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Abstract

Gaussian vector autoregressive (VAR) processes have been extensively studied in the literature. 

However, Gaussian assumptions are stringent for heavy-tailed time series that frequently arises in 

finance and economics. In this paper, we develop a unified framework for modeling and estimating 

heavy-tailed VAR processes. In particular, we generalize the Gaussian VAR model by an elliptical 

VAR model that naturally accommodates heavy-tailed time series. Under this model, we develop a 

quantile-based robust estimator for the transition matrix of the VAR process. We show that the 

proposed estimator achieves parametric rates of convergence in high dimensions. This is the first 

work in analyzing heavy-tailed high dimensional VAR processes. As an application of the 

proposed framework, we investigate Granger causality in the elliptical VAR process, and show that 

the robust transition matrix estimator induces sign-consistent estimators of Granger causality. The 

empirical performance of the proposed methodology is demonstrated by both synthetic and real 

data. We show that the proposed estimator is robust to heavy tails, and exhibit superior 

performance in stock price prediction.

1. Introduction

Vector autoregressive models are widely used in analyzing multivariate time series. 

Examples include financial time series (Tsay, 2005), macroeconomic time series (Sims, 

1980), gene expression series (Fujita et al., 2007; Opgen-Rhein & Strimmer, 2007), and 

functional magnetic resonance images (Qiu et al., 2015).
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Let X1, …, XT ∈ ℝd be a stationary multivariate time series. We consider VAR models1 such 

that

Xt = AXt − 1 + Et for t = 2, …, T ,

where A is the transition matrix, and E2, …, ET are latent innovations. The transition matrix 

characterizes the dependence structure of the VAR process, and plays a fundamental role in 

forecasting. Moreover, the sparsity pattern of the transition matrix is often closely related to 

Granger causality. In this paper, we focus on estimating the transition matrix in high 

dimensional VAR processes.

VAR models have been extensively studied under the Gaussian assumption. The Gaussian 

VAR model assumes that the latent innovations are i.i.d. Gaussian random vectors, and are 

independent from past observations (Lütkepohl, 2007). Under this model, there is vast 

literature on estimating the transition matrix under high dimensional settings. These 

estimators can be categorized into regularized estimators and Dantzig-selector-type 

estimators. The former can be formulated by

Âreg ≔ argmin
M ∈ ℝd × d

l(Y − MX) + Pρ(M), (1.1)

where Y ≔ (X1, …, XT − 1) ∈ ℝd×(T−1), X ≔ (X2, …, XT) ∈ ℝd×(T−1), l(·) is a loss function, 

and Pρ(·) is a penalty function with penalty parameter ρ. Common choices of the loss 

function include least squares loss and negative log-likelihood (Hamilton, 1994). For the 

penalty function, various ℓ1 penalties (Wang et al., 2007; Hsu et al., 2008; Shojaie & 

Michailidis, 2010) and ridge penalty (Hamilton, 1994) are widely used. Theoretical 

properties of ℓ1 penalized estimators are studied in Narki & Rinaldo (2011), Song & Bickel 

(2011), and Basu & Michailidis (2013).

In parallel to the penalized minimum loss estimators, Han & Liu (2013) proposed a Dantzig-

selector-type estimator, which is formulated as the solution to a linear programming 

problem. In contrast to the ℓ1 regularized estimators, consistency of the Dantzig-selector-type 

estimator do not rely on restricted eigenvalue conditions. These conditions do not explicitly 

account for the effect of serial dependence. Moreover, the Dantzig-selector-type estimator 

weakens the sparsity assumptions required by the ℓ1 regularized estimators.

Although extensively studied in the literature, Gaussian VAR models are restrictive in their 

implications of light tails. Heavy-tailed time series frequently arise in finance, 

macroeconomics, signal detection, and statistical physics, to name just a few (Feldman & 

Taqqu, 1998). For analyzing these data, more flexible models and robust estimators are 

desired.

In this paper, we develop a unified framework for modeling and estimating heavy-tailed 

VAR processes. In particular, we propose an elliptical VAR model that allows for heavy-

1For simplicity, we only consider order one VAR models in this paper. Extensions to higher orders can be obtained using the same 
technique as in Chapter 2.1 of Lütkepohl (2007).

