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Abstract

Background—Previous research has shown that hearing aid wearers can successfully self-train 

their instruments’ gain-frequency response and compression parameters in everyday situations. 

Combining hearing aids with a smartphone introduces additional computing power, memory, and a 

graphical user interface that may enable greater setting personalization. To explore the benefits of 

self-training with a smartphone-based hearing system, a parameter space was chosen with four 

possible combinations of microphone mode (omnidirectional and directional) and noise reduction 

state (active and off). The baseline for comparison was the “untrained system,” that is, the 

manufacturer’s algorithm for automatically selecting microphone mode and noise reduction state 

based on acoustic environment. The “trained system” first learned each individual’s preferences, 

self-entered via a smartphone in real-world situations, to build a trained model. The system then 

predicted the optimal setting (among available choices) using an inference engine, which 

considered the trained model and current context (e.g., sound environment, location, and time).

Purpose—To develop a smartphone-based prototype hearing system that can be trained to learn 

preferred user settings. Determine whether user study participants showed a preference for trained 

over untrained system settings.

Research Design—An experimental within-participants study. Participants used a prototype 

hearing system—comprising two hearing aids, Android smartphone, and body-worn gateway 

device—for ~6 weeks.

Study Sample—Sixteen adults with mild-to-moderate sensorineural hearing loss (HL) (ten 

males, six females; mean age = 55.5 yr). Fifteen had ≥6 mo of experience wearing hearing aids, 

and 14 had previous experience using smartphones.

Intervention—Participants were fitted and instructed to perform daily comparisons of settings 

(“listening evaluations”) through a smartphone-based software application called Hearing Aid 

Learning and Inference Controller (HALIC). In the four-week-long training phase, HALIC 
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recorded individual listening preferences along with sensor data from the smartphone—including 

environmental sound classification, sound level, and location—to build trained models. In the 

subsequent two-week-long validation phase, participants performed blinded listening evaluations 

comparing settings predicted by the trained system (“trained settings”) to those suggested by the 

hearing aids’ untrained system (“untrained settings”).

Data Collection and Analysis—We analyzed data collected on the smartphone and hearing 

aids during the study. We also obtained audiometric and demographic information.

Results—Overall, the 15 participants with valid data significantly preferred trained settings to 

untrained settings (paired-samples t test). Seven participants had a significant preference for 

trained settings, while one had a significant preference for untrained settings (binomial test). The 

remaining seven participants had nonsignificant preferences. Pooling data across participants, the 

proportion of times that each setting was chosen in a given environmental sound class was on 

average very similar. However, breaking down the data by participant revealed strong and 

idiosyncratic individual preferences. Fourteen participants reported positive feelings of clarity, 

competence, and mastery when training via HALIC.

Conclusions—The obtained data, as well as subjective participant feedback, indicate that 

smartphones could become viable tools to train hearing aids. Individuals who are tech savvy and 

have milder HL seem well suited to take advantages of the benefits offered by training with a 

smartphone.
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INTRODUCTION

In the 1990s, the advent of digital signal processing enabled complex environmentally 

adaptive technology such as dynamic noise cancellation, adaptive directionality, speech 

detection algorithms, and multiband compression. Proper adjustment of the large number of 

amplification parameters available in modern digital hearing aids offers the potential to 

improve the sound quality experienced by hearing aid users. With this expanded array of 

amplification parameters comes a corresponding increase in the complexity of the fitting 

procedure, which may actually hinder hearing-care professionals from prescribing the 

parameter settings that would be optimal for an individual user. For decades, the fitting 

procedure has fundamentally consisted of matching a set of measured characteristics (e.g., 

an audiogram) to a prescriptive fitting rationale. Fitting rationales, derived from a 

combination of theoretical knowledge and experimental data, are best suited to an idealized 

“average” person. Keidser and Dillon (2006) reported that only 49% of participants had 

preferred gain within ±3 dB of the National Acoustic Laboratories-nonlinear 1 (NAL-NL1) 

prescriptive targets, and 60% had preferred gain within ±3 dB of the National Acoustic 

Laboratories-nonlinear 2 (NAL-NL2) targets. Furthermore, the clinic where the fitting takes 

place is usually a low-noise, low-reverberation environment, and the limited range of 

acoustic stimuli in such a setting is unlikely to lead to an optimal fitting suitable for the real-

world environment. Hearing aid users commonly require multiple office visits to fine-tune 
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the parameters on their devices. Therefore, the audiogram and fitting rationale are a good 

first step, but only partially address the fact that hearing loss (HL) is an individual 

experience.

Since individual users will encounter a variety of acoustic scenes during the day, their 

hearing instruments offer adaptation to changing listening situations. Device adaptation may 

be implemented either through user control—for example, using multiple programs 

(Ringdahl et al, 1990)—or automatically (Allegro et al, 2001). Neither strategy has proven 

completely successful. Nelson et al (2006) found that patients did not regularly and 

consistently use multiple programs, preferring to spend most of their time in the default 

program.

