parameters. Note that the
strain energy is calculated using only the affine part of the over-
all transformation TNFðxÞ.

We can rewrite the strain energy as a quadratic function of
the transformation parameters p in the following equation (see
Appendix for details):

EQ-TARGET;temp:intralink-;e017;326;247EeðpÞ ¼ Ce0 þ CT
e1pþ pTCe2p; (17)

EQ-TARGET;temp:intralink-;sec3.1.1.1.1;326;216

Ce0 ¼
ZZZ

Ω
C0ðxÞdx dy dz; Ce1 ¼

ZZZ
Ω
C1ðxÞdx dy dz;

Ce2 ¼
ZZZ

Ω
C2ðxÞdx dy dz;

EQ-TARGET;temp:intralink-;sec3.1.1.1.1;326;152WðEÞ ¼ C0ðxÞ þ CT
1 ðxÞpþ pTC2ðxÞp;

where constants ðCe0; Ce1; Ce2Þ can be calculated offline in
advance based on the preprocedural image.

Fig. 7 One-dimensional generalized Gaussian function (σ ¼ 1).
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Curve energy

We have proposed an efficient technique to analytically calcu-
late the closest point on a 3-D curve to a given point and the
derivative of the distance between curves with respect to trans-
formation parameters through a parametric representation of
3-D curves.1 We aim to minimize the distance between pairs
of corresponding vessel centerlines, which is formulated by
minimizing the following function:

EQ-TARGET;temp:intralink-;e018;63;657EcðpÞ ¼
XNC

i¼1

XNCi

k¼1

1

2
kTðXfikÞ − CmiðtÞk2; (18)

where NC is the total number of vessel centerlines, NCi is the
number of discrete points on the i’th centerline from the fixed
image, Xfik, i ¼ 1;2; : : : ; NC, k ¼ 1;2; : : : ; NCi is the k’th point
on the i’th centerline from the fixed image, and CmiðtÞ is the
parametric representation of the i’th vessel centerline in the
moving image.1 Its derivative is as follows:

EQ-TARGET;temp:intralink-;e019;63;541

∂EcðpÞ
∂p

¼ LpcðxÞp − YpcðxÞ; (19)

where
EQ-TARGET;temp:intralink-;sec3.1.1.1.2;63;486

LpcðxÞ ¼
XNC

i¼1

XNCi

k¼1

fApðXTfikÞDT
cmikA

T
pðXTfikÞg;

YpcðxÞ ¼
XNC

i¼1

XNCi

k¼1

fApðXTfikÞDT
cmikXcmikg;

EQ-TARGET;temp:intralink-;sec3.1.1.1.2;63;407DT
cmik ¼ I3×3 −

�
∂t

∂XTfik

��
∂CmiðtÞ

∂t

�
T
:

Note that ∂EcðpÞ
∂p is a linear function of transformation parameters

p, which implies that the curve energy EcðpÞ is a quadratic
function of parameters p.

Point mark energy

Point marks are employed to anchor the deformation at some
specific 3-D locations. We assume that there are Nm pairs
of corresponding point marks (i.e., bifurcation points)
ðXfk; XmkÞ, k ¼ 1;2; : : : ; Nm. Then, we minimize the distance
between corresponding point marks by adding the following
term to the registration energy function:

EQ-TARGET;temp:intralink-;e020;63;237EmðpÞ ¼
XNm

i¼1

1

2
kTðXfkÞ − Xmkk2: (20)

Its derivative with respect to the transformation parameters
can be analytically calculated through the following equation:

EQ-TARGET;temp:intralink-;e021;63;165

∂EmðpÞ
∂p

¼
XNm

i¼1

ApðXfkÞ½TðXfkÞ − Xmk�: (21)

From the above derivation, all three terms are quadratic func-
tions of the transformation parameters p. Therefore, the global
optimal transformation parameters can be calculated analytically
by solving linear equations ∂J∕∂p ¼ 0. This solution is globally

optimal, and there are no local minima in this registration energy
function.

Registration accuracy measures. To evaluate the quality of
our proposed registration approach, we adopt the following
three accuracy measures to assess the registration accuracy.