Qiu et al. Page 2

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tailed processes. The elliptical VAR model covers the Gaussian VAR model as a special 

case. Under this model, we show that the transition matrix is closely related to quantile-

based scatter matrices. The relation serves as a quantile-based counterpart of the Yule-

Walker equation2 (Lütkepohl, 2007). Motivated by this relation, we propose a quantile-based 

robust estimator of the transition matrix. The estimator falls into the category of Dantzig-

selector-type estimators, and enjoys similar favorable properties as the estimator in Han & 

Liu (2013). We investigate the asymptotic behavior of the estimator in high dimensions, and 

show that although set in a more general model, it achieves the same rates of convergence as 

the Gaussian-based estimators. The effect of serial dependence is also explicitly 

characterized in the rates of convergence.

As an application of the framework developed in this paper, we investigate Granger causality 

estimation under the elliptical VAR process. We show that just as in Gaussian VAR models, 

Granger causality relations are also captured by the sparsity patterns of the transition matrix. 

The robust transition matrix estimator developed in this paper induces sign-consistent 

estimators of these relations.

2. Background

In this section, we introduce the notation employed in this paper, and provide a review on 

elliptical distributions and robust scales. Elliptical distributions provide a basis for our 

model, while robust scales motivate our methodology.

2.1. Notation

Let v = (υ1, …, υd)⊤ be a d-dimensional real vector, and M = [Mjk] ∈ ℝd1 × d2 be a d1 × d2 

matrix with Mjk as the (j, k) entry. Denote by vI the subvector of v whose entries are index 

by a set I ⊂ {1, …, d}. Similarly, denote by MU,V the submatrix of M whose entries are 

indexed by U ⊂ {1, …, d1} and V ⊂ {1, …, d2}. Let MU,* = MU,{1, …, d2}. For 0 < q < ∞, 

we define the vector ℓq norm of v as ‖v‖q ≔ (∑j = 1
d |υj | )1/q

, and the vector ℓ∞ norm of v as 

‖v‖∞ ≔ maxj = 1
d |υj|. Let the matrix ℓmax norm of M be ‖M‖max ≔ maxjk |Mjk|, the matrix ℓ∞ 

norm be ‖M‖∞ ≔ maxj∑k = 1
d |Mjk|, and the Frobenius norm be ‖M‖F ≔ ∑jkMjk

2 . Let X = 

(X1, …, Xd)⊤ and Y = (Y1, …, Yd)⊤ be two random vectors. We write X =d Y  if X and Y are 

identically distributed. We use 0, 1, … to denote vectors with 0, 1, … at every entry.

2.2. Elliptical Distribution

Definition 2.1 (Fang et al. (1990))—A random vector X ∈ ℝd follows an elliptical 
distribution with location μ ∈ ℝd and scatter S ∈ ℝd×d if and only if there exists a 
nonnegative random variable ξ ∈ ℝ, a rank k matrix R ∈ ℝd×k with S = RR⊤, a random 
vector U ∈ ℝk independent of ξ and uniformly distributed in the k dimensional sphere, k−1, 

such that

2The Yule-Walker equation connects the transition matrix with the covariance matrix and the lag-one autocovariance matrix of the 
process.
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X =d μ + ξRU . (2.1)

In this case, we denote X ~ ECd(μ, S, ξ). S is called the scatter matrix, and ξ is called the 
generating variate.

Remark 2.2—(2.1) is often referred to as the stochastic representation of the elliptical 

random vector X. Of note, by Theorem 2.3 in Fang et al. (1990) and the proof of Theorem 1 

in Cambanis et al. (1981), Definition 2.1 is equivalent if we replace “=d” with simply “=”.

Proposition 2.3 (Theorems 2.15 and 2.16 in Fang et al. (1990))—Suppose X ~ 

ECd(μ, S, ξ) and rank(S) = k. Let B ∈ ℝp×d be a matrix and ν ∈ ℝp be a vector. Denote l = 

rank(BSB⊤). Then, we have

ν + BX ECp(ν + Bμ, BSB⊤, ξ B),

where B ~ Beta(l/2, (k−l)/2) follows a Beta distribution if k > l, and B = 1 if k = l.

2.3. Robust Scales

Let X ∈ ℝ be a random variable with a sequence of observations X1, …, XT. Denote F as the 

distribution function of X. For a constant q ∈ [0, 1], we define the q-quantiles of X and 

{Xt}t = 1
T  to be

Q(X; q) = Q(F ; q) ≔ inf{x:ℙ(X ≤ x) ≥ q},

Q({Xt}t = 1
T ; q) ≔ X(k) where k = min t: t

T ≥ q .