Given the limitations of multiple programs, researchers began exploring alternate methods 

for the customization of hearing aid parameters for the individual user. Dillon et al (2006) 

described a trainable hearing aid featuring a learning algorithm that promised several 

potential advantages over traditional hearing aids, including personalization of parameters in 

actual listening environments, fewer postfitting visits for fine-tuning, and greater user 

involvement in the fitting process, resulting in increased sense of ownership and 

engagement. The first commercial hearing aid with some learning capacity, the Siemens 

Centra, was equipped with algorithms that used information about the user’s volume control 

selection patterns to gradually adjust the default volume setting (Chalupper, 2006; Hayes, 

2007). In a real-world experiment using Centras, Chalupper (2006) allowed 19 experienced 

hearing aid wearers to train the volume setting in different environments. The data showed 

that participants preferred different amounts of overall gain relative to the prescribed gain, 

and some individuals preferred different volume settings in different environments. In a 

follow-up cross over study with Centras, Mueller et al (2008) fitted experienced hearing aid 

wearers with volume control start-up either >6 dB or <6 dB NAL-NL1 prescriptive targets. 

Participants trained the overall gain, in real-world situations, to their preferred level. For 

most participants, the trained preferred gain differed significantly from the NAL-NL1 

targets, and the starting level influenced the final preferred gain. In a related experiment 

conducted in a laboratory environment, Dreschler et al (2008) found that patient-based 

hearing aid adjustments were a reliable method of individual fine-tuning and provided 

systematic and reproducible gain-frequency response preferences in different acoustic 

environments. Nonetheless, the researchers also observed that the initial settings influenced 

the final preferred settings.

While earlier studies by Chalupper (2006) and Mueller et al (2008) trained only overall gain, 

researchers began applying wide dynamic range compression learning, in which gain was 

trained as a function of the level of the input signal. Zakis (2003) implemented a digital 

research hearing aid called Stereo Hearing Aid Research Processor (SHARP). The SHARP, 

comprising a body-worn processor unit (90 × 60 × 20 mm) connected via cables to two 

behind-the-ear hearing aids, featured three user controls on the processor unit: a rotary 

control, a voting button, and a power/mode switch. Zakis et al (2007) used the SHARP to 

investigate whether hearing aid users in everyday listening situations preferred trained 

amplification parameters to a set of untrained parameters prescribed in a clinic. The 

SHARP’s three user controls acted as a program selection switch, a voting button (used to 
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indicate preferred settings), and a rotary gain-frequency-response adjustment control 

simultaneously for both ears. In Trial I (one to four weeks), 18 participants were fitted with 

untrained settings based on the NAL-NL1 prescription, and then attempted to train the 

amplification settings to their preference in everyday situations (with a minimum of 300 

votes). In Trial II (one week), 13 participants blindly compared their trained settings (with 

noise suppression enabled) to untrained settings (without noise suppression) and voted for 

their preferred settings in everyday situations. Trial III (one week), with eight participants, 

was a repeat of Trial II, but with noise suppression disabled for both the trained and 

untrained settings. Most notably, results for Trial II showed that nine (69%) participants 

voted for the trained settings significantly more often than the untrained settings in real-life 

environments, three (23%) participants had nonsignificant preferences, and one (8%) 

participant had a significant preference for the untrained settings. Results for Trials II and III 

were not significantly different for seven of the eight participants who participated in both 

trials. Data logged during the trials showed that the percentage of votes for the trained 

settings was moderately but not significantly correlated with the hours of aid use during the 

training period. One limitation of this study was that participants did not train different 

settings in different environmental sound classes (ESCs), although the SHARP prototype 

had the capability to do so.

Building on these encouraging results, more sophisticated algorithms have been introduced. 

Siemens SoundLearning was capable of training the gain-frequency response and 

compression characteristics by relating preferred gain settings to the input level in four 

frequency bands (Chalupper et al, 2009). SoundLearning 2.0 added learning in three 

different ESCs—Speech, Noise, and Music—as well as mixtures of these environments 

(Powers and Chalupper, 2010). Another commercially available algorithm trained the 

comfort–clarity balance (Unitron, 2011). Keidser and Alamudi (2013) reported on a study 

investigating the efficacy and reliability of training commercially available learning hearing 

aids in everyday environments. The test devices included a modified SoundLearning 

algorithm with the capability to discriminate between six ESCs (Quiet [QUI], Noise [NOI], 

Music [MUS], Speech in Quiet [SiQ], Speech in Noise [SiN], and Car Noise) and learn 

gain-frequency response shape and compression parameters. Among the 18 participants with 

valid data, 8 (44.4%) preferred the trained response, 8 (44.4%) showed no preference, and 2 

(11.1%) preferred the untrained response.