1. Landmark-based target registration errors (TRE): In
this assessment, landmarks (targets) were defined as
bifurcation points of blood vessels and were localized
in both MR image spaces. The resulting registration
transformation was applied to transform the landmarks
in the fixed image space to the moving image space,
TREs were then calculated in the same coordinate sys-
tem. The TRE is defined as the root mean square (rms)
of the distances between the landmarks in the moving
MR image and the corresponding homologous land-
marks in the fixed MR image after registration.18,19

After vessel centerlines were extracted, bifurcation
points were calculated as the intersections of the
centerlines using custom software; bifurcation correc-
tion was then performed to obtain more consistent
homologous bifurcation points across different MR
images.

2. Average vessel centerline distance: Since major bifur-
cation points are only reliably identified in the central
part of the liver, blood vessel centerlines cover a larger
region of the liver and are employed to assess registra-
tion error, i.e., the average centerline distance (ACD)
between two corresponding centerlines after registra-
tion. In this study, the centerlines were extracted using
slicer vascular modeling toolkit (VMTK) centerline
extraction modules.20

3. Average vessel centerline distance of independent
points (ACDIP): When the ACD is computed, the dis-
crete points xFik’s on the i’th centerline in the fixed
image are used for registration. To calculate the
ACDIP, we employ a different set of discrete points
xFIPik’s resampled on the centerlines of the fixed
images. These points are independent of xFik ’s and are
not utilized for registration. Therefore, the ACDIP is
calculated as follows:

EQ-TARGET;temp:intralink-;e022;326;262ACDIP ¼ 1

N

XNC

i¼1

XNciIP

k¼1

kTðxFIPikÞ − CmiðtcikÞk;

(22)

where xFIPik’s are the discrete points on centerline i in
the fixed image, CmiðtcikÞ is the closest point on the
i’th centerline in the moving image from the trans-
formed point TðxFIPikÞ, and TðxÞ is the resulting regis-
tration transformation. This metric is used to assess the
alignment accuracy of centerline parts that are not used
for registration.

4 Experimental Results
In this section, we present registration results of liver MR
images using our proposed deformable registration method.
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The images used in this study were acquired from the same
human volunteer with a breath-hold. High-quality MR images
were acquired in the axial plane using a 1.5T General Electric
(GE) scanner (GE Medical Systems, Milwaukee, Wisconsin).
Image acquisition was performed using the LAVA gradient
echo sequence with TR ¼ 3.79 ms, TE ¼ 1.72 ms, a flip
angle of 12 deg, an image matrix size of 256 × 256, in-
plane pixel size of 1.3 mm × 1.3 mm, and slice thickness of
1.5 mm. One pair of image sets was acquired at both the supine
position and the lateral decubitus position, in which large rota-
tion occurs. The second pair of image sets was acquired at the
end of inhalation and the end of exhalation of the respiratory
cycle, which depict the largest displacement during the whole
respiratory cycle. Both pairs of MR images were employed
for analyzing deformation patterns, as shown in Table 1 of
Sec. 2. Since the rotation angle is relatively small in the second
pair of MR images, only the first pair of MR images was used to
demonstrate our deformable image registration method involv-
ing large rotation in this section.

4.1 Visual Inspection

Before deformable registration, Fig. 8 shows soft tissue defor-
mation involving large rotation between two sets of the center-
lines at different patient positions. The selected overlays of the
centerlines after registration are shown in Fig. 9 using 10 sub-
models, which demonstrate that the centerlines are matched well
after registration. Figure 10 shows the registered images.

4.2 Registration Accuracy: TRE, ACD, and ACDIP

To quantitatively evaluate the registration accuracy, we consid-
ered three accuracy metrics: TRE, ACD, and ACDIP. The

Fig. 8 Centerlines before match. Green lines: lateral decubitus, pur-
ple lines: supine position.

Fig. 9 Overlay of centerlines after match. Red lines: left lateral decu-
bitus, yellow lines: supine centerlines mapped to lateral decubitus.

Fig. 10 Overlay of images after registration. First column: three orthogonal slices of 3-D MR fixed image,
second column: three orthogonal slices of resampled 3-D MR moving image after registration, third col-
umn: overlay of two images. Note that the overlay of bright green and bright red vessels is yellow, and
internal vessels are correctly matched after registration.