Here X(1) ≤ ⋯ ≤ X(T) are the order statistics of the sample {Xt}t = 1
T . We say Q(X; q) is 

unique if there exists a unique x such that ℙ(X ≤ x) = q. We say Q({Xt}t = 1
T ; q) is unique if 

there exists a unique X ∈ {Xt}t = 1
T  such that X = X(k). Following Rousseeuw & Croux 

(1993), we define the population and sample quantile-based scales as

σQ(X) ≔ Q( |X − X | ; 1/4), (2.2)

σQ({Xt}t = 1
T ) ≔ Q({ |Xs − Xt | }1 ≤ s ≤ t ≤ T ; 1/4),

where X̃ is an independent copy of X. σQ({Xt}t = 1
T ) can be computed using O(T log T) time 

and O(T) storage (Rousseeuw & Croux, 1993).
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3. Model

In this paper, we model the time series of interest by an elliptical VAR process.

Definition 3.1

A sequence of observations X1, …, XT ∈ ℝd is an elliptical VAR process if and only if the 
following conditions are satisfied:

1. X1, …, XT follow a lag-one VAR process

Xt = AXt − 1 + Et,  for t = 2, …, T , (3.1)

where A ∈ ℝd×d is the transition matrix, and E2, …, ET ∈ ℝd are latent 
innovations.

2. {(Xt
⊤, Et + 1

⊤ )⊤}t = 1
T − 1

 are stationary and absolutely continuous elliptical random 

vectors:

Xt
Et + 1

EC2d 0, Σ 0
0 Ψ , ξ , (3.2)

where Σ and Ψ are positive definite matrices, and ξ > 0 with probability 1.

Remark 3.2

The elliptical VAR process in Definition 3.1 can be generated by an iterative algorithm 

following Rémillard et al. (2012). In detail, by the property of elliptical distributions, the 

density function of (Xt
⊤, Et + 1

⊤ )⊤ can be written by ℎ(x, e) = 1/ |Σ | |Ψ|g(x⊤Σ−1x + e⊤Ψ−1e) for 

some function g, and the density function of Xt and the conditional density function of Et+1 

given Xt can be written by

ℎ1(x) = 1
|Σ|g1(x⊤Σ−1x)

and ℎ2(e |x) = 1
|Ψ|g2(e⊤Ψ−1e),

where g1 and g2 are defined by

g1(r) =
ℝd

g(‖z‖2
2 + r)dz and g2(r) = g(r + x⊤Σ−1x)

g1(x⊤Σ−1x)
.

The elliptical VAR process X1, …, XT can be generated by the following algorithm:

1. Generate X1 from h1 (x).

2. For t = 2, …, T,
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a. generate Et from h2(e | Xt−1);

b. set Xt = AXt−1 + Et.

Remark 3.3

By definition, it follows that an elliptical VAR process is a stationary process. A special case 

of the elliptical VAR process is the Gaussian VAR process. An elliptical VAR process is 

Gaussian VAR if (3.2) is replaced by

Xt
Et + 1

N2d 0, Σ 0
0 Ψ .

The elliptical VAR process generalizes the Gaussian VAR process in two aspects. First, the 

elliptical model generalizes the Gaussian model by allowing heavy tails. This makes robust 

methodologies necessary for estimating the process. Secondly, the elliptical VAR model 

does not require that the observations are independent from future latent innovations.

Next, we show that there exists an elliptical random vector L = (X1
⊤, …, XT

⊤, E2
⊤, …, ET

⊤)⊤

such that the two conditions in Definition 3.1 are satisfied. To this end, let 

L0 ≔ (X1
⊤, E2

⊤, …, ET
⊤)⊤ ECTd(0, diag(Σ, Ψ, …, Ψ), ζ) and define

L = (X1
⊤, …, XT

⊤, E2
⊤, …, ET

⊤)⊤ ≔ BL0, (3.3)

where

B ≔

I 0 0 ⋯ 0
A I 0 ⋯ 0

A2 A I ⋯ 0
⋯

AT − 1 AT − 2 AT − 3 ⋯ I
0 I 0 ⋯ 0
0 0 I ⋯ 0

⋯
0 0 0 ⋯ I

∈ ℝ(2T − 1)d × Td .

By Proposition 2.3, L is an elliptical random vector. The next Lemma gives sufficient and 

necessary conditions for L to satisfy the two conditions in Definition 3.1.