Although trainable hearing aids have been commercially available for years, several 

important shortcomings inherent in present hearing aids hinder their potential for learning 

user preferences: (a) a hearing aid has limited sensor inputs, relying entirely on two onboard 

microphones to collect information about incoming sounds; (b) a hearing aid has a restricted 

user interface, even if a remote control is available; (c) compared to other computing 

devices, a hearing aid has reduced processing power, which prevents the implementation of 

more advanced machine learning algorithms.

To some extent, these limitations may be overcome by regarding the smartphone as part of 

an intelligent hearing system. Smartphones provide a powerful mobile computing platform, 

with sensing, processing, communication, and memory capabilities that can add to the 

processing capabilities of the hearing device and provide more audiological benefits than 
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previously possible. Smartphone adoption is exploding worldwide. Pew Research estimated 

that in the United States, smartphone ownership by those aged >65 jumped from 11% to 

18% between 2011 and 2013 (Smith, 2012; 2013). Nielsen (2013) estimated that smartphone 

ownership among Americans aged >55 doubled between 2012 and 2013. Furthermore, the 

United States lags behind countries such as South Korea, the United Kingdom, and Germany 

in ownership and access to smartphones (Barker et al, 2013). Recent advances in wireless 

technology, such as the introduction of Bluetooth 4.0 (Low Energy), promise direct, two-

way communication between smartphone and hearing aids, thus eliminating the need for a 

body-worn gateway device. A number of other smartphone software applications related to 

hearing have appeared on the market. Most relevant is Ear Machine (Chicago, IL), which 

allows users to select desired settings by adjusting two controllers, labeled “loudness” and 

“tone” (Nelson et al, 2014). Researchers have even explored the possibility of using 

smartphone-based applications as alternatives to traditional hearing aids as a temporary or 

starter solution for people with a HL (Amlani et al, 2013).

Building on previous research, this work makes two primary contributions. First, we 

describe the development of a smartphone-based software henceforth referred to as the 

Hearing Aid Learning and Inference Controller (HALIC). Second, we report on the results 

of a user study addressing the research question, “Do listeners show a preference for 

microphone mode and noise reduction settings predicted by their trained system over those 

predicted by the manufacturer’s untrained system?”

The present version of HALIC (Figure 1) takes advantages of a smartphone’s built-in 

sensors, user interface, and computing power. HALIC leverages smartphone sensors to 

gather information about the user’s context. In the field of computer science, context 

awareness (Schilit et al, 1994) takes into account factors that change on a timescale 

measured in minutes, hours, or days—such as the user’s sound environment, location, or day 

of week. Thus, context awareness provides an additional layer of information to augment a 

hearing instrument’s real-time processing. HALIC also includes an intuitive user interface, 

permitting individual users to express their preferences in particular listening situations. 

Lastly, HALIC employs the smartphone’s computing power to run computation-intensive 

digital signal processing and machine learning algorithms that select the best hearing aid 

settings (among those in the parameter space) over time.

To answer our research question, we devised a user study in which participants provided 

subjective feedback in everyday listening environments. Since it was not desirable or 

realistic for participants to continually communicate their preferred hearing aid settings, a 

more reasonable approach was to have participants label their preferred hearing aid settings 

at specific times (“our goal was 8–12 times per day”). We called the mechanism for having 

users input their preferences via the smartphone app the “listening evaluation.” Our 

objective was to collect as much data from each listening evaluation as possible, while 

limiting the average duration of an evaluation to 2 min.

In the training phase of the user study, lasting ~4 weeks, HALIC built “trained models” 

based on individual listening evaluation preferences. During the next two weeks, the 

validation phase, participants performed blinded listening evaluations comparing settings 
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predicted by the trained system (“trained settings’) to those suggested by the hearing aids’ 

untrained system (“untrained settings”). We demonstrated the benefits of such a hearing 

system regarding the selection of multiple settings (microphone directionality and noise 

reduction) intended to enhance speech, suppress transient noise, or perform other useful 

processing operations. The baseline for comparison was the “untrained system,” which is the 

manufacturer’s algorithm for automatically selecting microphone mode and noise reduction 

state based on acoustic environment.

MATERIALS AND METHODS

The hearing system’s off-the-shelf hardware comprises a pair of modern Oticon (Smørum, 

Denmark) Intiga 10 hearing instruments, an Android-based Google (Mountain View, CA) 

Nexus Galaxy smartphone, and an Oticon Streamer, a body-worn gateway device with a 

built-in microphone that wirelessly links the hearing aids to a mobile phone. The gateway 

serves two primary purposes: it streams sound from a mobile phone or a digital music player 

to the hearing aids, and it serves as a hearing aid remote control, allowing change of volume 

and program. Two-way communication between smartphone and gateway takes place via 

Bluetooth, whereas one-way communication between gateway and hearing aids uses low-

power near-field magnetic induction. (Recent technological advances are enabling direct 

communication between the hearing aids and the smartphone, without an intermediate 

gateway. The LiNX by GN ReSound [Ballerup, Denmark] is an example.) Due to the 

increased power requirements of all-day use, both the smartphone and the Streamer were 

fitted with extralarge (double the normal capacity) batteries.