Journal of Medical Imaging 014001-9 Jan–Mar 2017 • Vol. 4(1)

Huang et al.: Deformable image registration for tissues with large displacements



resulting average TRE of 56 bifurcation points was
1.87� 0.87 mm, the average ACD of 109 vessel branches was
1.28� 0.78 mm, and the ACDIP was 1.28� 0.76 mm. These
registration accuracy measures demonstrate that the proposed
deformable registration technique is able to accurately register
two sets of deformable images involving large rotations at differ-
ent regions. The average registration time was about 1 s on a
computer with a Core 2 Quad 2.6 GHz Intel CPU and a memory
of 4 GB.

4.3 Comparison with the Conventional NFS Method
Without Using Large Rotation Formulation

In this section, we compare the proposed method designed for
large rotation with the conventional NFS method.1 The results
are shown in Table 2. From these results, we observe that the
proposed method outperforms the conventional NFS method
for all evaluation criteria.

The results can be explained as follows: if the soft tissues
undergo small deformation and large rotation, the assumption
of linear elastic theory becomes invalid. Since the conventional
NFS method is based on the linear elastic theory, the registration
using the conventional NFS method naturally results in a rela-
tively large alignment error. However, for the proposed method,
it first utilizes an additional local rigid motion model to correct
the large motions between the two images, and the residual dis-
crepancy can be accurately represented by the linear elastic
theory. As a result, the registration can achieve an accurate
alignment.

5 Discussion

5.1 Nonhomogeneous Tissue Property

In this study, we assume the liver tissue is homogeneous; how-
ever, this is not a valid assumption in some situations. For
instance, the tissue with embedded tumor is in nature inhomo-
geneous since the stiffness of the tumor is very different from the
normal surrounding tissues. Since cancer is the leading cause of
death in Canada and is responsible for 30% of all deaths,21 it is
important to investigate deformable registration methods that
are suitable for inhomogeneous tissues. In the future, we plan
to extend our fast deformable registration method to inhomo-
geneous tissues and investigate the accuracy and speed of the
method.

5.2 Optimal Region Partition for Region-Based
Neuro-Fuzzy Transformation Models

In this study, we selected 10 regions based on our experience. In
the future, we can use some optimization methods such as genetic

algorithm to obtain an optimal partition of the ROI into multiple
regions. Intuitively, the selection of regions will affect the accu-
racy and speed of our deformable registration method. We will
need to answer the questions such as “what is the optimal number
of regions?,” “what is the optimal configuration of locations?,”
and “what are the optimal sizes of regions?.”

5.3 Development of New Evaluation Methods

It is very challenging to quantitatively evaluate the registration
accuracy of deformable registration techniques in clinical prac-
tice due to limited natural marks and complex deformation pat-
terns of soft tissues. To accurately assess the accuracy, the real
entire deformation field is required; however, this is usually not
available for real human subjects in clinical environments. In the
future, we will create and use realistic synthetic data with the
known ground truth to thoroughly evaluate our proposed regis-
tration method, in addition to the metrics (TRE/ACD). In the
future, we will use a biomechanically based FEM to create
gold standard deformation fields and completely evaluate the
overall performance of our proposed nonrigid registration
method. Different from TRE and ACD, which are only based
on the sparse information available, the evaluation method
will be able to evaluate the registration accuracy not only in
the neighborhood of bifurcation points and blood vessels but
also in the regions between the landmarks and vessels.

6 Conclusion
We have presented a solution to the deformable registration of
MR images of soft tissues with large displacements, especially
large rotations. The proposed method can achieve a fast analyti-
cal globally optimal solution. It is an extension of our previous
work and tackles one type of deformable registration problem,
which is typically encountered in many interventional proce-
dures on internal soft organs and tissues in which the large dis-
placements can be modeled as large motion and relatively small
local deformation in each region. A neuro-fuzzy transformation
model has also been proposed to adapt the previous formulation
to the registration problem with large motion to achieve a fast,
analytical solution.