Lemma 3.4

1. L ~ EC(2T−1)d(0, Ω, ζ) satisfies Condition 1. Partition the scatter Ω according to 

the dimensions of {Xt}t = 1
T  and {Et}t = 2

T :

Ω ≔
ΩX ΩXE

ΩXE
⊤ ΩE

. (3.4)
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We have

ΩE =
Ψ 0

⋱
0 Ψ

∈ ℝ(T − 1)d × (T − 1)d . (3.5)

2. L satisfies Condition 2 if and only if the following equations hold:

ΩX =

Σ Σ12 ⋯ Σ1T

Σ12
⊤ Σ ⋯ Σ2T

⋯
Σ1T

⊤ Σ2T
⊤ ⋯ Σ

∈ ℝTd × Td, (3.6)

Σ = AΣA⊤ + Ψ, (3.7)

Σt, t + u = Σ(A⊤)u, (3.8)

and (ΩXE)IjIk =
0, ifj ≤ k;
Aj − k − 1Ψ, ifj > k,

(3.9)

for t = 1, …, T − 1, u = 1, …, T − t, j = 1, …, T, and k = 2, …, T − 1. Here ΩXE = 

[(ΩXE)IjIk] is a partition of ΩXE into d × d matrices, where Il ≔ {(l − 1)d + 1, …, 

ld} for l = 1, …, T.

Lemma 3.4 is a consequence of Proposition 2.3. Detailed proof is collected in the 

supplementary material. Lemma 3.4 shows that there exists an elliptical random vector 

L = (X1
⊤, …, XT

⊤, E2
⊤, …, ET

⊤)⊤ that satisfies the two conditions in Definition 3.1. On the other 

hand, the algorithm in Remark 3.2 generate a unique sequence of random vectors X1, …, 

XT, E2, …, ET. Therefore, we immediately have the following proposition.

Proposition 3.5

Let X1, …, XT be an elliptical VAR process with latent innovations E2, …, ET. Then 

L = (X1
⊤, …, XT

⊤, E2
⊤, …, ET

⊤)⊤ is an absolutely continuous elliptical random vector.

Denote Σ1 ≔ Σt,t+1. We call Σ a scatter matrix of the elliptical VAR process, and Σ1 a lag-one 

scatter matrix. For any c > 0, since L ~ ECd(0, Ω, ζ) implies L ECd(0, cΩ, ζ / c), cΣ and cΣ1 

are also scatter matrix and lag-one scatter matrix of the elliptical VAR process.

Next, we show that the scatter matrix and lag-one scatter matrix are closely related to the 

robust scales defined in Section 2.3. In particular, we show that the robust scale σQ 

motivates an alternative definition of the scatter matrix and lag-one scatter matrix.

Let X1, …, XT be an elliptical VAR process with Xt = (Xt1, …, Xtd)⊤. We define
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RQ = [Rjk
Q ] and R1

Q = [(R1
Q)j′k′], (3.10)

where the entries are given by

Rjj
Q ≔ σQ(X1j)2, for j = 1, …, d,

Rjk
Q ≔ 1

4 σQ(X1j + X1k)2 − σQ(X1j − X1k)2 , for j ≠ k,

(R1
Q)j′k′ ≔ 1

4 σQ(X1j′ + X2k′)2 − σQ(X1j′ − X2k′)2 , for j′, k′ = 1, …, d.

The next theorem shows that RQ and R1
Q are scatter matrix and lag-one scatter matrix of the 

elliptical VAR process.

Theorem 3.6

For the elliptical VAR process in Definition 3.1, we have

RQ = mQΣ and R1
Q = mQΣ1, (3.11)

where mQ is a constant.

The proof of Theorem 3.6 exploits the summation stability of elliptical distributions and 

Proposition 2.3. Due to space limit, the detailed proof is collected in the supplementary 

material. Combining Lemma 3.4 and Theorem 3.6, we obtain the following theorem.

Theorem 3.7

For the elliptical VAR process in Definition 3.1, let RQ and R1
Q be defined as in (3.10). Then, 

we have

R1
Q = RQA⊤ . (3.12)

(3.12) serves as a quantile-based counterpart as the Yule Walker equation Var(X1) = Cov(X1, 

X2)A⊤. Theorem 3.7 motivates the robust estimator of A introduced in the next section.

4. Method

In this section, we propose a robust estimator for the transition matrix A. We first introduce 

robust estimators of RQ and R1
Q. Based on these estimators, the transition matrix A can be 

estimated by solving an optimization problem.

Let X1, …, XT be an elliptical VAR process. We define

RQ ≔ [Rjk
Q ] and R1

Q ≔ [(R1
Q)jk],

where the entries are given by
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Rjj
Q ≔ σQ({Xtj}t = 1

T )2, for j =1, …, d,

Rjk
Q ≔ 1

4 σQ({Xtj + Xtk}t = 1
T )2 − σQ({Xtj − Xtk}t = 1

T )2 , for j ≠ k ∈ {1, …, d},

(R1
Q)jk ≔ 1

4 σQ({Xtj + Xt + 1, k}t = 1
T − 1)2 − σQ({Xtj − Xt + 1, k}t = 1

T − 1)2 , for j, k = 1, …, d.