Sound Environment Classification

Hearing instrument users often prefer different instrument settings in specific acoustic 

environments (Elberling, 1999). Gatehouse et al (1999) coined the term “auditory ecology” 

to encompass the listening environments in which people are required to function, the tasks 

to be undertaken in these environments, and the importance of those tasks in everyday life. 

Thus, achieving accurate ESC categorization was a key objective for this context-aware 

hearing system. The authors chose the following six ESCs: QUI, MUS, NOI, SiQ, SiN, and 

Party (PTY, defined as speech in loud noise, possibly with music present as well). The 

intention was to compare the performance of HALIC-classified and hearing aid–classified 

ESCs to the gold-standard ESC.

The gold-standard ESC was obtained as follows. After receiving participant consent, we 

configured HALIC to record the audio during every listening evaluation (up to 80 sec and 

saved the resulting sound clip on the smartphone hard drive. We determined the gold-

standard ESC by asking two independent raters, both graduate students, to classify the sound 

clips post hoc. For each listening evaluation, the rater could assign either one or two valid 

ESCs, the latter being applicable if the environment changed for a significant part of the clip.

HALIC-Classified Environmental Sounds—The environmental sound classification in 

HALIC was designed for real-time, real-world input and output. However, before HALIC 

could perform classifications in the real world, it needed training data. The authors 

generated a training set, the Sound Database, consisting of 30-sec-long sound clips. We 
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made recordings at restaurants, bars, and other public locations in Copenhagen, Denmark, 

and Palo Alto, California, making sure to obtain training data for all six ESCs. Since HALIC 

had access to two microphones with different characteristics (an omnidirectional Galaxy 

Nexus mic and a directional Streamer mic), 161 clips were recorded using the Galaxy 

Nexusmic as input and 222 clips using the Streamer microphone as input. Due to the 

uncontrolled nature of the recordings (one microphone, unknown distance to speech source, 

etc.), we could not measure objective speech-to-noise ratio criteria for the sound clips. 

Hence, the discrimination problem faced by HALIC was to classify an incoming signal into 

one of the six available listening environments based on the training provided by the Sound 

Database.

Next, the system digitized and stored a specified interval of the signal, regardless of its 

source, into a buffer. We partitioned the buffer into individual frames. From each frame, the 

system extracted a set of statistics, in this case, acoustic properties of interest. We based a 

number of the statistics on the time-domain signal, whereas we derived others from the 

signal’s frequency spectrum. We calculated all statistics on a frame-wise basis (2,048 

samples/frame, 50% overlap). Due to hardware limitations, sampling rate from the Streamer 

microphone was 8 kHz, 16 bit. To ensure that HALIC could easily handle audio from both 

sources, the smartphone’s sampling rate was kept at 8 kHz, 16 bit as well. The features 

ultimately extracted as inputs for machine learning algorithms were based on an entire buffer 

(233 frames, spanning 30 sec). The mean (first central moment) and the variance (second 

central moment) of the statistics were calculated, as the variance may be more discriminative 

than the mean of the statistic itself (Scheirer and Slaney, 1997).

The computed central-moment values constituted a set of features for the buffer. To obtain a 

classification, we applied machine-learning algorithms to buffer-level statistics for each 

feature. Specifically, HALIC used a simple energy threshold to detect QUI, analyzed the 

persistence of harmonic peaks over successive power spectra to detect MUS, and 

implemented penalized logistic regression to create separate detectors for NOI, PTY, SiN, 

and SiQ. We trained Streamer and smartphone mic classifiers separately. To avoid numerical 

problems with the logistic regression, we scaled each feature as appropriate.

HALIC constantly monitored the smartphone’s proximity and light sensors to determine 

whether the smartphone was concealed (e.g., in a pocket or purse). If the smartphone was 

out in the open, HALIC used its microphone for sound input and its associated classifier; 

otherwise, it switched to the Streamer microphone for sound input and used its 

corresponding classifier.

Hearing Aid–Classified Environmental Sounds—Evaluating the performance of the 

hearing aids’ built-in environmental sound classifier was an important objective of the study. 

We flashed the test hearing aids with a special version of firmware with 30,000 bytes of 

blank EEPROM, which permitted storage of hearing aid–classified ESCs during listening 

evaluations. The hearing aid’s built-in classifier attempted to discriminate between the QUI, 

NOI, SiN, and SiQ subset.
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Location

Hearing aid setting preferences may also be dependent on location. The GN ReSound Smart 

app, for example, allows users to “geotag” their favorite places and associate particular 

hearing aid settings with each location (Christensen, 2014).