This analytical solution to the registration problem can be
employed to rapidly match internal structures of soft organs.
It can be also used to dynamically update guidance vessel mod-
els for vessel extraction in our joint registration and segmenta-
tion framework.

In the future, we will investigate the effects of different MR
contrasts in our deformable registration. We also plan to extend
our techniques to multimodality image registration such as MR-
CT registration and MR-US registration.

Appendix: Computation of Strain Energy
In this section, we derive the equation to calculate strain energy
density WðEÞ. First, we rewrite Eq. (16) as follows:
EQ-TARGET;temp:intralink-;e023;326;146

WðEÞ ¼ λ

2
ðe11 þ e22 þ e33Þ2

þ μ · ðe211 þ e222 þ e233 þ 2e212 þ 2e213 þ 2e223Þ;

eij ≈
1

2

�
∂TNFi

∂xj
þ ∂TNFj

∂xi
− 2δij

�
: (23)

Table 2 Comparison of registration accuracy (mm).

Method
TRE

(mean� SD)
ACD

(mean� SD)
ACDIP

(mean� SD)

Proposed NFS 1.87� 0.87 1.28� 0.78 1.25� 0.76

Conventional NFS 5.32� 2.25 4.71� 2.61 4.66� 2.57

Rigid registration 8.24� 3.23 6.63� 3.15 6.59� 3.14
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To compute the element eij of the strain tensor E, we need to
compute the derivative of the transformation ∂TNFi

∂xj
.

Using Eq. (14), we rewrite the overall neuro-fuzzy transfor-
mation model [Eq. (11)] as follows:

EQ-TARGET;temp:intralink-;e024;63;708TNFðxÞ ¼
XNR

r¼1

MnrðxÞTrðxÞ: (24)

The partial derivative of the k’th component of TNFðxÞ with
respect to the i’th coordinate of point x is

EQ-TARGET;temp:intralink-;e025;63;636

∂TNFkðxÞ
∂xi

¼
XNR

r¼1

�
∂MnrðxÞ

∂xi
TrkðxÞ þMnrðxÞ

∂TrkðxÞ
∂xi

�
.

(25)

Denoting DMnriðxÞ ≡ ∂MnrðxÞ
∂xi

, we have

EQ-TARGET;temp:intralink-;e026;63;561

∂TNFkðxÞ
∂xi

¼
XNR

r¼1

½DMnriðxÞTrkðxÞ þMnrðxÞarki�; (26)

EQ-TARGET;temp:intralink-;e027;63;512

∂TNFjðxÞ
∂xi

þ ∂TNFiðxÞ
∂xj

¼
XNR

r¼1

�
DMnriðxÞTrjðxÞ þMnrðxÞarji
þDMnrjðxÞTriðxÞ þMnrðxÞarij

�
: (27)

Since TrkðxÞ is a linear function with respect to transformation
parameters p, we write Eq. (27) in the following form:

EQ-TARGET;temp:intralink-;e028;63;415

∂TNFjðxÞ
∂xi

þ ∂TNFiðxÞ
∂xj

¼ AeijðxÞpþ beij ≡ feij: (28)

Therefore, we have

EQ-TARGET;temp:intralink-;e029;63;358eij ¼
1

2
ðfeij − 2δijÞ: (29)

Substituting Eq. (29) to Eq. (23), we obtain
EQ-TARGET;temp:intralink-;x1;63;310

WðEÞ¼
�
3μþ9λ

2

�
−ð2μþ3λÞ

X3
i¼1

feiiþ
�
μþ λ

2

�X3
i¼1

ðfeiiÞ2

þμ

2
fðfe12Þ2þðfe13Þ2þðfe23Þ2g

þλffe11fe22þfe11fe33þfe22fe33g:

Note that feij is linear with respect to p from Eq. (28), andWðEÞ
is a quadratic function of p and can be rewritten as follows:
EQ-TARGET;temp:intralink-;x1;63;198

WðEÞ ¼ C0 þ
XNp

i¼1

Cipi þ
XNp

i¼1

Ciip2
i þ

XNp

i¼1

XNp

j¼iþ1

Cijpipj

¼ C0ðxÞ þ CT
1 ðxÞpþ pTC2ðxÞp:
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