Motivated by Theorem 3.7, we proposed to estimate A by

Â = argminM ∈ ℝd × d∑jk |Mjk| (4.1)

s . t . ‖RQM⊤ − R1
Q‖max ≤ λ .

The optimization problem (4.1) can be further decomposed into d subproblems (Han & Liu, 

2013). Specifically, the j-th row of Â can be estimated by

Âj * = argminv ∈ ℝd‖v‖1 (4.2)

s . t . ‖RQv − (R1
Q) * j‖∞ ≤ λ .

Thus, the d rows of A can be estimated in parallel. (4.2) is essentially a linear programming 

problem, and can be solved efficiently using the simplex algorithm.

Remark 4.1

Since σ̂Q can be computed using O(T log T) time (Rousseeuw & Croux, 1993), the 

computational complexity of R̂Q and R1
Q

 are O(d2T log T). Since T ≪ d in practice, RQ̂ and 

R1
Q

 can be computed almost as efficiently as their moment-based counterparts

Ŝ = 1
T ∑

t = 1

T
XtXt

⊤ and Ŝ1 = 1
T − 1 ∑

t = 1

T − 1
XtXt + 1

⊤ , (4.3)

which have O(d2T) complexity and are used in Han & Liu (2013).

5. Theoretical Properties

In this section, we present theoretical analysis of the proposed transition matrix estimator. 

Due to space limit, the proofs of the results in this section are collected in the supplementary 

material.

The consistency of the estimator depends on the degree of dependence over the process X1, 

…, XT. We first introduce the ϕ-mixing coefficient for quantifying the degree of dependence.
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Definition 5.1

Let {Xt}t∈Z be a stationary process. Define ℱ−∞
0 ≔ σ(Xt: t ≤ 0) and ℱn

∞ ≔ σ(Xt: t ≥ n) to be 

the σ-fileds generated by {Xt}t≤0 and {Xt}t≥n, respectively. The ϕ-mixing coefficient is 
defined by

ϕ(n) ≔ sup
B ∈ ℱ−∞0 , A ∈ ℱn∞, ℙ(B) > 0

|ℙ(A |B) − ℙ(A) | .

Let {Xt}t∈ℤ be an infinite elliptical VAR process in the sense that any contiguous 

subsequence of {Xt}t∈ℤ is an elliptical VAR process. For brevity, we also call {Xt}t∈ℤ an 

elliptical VAR process. Let ϕj(n), ϕjk
+ (n), ϕjk

− (n), ψj′k′
+ (n), and ψj′k′− (n) be the ϕ-mixing 

coefficients of {Xtj}t∈ℤ, {Xtj + Xtk}t∈ℤ, {Xtj − Xtk}t∈ℤ, {Xtj′ + Xt+1, k′}t∈ℤ, and {Xtj′ − 

Xt+1,k′}t∈ℤ, respectively. Here j, k, j′, k′ ∈ {1, …, d} but j ≠ k. Define

Φ(n) = sup
j, k, j′, k′

{ϕj(n), ϕjk
+ (n), ϕjk− (n), ψj′k′

+ (n), ψj′k′− (n)},

and Θ(T ) ≔ ∑n = 1
T Φ(n). Φ and Θ characterize the degree of dependence over the multivariate 

process {Xt}t∈ℤ.

Next, we introduce an identifiability condition on the distribution function of X1.

Condition 1

Let X̃
1 = (X̃

11, …, X̃
1d)⊤ and X̃

2 = (X̃
21, …, X̃

2d)⊤ be independent copies of X1 and X2. Let 

Fj, Fjk
+ , Fjk

− , Gj′k′
+ , and Gj′k′

−  be the distribution functions of |X1j − X̃
1j|, |X1j + X1k − X̃

1j − 

X̃1k|, |X1j − X1k − X̃
1j + X̃

1k|, |X1j′ + X2k′ − X̃
1j′ − X2̃k′|, and |X1j′ − X2k′ − X̃

1j′ + X̃
2k′|. 

We assume that there exist constants κ > 0 and η > 0 such that

inf
|y − Q(F ; 1/4) | ≤ κ

d
dyF (y) ≥ η

for any F ∈ {Fj, Fjk
+ , Fjk

− , Gj′k′
+ , Gj′k′

− : j ≠ k and j, k, j′, k′ = 1, …, d . }.