HALIC-Classified Location—If given permission by the user, a smartphone can 

determine its location using built-in hardware. Global Positioning System (GPS) is satellite 

based, accurate, and has worldwide coverage, making it an obvious choice for location 

estimation. However, since GPS requires an unobstructed view of its orbiting satellites, it 

works poorly inside of buildings, where many people spend the majority of their time 

(Cheng et al, 2005). It is also possible to obtain location information from cellular towers 

and wireless access points such as wireless local area network (WiFi) routers (Bahl and 

Padmanabhan, 2000). WiFi router signal strength is detectable only within a few dozen 

meters and each router has a unique media access control address whose coordinates Google 

makes available through a database lookup. If the smartphone detects signal strength from 

multiple routers, trilateration is possible, resulting in greater accuracy. The same procedure 

is also applicable to cellular towers.

We segregated location types into two broad categories: Places—stationary coordinates such 

as home or a restaurant—and Routes, which had moving coordinates. For Routes, the actual 

location was not as important as the measured speed, which differentiated between types of 

movement (e.g., walking, running, and sitting in a car). The default category was Place, as 

HALIC could only calculate Routes when GPS updates were available and the GPS 

accuracy had stabilized. Unlike environmental sound classification, which occurred 

continuously, location classification only took place when the user performed a listening 

evaluation. This approach significantly reduced the battery drain associated with obtaining a 

GPS fix, with the trade-off that a user had to wait 10 sec (HALIC displayed a countdown 

timer) before starting the evaluation, thus giving the GPS time to find stable coordinates.

User-Classified Location—During each listening evaluation, HALIC attempted to 

determine the current coordinates and whether these were moving or stationary. It compared 

the result with the stored entries in the user-specific location database. If HALIC recognized 

the coordinates, it suggested the most likely result to the user. Otherwise, HALIC prompted 

the user to tag the location by first answering the question, “Where are you now?” with “At 

a place” or “On route.” Submenus provided options for 52 Place types and 10 Route types.

Other Sensors

To make the model more complete, every time a listening evaluation took place HALIC also 

measured sound level (based on the input signal obtained for environment classification, 

averaging time of 30 sec, hour of day, and day of week. After the study, a sensitivity analysis 

suggested how the output—in this case, the setting suggested by the model—depended on 

the input sensors. A standard method of sensitivity analysis is to observe the output when 

varying one input and holding the others constant, a one-at-a-time technique. For this simple 

analysis, we held out (dropped) one input sensor at a time and observed the change in 

output.
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Settings

The bulk of previous research in trainable hearing aids has concentrated on learning overall 

gain, gain-frequency response, and compression based on volume control, sound level, and 

ESC. Instead, we tested the present context-aware hearing system concept on microphone 

mode and digital noise reduction. The microphone could operate in omnidirectional or 

directional modes, while noise reduction state could be active or off. Thus, the four possible 

settings were omnidirectional microphone mode with noise reduction off (OMNI/NR_OFF), 

directional microphone mode with NR_OFF (DIR/NR_OFF), OMNI with noise reduction 

on (OMNI/NR_ON), and DIR with NR_ON (DIR/NR_ON). The directional algorithm used 

was Oticon’s default, implementing four separate adaptive polar patterns, each 

corresponding to a different frequency band (Flynn, 2004). The noise reduction used was a 

modified version of Oticon’s SuperSilencer fast-attack-and-release algorithm (Schafer et al, 

2013), since the results of an earlier pilot study indicated that participants showed no 

preference for the manufacturer’s standard noise reduction algorithm.

Listening Evaluations

Although the smartphone-based HALIC user interface works as a remote control—allowing 

the user to change programs and adjust volume on the hearing instruments— its primary 

purpose was to allow users to input their preferences by performing listening evaluations, a 

form of ecological momentary assessment (EMA). In contrast to traditional retrospective 

self-report methods, EMA prompts participants to provide an immediate and systematic 

record of both the context and content of their daily lives at randomized points in time. By 

sampling an experience the moment it occurs, EMA avoids the memory biases associated 

with the use of daily diaries or weekly questionnaires. EMA has seen application in the field 

of audiology. Henry et al (2012) used personal digital assistants and EMA to evaluate the 

impact of chronic tinnitus on the daily activities of patients while Galvez et al (2012) 

obtained real-time responses from hearing aid users describing their experiences with 

challenging hearing situations. Naturally, the proliferation of mobile phones has made EMA 

more popular. For example, AudioSense (Hasan et al, 2013) is a system for evaluating the 

performance of hearing aids in the real world combining EMA with the collection of sensor 

data via smartphone.

We designed the listening evaluation to take <2 min to complete. Whenever participants 

initiated a listening evaluation, they waited for a 10-sec countdown, as necessitated by GPS 

location. Next, the user compared settings (described below). Then HALIC obtained 

information from the user about the current ESC and location. Lastly, HALIC presented a 

thank you screen where users could press a “save evaluation” button to complete the 

listening evaluation and store the data. At the start of each listening evaluation, HALIC also 

saved the audio signal, as long as the participant had given consent and the “permission to 

record audio” box remained checked on the settings screen.