Then next lemma presents the rates of convergence for R̂Q and R1
Q

.

Lemma 5.2

Let {Xt}t∈ℤ be an elliptical VAR process satisfying Condition 1. Let X1, …, XT be a 
sequence of observations from {Xt}t∈ℤ. Suppose that log d/T → 0 as T → ∞. Then, for T 
large enough, with probability no smaller than 1 − 8/d2, we have

‖RQ − RQ‖max ≤ r(T ), (5.1)
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‖R1
Q − R1

Q‖max ≤ r1(T ), (5.2)

where the rates of convergence are defined by

r(T ) = max 2
η2

8(1 + 2Θ(T )) log d
T + 4Θ(T )

T
2
,

4σmax
Q

η
8(1 + 2Θ(T )) log d

T + 4Θ(T )
T ,

(5.3)

r1(T ) = max 1
η2

16(1 + 2Θ(T )) log d
T + 8Θ(T )

T
2
,

2τmax
Q

η
16(1 + 2Θ(T )) log d

T + 8Θ(T )
T .

(5.4)

Here 

σmax
Q ≔ max{σQ(X1j), σQ(X1j + X1k), σQ(X1j − X1k): j ≠ k ∈ {1, …, d}}, τmax

Q ≔ max{σQ(X1j
+ X2k), σQ(X1j − X2k): j, k ∈ {1, …, d}}

.

Based on Lemma 5.2, we can further deliver the rates of convergence for Â under the matrix 

ℓmax norm and ℓ1 norm. We start with some additional notation. For α ∈ [0, 1), s > 0, and MT 

> 0 that may scale with T, we define the matrix class

ℳ(α, s, MT ) ≔ M ∈ ℝd × d: max
1 ≤ j ≤ d

∑
k = 1

d
|Mjk|α ≤ s, ‖M‖1 ≤ MT .

ℳ(0, s, MT) is the set of sparse matrices with at most s non-zero entries in each row and 

bounded ℓ1 norm. ℳ(α, s, MT) is also investigated in Cai et al. (2011) and Han & Liu (2013).

Theorem 5.3

Let {Xt}t∈ℤ be an elliptical VAR process satisfying Condition 1, and X1, …, XT be a 
sequence of observations. Suppose that log d/T → 0 as T → ∞, the transition matrix A ∈ 
ℳ(α, s, MT), and RQ is non-singular. Define

rmax(T ) = max 2
η2

16(1 + 2Θ(T )) log d
T + 8Θ(T )

T
2
,

4 max(σmax
Q , τmax

Q )
η

16(1 + 2Θ(T )) log d
T + 8Θ(T )

T .

If we choose the tuning parameter

λ = (1 + MT )rmax(T )

in (4.1), then, for T large enough, with probability no smaller than 1 − 8/d2, we have
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‖Â − A‖max ≤ 2‖(RQ)−1‖1(1 + MT)rmax(T ), (5.5)

‖Â − A‖∞ ≤ 4s 2‖(RQ)−1‖1(1 + MT)rmax(T )
1 − α

. (5.6)

Remark 5.4

If we assume that η ≥ C1 and σmax
Q , τmax

Q , ‖(RQ)−1‖1 ≤ C2 for some absolute constants C1, C2 

> 0, the rates of convergence in Theorem 5.3 reduces to

‖Â − A‖max = OP MT
Θ(T ) log d

T ,

‖Â − A‖∞ = OP s MT
Θ(T ) log d

T
1 − α

.

Here Θ(T ) = ∑n = 1
T Φ(n) characterizes the degree of serial dependence in the process 

{Xt}t∈ℤ. If we further assume polynomial decaying ϕ-mixing coefficients

Φ(n) ≤ 1/n1 + ε for some ε > 0, (5.7)

we have Θ(T ) ≤ ∑n = 1
∞ 1/n1 + ε < ∞ and the rate of convergence are further reduced to 

‖Â − A‖max = OP(MT logd/T ) and ‖Â − A‖∞ = OP[s(MT logd/T )1 − α], which are the 

parametric rates obtained in Han & Liu (2013) and Basu & Michailidis (2013). Condition 

(5.7) has been commonly assumed in the time series literature (Pan & Yao, 2008)

6. Granger Causality

In this section, we demonstrate an application of framework developed in this paper. In 

particular, we discuss the characterization and estimation of Granger causality under the 

elliptical VAR model. We start with the definition of Granger causality.