The most important part of every listening evaluation occurred when users entered their 

setting preferences. Users were unaware that the study consisted of separate training and 

validation phases. During the training phase, HALIC tried to learn as much as possible about 

the user by building a preference model, while in the validation phase, this model generated 
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automatic decisions, via an inference engine, regarding the most appropriate setting for any 

given classified listening environment.

Training Phase: Listening Evaluations—During the training phase, there were two 

types of listening evaluations, the A/B Test (Figure 2) and the Self-Adjustment screen, both 

of which contributed to the trained model. The A/B Test is a standard method of comparing 

two variants, a paired comparison, applied here to evaluate two hearing aid settings, A and 

B. Paired comparisons have been shown to be reliable and correlate well with performance 

measures (Neuman et al, 1987). In the A/B Test, the participant listened to both settings and 

gave a subjective, relative evaluation (“A is better,” “B is better,” or “no difference”). The 

“no difference” response, while not traditionally used in paired-comparison tests, was useful 

when the participant tried to listen to digital signal processing techniques that were not 

active or inaudible in that listening environment.

When a participant initiated a training-phase listening evaluation and the current HALIC-

classified ESC was MUS, HALIC presented an A/B Test comparing the general program 

(P1) with the music program (P2). Similarly, when the HALIC-classified ESC was PTY, 

HALIC presented an A/B Test comparing the general program (P1) with the party program 

(P3). When the current environment was QUI, NOI, SiN, or SiQ, HALIC randomly selected 

settings corresponding to A and B. Choosing two of the four available settings (OMNI/

NR_OFF, DIR/NR_OFF, OMNI/NR_ON, DIR/NR_ON) gave six possible combinations of 

A and B. In approximately every seventh A/B Test, HALIC randomly made settings A and B 

identical, then recorded whether the participant reported “no difference.” Thus,

(1)

where NND,A=B = number of evaluations answered “no difference” when A and B were 

identical and NA=B = number of evaluations where A and B were identical.

Although the A/B Test concealed the names of the settings, the Self-Adjustment screen had 

explicit labels for toggling “noise reduction” and “directional listening,” making the settings 

visible to the users. Details about the two types of listening evaluations, and the 

characteristics of users who preferred training with each one, appear in Aldaz et al (2014). 

For the purposes of this article, it is sufficient to note that the outcome of each completed 

listening evaluation (except those measuring reliability) informed the trained model. At the 

end of the training phase, therefore, each participant would have created an adaptive self-

trained model of his or her listening preferences.

Validation Phase: Listening Evaluations—In the validation phase, HALIC only 

presented A/B Tests to the users. Without the knowledge of the participants, the meaning of 

A and B changed, with HALIC randomly assigning A and B to the untrained setting 

suggested by the hearing aids and the setting suggested by the trained system. For each 

validation-phase A/B Test i, points awarded were Vi= +1 if the user voted that model’s 
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setting, Vi= −1 if the user did not vote for the model’s setting, and Vi=0 for both models if 

the user chose “no difference.”

After completing L validation-phase listening evaluations, the participant obtained a final 

trained system score of  and untrained system score of . For each 

participant, the preference score between the trained and untrained systems, P, was given by 

P=(ST − SU)=2, where the 1/2 factor is needed because of the +1/−1 (difference of 2 per A/B 

Test) scoring criterion. Variability in number of validation-phase listening evaluations 

completed by each participant necessitated calculation of the normalized scores, .

The Knowledge-Based Agent

A knowledge-based agent, to use a term from the field of artificial intelligence, incorporates 

a repository of expert knowledge (the knowledge base) and an automated reasoning 

component (the inference engine). The knowledge base is simply the data accumulated by 

HALIC during the training phase. The primary task of the inference engine is to apply some 

strategy that would best allow it to adapt to varying input conditions and produce the optimal 

output (among the available choices) as often as possible during the validation phase.

This kind of problem is a good candidate for reinforcement learning, which maps states to 

actions to maximize a numerical reward signal (Sutton and Barto, 1998). Let S be the set of 

possible states s based on the outcome of the listening evaluation, so S = {preferred, not 

preferred}. Outcome states are denoted as s′. The agent has available a five-dimensional 

evidence vector e of smartphone sensor values (Table 1) providing partial knowledge about 

the state of the world. It does not convey, for example, relevant information about whom the 

user is conversing with or what sound the user is currently focusing on. Moreover, the sensor 

readings are noisy and sometimes the classifications are incorrect. Imperfect as they are, 

these sensor values constitute the evidence for probabilistic inference. Based on this input, 

the agent can take one of four nondeterministic actions a, each one corresponding to 

selecting a setting. Thus, set A = {select omni/nr_off, select dir/nr_off, select omni/nr_on, 

select dir/nr_on}.

The utility function U(a, s′) is a mapping from action-state pairs to real numbers, a value 

that expresses the desirability of that outcome state for that user. A probability is assigned to 

each possible result for each action, given the proposition that action a is executed in the 

current state and given the five-dimensional sensor vector e. The expected utility EU of 

taking action a is defined as the average utility value of the outcomes, weighted by the 

probability that the outcome occurs. The principle of maximum expected utility tells the 

agent to take action a because it maximizes the expected utility:

(2)
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Even though the maximum expected utility principle dictates the right choice of action in a 

decision problem, it is seldom straightforward to implement (Russell and Norvig, 2009). 

With some manipulations, we implemented Equation 2; the details are beyond the scope of 

this article but are treated in Aldaz (2015).

Participants

Sixteen participants (ten males, six females, randomly denoted p1–p16) with symmetric 

(within 15 dB for any given frequency), sensorineural HL and ranging in age between 22 

and 79 yr (mean = 55.5) participated in this study. Participants had a broad range in years of 

experience using hearing aids (mean = 6.75 yr, standard deviation [SD] = 6.85 yr). Figure 3 

shows their mean and SD of audiometric thresholds. The bilateral four-frequency average 

HL, measured across 0.5, 1, 2, and 4 kHz, ranged from 21 to 63 dB HL (mean = 42 dB HL), 

indicating that the participants had mild-to-moderate HL. This research was performed 

under protocols approved by the Western Institutional Review Board (study number: 

1138663) and the Human Subjects Research Institutional Review Board panel at Stanford 

University (protocol ID: 26552).

We recruited participants through four San Francisco Bay area private audiology offices. 

Each participant visited his or her audiologist at least three times during the course of the 

study. During the initial visit, we obtained informed consent, including permission to record 

audio during listening evaluations, and an audiologist took ear impressions. During the 

second visit, researchers administered a questionnaire to learn about each participant’s 

hearing history, experience with hearing instruments, and expectations of the study. An 

audiologist fitted all participants bilaterally with the test hearing instruments and custom ear 

molds vented as appropriate for their loss to avoid occlusion and feedback issues. The 

audiologist prescribed test instruments through the Genie fitting software, determining gain 

settings using Oticon’s proprietary Voice Aligned Compression (VAC) fitting rationale. 

Similar to NAL-NL2, VAC applies curvilinear compression to maximize speech 

intelligibility, emphasize audibility of soft sounds, and keep loud sounds comfortable 

(Schum, 2011). Unlike NAL-NL2, VAC is not a validated prescriptive method; therefore, it 

was not possible to verify targets with probe-mic measurements (Sanders et al, 2015).

All four clinics followed their own standard practices during the fitting process. In two of the 

four offices, the audiologist made real-ear measurements to check the VAC fitting against 

NAL-NL2 targets. In all offices, the audiologist manually adjusted the VAC fitting based on 

clinical experience and user feedback. The hearing aids had four user-selectable programs, 

accessible via the gateway or the smartphone: P1, general; P2, music; P3, party; P4, noise 

reduction.

Of the 21 persons who signed the consent form, 5 dropped out immediately after the second 

visit. The dropouts cited one or more of the following reasons for their withdrawal: lack of 

time to go through study (2), insecurity about proper usage of the technology (2), discomfort 

wearing ear molds (2), and ear infection (1).

As HALIC relies on Internet connectivity for location-based services, users were required to 

have a Subscriber Identification Module (SIM) card with a data plan installed in their 
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Galaxy Nexus phones. For the four participants who transferred their personal SIM cards to 

the Nexus, we transferred information from the participant’s mobile phone (contact 

numbers, calendar, etc.) and relevant applications downloaded. Ten participants chose to 

carry both their personal mobile phone and the Nexus with an unlimited voice and provided 

data SIM card. The remaining two participants began with a Galaxy Nexus but experienced 

difficulties and opted to carry both phones. Participants received instructions to keep their 

smartphones with the WiFi radio on and grant location access via GPS satellites as well as 

WiFi and mobile networks.

In a session lasting ~30 min, a researcher then instructed each individual on how to use the 

system. The researcher verified that participants understood and were able to use the system 

by having them sit in a sound booth and perform practice listening evaluations in four 

different ESCs (MUS, NOI, SiQ, and SiN). As necessary, the researcher’s voice served as 

the speech inputs, while nonspeech sounds were generated in the sound booth by playing 

prerecorded audio files. All participants departed the clinic wearing the system, with 

instructions to use it as often as possible during the test period. Every participant contacted 

us at least once during the test period. At the conclusion of the test period, they returned to 

the audiology office for a debriefing session. We conducted a postinterview to ask 

participants open-ended questions about hearing situations that they experienced and to 

solicit specific feedback about the context-aware hearing system. Participants performed 

four more listening evaluations in the sound booth.

RESULTS

Each participant’s raw data stored on the hearing aids and smartphone were downloaded to a 

computer. The 16 participants completed 3,578 listening evaluations, an average of >5.5 per 

person per day for an average 41 days. We analyzed hearing aid data to extract the hearing 

aid–classified ESC, to verify that settings were as expected during each listening evaluation, 

and to monitor hearing aid usage. On average, participants used their devices 4–16 hr per 

day (mean = 10 hr) during the study. Smartphone data contained a wealth of information 

associated with each listening evaluation, including HALIC-classified ESCs, user-classified 

ESCs, HALIC-classified locations, user-classified locations, and user setting preferences.