Definition 6.1 (Granger (1980))

Let {Xt}t∈ℤ be a stationary process, where Xt = (Xt1, …, Xtd)⊤. For j ≠ k ∈ {1, …, d}, 

{Xtk}t∈ℤ Granger causes {Xtj}t∈ℤ if and only if there exists a measurable set A such that

ℙ(Xt + 1, j ∈ A | {Xs}s ≤ t) ≠ ℙ(Xt + 1, j ∈ A | {Xs, \k}s ≤ t),

for all t ∈ ℤ, where Xs,\k is the subvector obtained by removing Xsk from Xs.

Qiu et al. Page 12

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2017 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For a Gaussian VAR process {Xt}t∈ℤ, we have that {Xtk}t∈ℤ Granger causes {Xtj}t∈ℤ if and 

only if the {j, k) entry of the transition matrix is non-zero (Lütkepohl, 2007). In the next 

theorem, we show that a similar property holds for the elliptical VAR process.

Theorem 6.2

Let {Xt}t∈ℤ be an elliptical VAR process with transition matrix A. Suppose Xt has finite 
second order moment, and Var(Xtk | Xs,\k}s≤t ≠ 0 for any k ∈ {1, …, d}. Then, for j ≠ k ∈ {1, 

…, d}, we have

1. If Ajk ≠ 0, then {Xtk}t∈ℤ Granger causes {Xtj}t∈ℤ.

2. If we further assume that Et+1 is independent of {Xs}s≤t for any t ∈ ℤ, we have 
that {Xtk}t∈ℤ Granger causes {Xtj}t∈ℤ if and only if Ajk ≠ 0.

The proof of Theorem 6.2 exploits the autoregressive structure of the process X1, …, XT, 

and the properties on conditional distributions of elliptical random vectors. We refer to the 

supplementary material for the detailed proof.

Remark 6.3

The assumption that Var(Xtk | Xs,\k}s≤t ≠ 0 requires that Xtk cannot be perfectly predictable 

from the past or from the other observed random variables at time t. Otherwise, we can 

simply remove {Xtk}t∈ℤ from the process {Xt}t∈ℤ, since predicting {Xtk}t∈ℤ is trivial.

Assuming that Et+1 is independent of {Xs}s≤t for any t ∈ ℤ, the Granger causality relations 

among the processes {{Xjt}t∈ℤ : j = 1, …, d} is characterized by the non-zero entries of A. 

To estimate the Granger causality relations, we define Ã = [Ãjk], where

Ãjk ≔ ÂjkI( |Âjk | ≥ γ),

for some threshold parameter γ. To evaluate the consistency between Ã and A regarding 

sparsity pattern, we define function sign(x) ≔ I(x > 0) − I(x < 0). For a matrix M, define 

sign(M) ≔ [sign(Mjk)].

The next theorem gives the rate of γ such that Ã recovers the sparsity pattern of A with high 

probability.

Theorem 6.4

Assume that the conditions in Theorem 5.3 holds, and A ∈ ℳ(0, s, MT). If we set

γ = 2‖(RQ)−1‖1(1 + MT )rmax(T ),

then, with probability no smaller than 1 − 8/d2, we have sign(Ã) = sign(A), provided that

min
{(j, k):Ajk > 0}

|Ajk | ≥ 2γ .
(6.1)
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Theorem 6.4 is a direct consequence of Theorem 5.3. We refer to the supplementary material 

for a detailed proof.

7. Experiments

In this section, we demonstrate the empirical performance of the proposed transition matrix 

estimator using both synthetic and real data. In addition to the proposed robust Dantzig-

selector-type estimator (R-Dantzig), we consider the following two competitors for 

comparison:

1. Lasso: an ℓ1 regularized estimator defined in (1.1) with l(Y − MX) = ‖Y − MX‖F
2

and Pρ(M) = ρ ∑jkMjk.

2. Dantzig: the estimator proposed in Han & Liu (Han & Liu, 2013), which solves 

(4.1) with R̂Q and R1
Q

 replaced by Ŝ and Ŝ1 defined in (4.3).

Lasso is solved using R package glmnet. Dantzig and R-Dantzig are solved by the 

simplex algorithm.

7.1. Synthetic Data

In this section, we demonstrate the effectiveness of R-Dantzig under synthetic data. To 

generate the time series, we start with an initial observation X1 and innovations E2, …, ET. 

Specifically, we consider three distributions for (X1
⊤, E2

⊤, …, ET
⊤)⊤:

Setting 1: a multivariate Gaussian distribution: N(0, Φ);

Setting 2: a multivariate t distribution with degree of freedom 3, and covariance 

matrix Φ;

Setting 3: an elliptical distribution with log-normal generating variate, log N(0, 2), 

and covariance matrix Φ.

Here the covariance matrix Φ is block diagonal: Φ = diag(Σ, Ψ, …, Ψ) ∈ ℝTd×Td. We set d 

= 50 and T = 25. Using (X1
⊤, E2

⊤, …, ET
⊤)⊤, we can generate (X1

⊤, …, XT
⊤)⊤ by

(X1
⊤, …, XT

⊤)
⊤

= G(X1
⊤, E2

⊤, …, ET
⊤)

⊤
,

where G is given by

G ≔

I 0 0 ⋯ 0
A I 0 ⋯ 0

A2 A I ⋯ 0
⋯

AT − 1 AT − 2 AT − 3 ⋯ I

∈ ℝTd × Td .
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By Proposition 2.3, (X1
⊤, …, XT

⊤)⊤ follows a multivariate Gaussian distribution in Setting 

1, a multivariate t distribution in Setting 2, and an elliptical distribution in Setting 3 

with the same log-normal generating variate.

We generate the parameters A and Σ following Han & Liu (2013). Specifically, we generate 

the transition matrix A using the huge R package, with patterns band, cluster, hub, and 

random. We refer to Han & Liu (2013) for a graphical illustration of the patterns. Then we 

rescale A so that ‖A‖2 = 0.8. Given A, we generate Σ such that ‖Σ‖2 = 2‖A‖2. Using (3.7), we 

set Ψ = Σ − AΣA⊤.

Table 1 presents the errors in estimating the transition matrix and their standard deviations. 

The tuning parameters λ and ρ are chosen by cross validation. The results are based on 

1,000 replicated simulations. We note two observations: (i) Under the Gaussian model 

(Setting 1), R-Dantzig has comparable performance as Dantzig, and out-performs 

Lasso. (ii) In Settings 2–3, R-Dantzig produces significantly smaller estimation 

errors than Lasso and Dantzig. Thus, we conclude that R-Dantzig is robust to heavy 

tails.

Figure 1 plots the prediction errors εs against sparsity s for the three transition matrix 

estimators. We observe that R-Dantzig achieves smaller prediction errors compared to 

Lasso and Dantzig.

7.2. Real Data

In this section, we exploit the VAR model in stock price prediction. We collect adjusted 

daily closing prices3 of 435 stocks in the S&P 500 index from January 1, 2003 to December 

31, 2007. This gives us T = 1, 258 closing prices of the 435 stocks. Let Xt be a vector of the 

435 closing prices on day t, for t = 1, …, T. We model {Xt}t = 1
T  by a VAR process, and 

estimate the transition matrix using Lasso, Dantzig, and R-Dantzig. Let Âs be an 

estimate of the transition matrix with sparsity s4. We define the prediction error associated 

with Âs to be

εs ≔ 1
T − 1 ∑

t = 2

T
‖Xt − ÂsXt − 1‖2 .

8. Conclusion

In this paper, we developed a unified framework for modeling and estimating heavy-tailed 

VAR processes in high dimensions. Our contributions are three-fold. (i) In model level, we 

generalized the Gaussian VAR model by an elliptical VAR model to accommodate heavy-

tailed time series. The model naturally couples with quantile-based scatter matrices and 

Granger causality. (ii) Methodologically, we proposed a quantile-based estimator of the 

transition matrix, which induces an estimator of Granger causality. Experimental results 

3The adjusted closing prices account for all corporate actions such as stock splits, dividends, and rights offerings.
4s ∈ [0, 1] is defined to be the fraction of non-zero entries in Âs, and can be controlled by the tuning parameters λ and ρ.
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demonstrate that the proposed estimator is robust to heavy tails. (iii) Theoretically, we 

showed that the proposed estimator achieves parametric rates of convergence in matrix ℓmax 

norm and ℓ∞ norm. The theory explicitly captures the effect of serial dependence, and 

implies sign-consistency of the induced Granger causality estimator. To our knowledge, this 

is the first work on modeling and estimating heavy-tailed VAR processes in high 

dimensions. The methodology and theory proposed in this paper have broad impact in 

analyzing non-Gaussian time series. The techniques developed in the proofs have 

independent interest in understanding robust estimators under high dimensional dependent 

data.
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Figure 1. 
Prediction errors in stock prices plotted against the sparsity of the estimated transition 

matrix.
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