We excluded preference data from p16 after discovering during the postinterview that this 

participant reported inconsistent preferences. Participant p16 stated, “Program A is best for 

speech comprehension and not bad for music. Program B is best for music listening—

sounds are clearer and expanded and subtly muffled for speech.” This participant had not 

understood that A and B were randomized settings and, having never chosen “no 

difference,” obtained a reliability score of 0%.

We collected the audio recorded during each listening evaluation. The recordings were 

incomplete, as p10 did not give consent to audio recording and two others (p7 and p11) 

disabled audio recording during parts of the study. As described earlier, objective speech-to-

noise ratio classification criteria for the remaining 3,033 audio clips could not be 

determined. Instead, we established the gold-standard ESC by having two trained, 

independent raters listen to and manually classify each sound clip. For each clip, the rater 
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awarded two possible classifications from the choices QUI, MUS, NOI, PTY, SiN, and SiQ. 

For example, if the clip contained only traffic noise, the rater would code the clip as NOI, 

NOI. If the clip contained speech throughout, with intermittent background noise, the rater 

would code the clip as SiQ, SiN. The two raters, with a Cohen’s kappa of 0.775 based on 

their initial classifications, agreed on a final classification. (Cohen’s kappa is a statistic that 

measures interrater agreement for categorical items, where a value of 1 means perfect 

agreement.) The duration of each clip was typically 80 sec and the ESC sometimes changed 

during this time. In 1,558 out of 3,033 (51.4%) sound clips, the raters agreed on two valid 

ESCs.

Validation Phase: Settings Preferences

The validation-phase listening evaluations were A/B Tests randomly comparing trained and 

untrained settings. Data from p16, who had not understood the experimental procedure, were 

excluded (so, n = 15). From these participants, we discarded data from incomplete listening 

evaluations, where the user never pressed the “save evaluation” button. Seven of the 15 

participants had a significant preference for the trained settings (binomial test, p < 0.05), 

whereas one participant (p10) had a significant preference for the untrained settings. The 

remaining seven participants had nonsignificant preferences. Combined, all participants 

preferred the trained settings 49.2% of the time (binomial test, p < 0.00001), untrained 

settings 27.6% of the time, and indicated no difference in 23.2% of validation-phase 

listening evaluations. To determine statistical significance for the data as a whole, a paired-

samples t test (α = 0.05) was used. For the normalized preference scores, Pn, mean = 0.403, 

SD = 0.616, t(14) = 2.53, p = 0.0238, indicating that participants’ preference for the trained 

settings was statistically significant at the α level. The effect sizes were r = 0.560 and d = 

0.654. Figure 4 shows the normalized scores for each of the 15 participants.

Reliability (Eq. 1) ranged from 57% to 100% (mean = 87%). According to Pearson’s 

product-moment correlation analysis, degree of preference for trained settings positively 

correlated with reliability [r(13) = 0.630, p < 0.05]. The intercept of the trend line in Figure 5 

reveals that beyond a reliability of 75% the trained system started being beneficial. As 

shown in Figure 6, degree of preference for trained settings inversely correlated with dB HL 

[r(13)=−0.636, p ≈ 0.01]. A weaker inverse correlation also existed between preference for 

trained settings and years of hearing aid experience [r(13)=−0.548, p < 0.05].

Participants completed an average of 142 training-phase listening evaluations. The data did 

not suggest a correlation between preference for trained settings and completed training-

phase listening evaluations [r(13) = 0.099, p = 0.726]. However, among participants who 

completed more than 150 training-phase listening evaluations, four out of five (80%) had a 

significant preference for the trained system (the fifth was nonsignificant). Neither 

participant age [r(13) = 0.406, p = 0.133] nor average hours of hearing aid use [r(13) = 

−0.448, p = 0.094] reached significance in discriminating between the participants’ 

performance.
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Training Phase: Settings Preferences

We also analyzed training-phase listening evaluations, discarding data from incomplete 

listening evaluations or those where the HALIC-classified ESC did not match the gold-

standard ESC. Figure 7 depicts the proportion of times that each setting was preferred in 

each gold-standard ESC, pooling data across participants. (For the A/B Test results, trials in 

which the user indicated no preference were ignored, and the resulting small discrepancies 

in the total number of presentations ni of each setting i corrected by dividing the number of 

times ri the setting was chosen by ni and then dividing each adjusted total  by the grand 

adjusted total  to obtain corrected proportions.) Preferences were close to uniformly 

distributed (25%) for each ESC, with DIR/NR_OFF slightly less preferred. Overall, there 

was minimal variation in setting preference across ESCs. Expressed as percentages of 

training-phase A/B Tests comparing omnidirectional and directional modes (regardless of 

noise reduction state), OMNI was favored 33.2% of the time, DIR 27.0%, and no difference 

in the remaining 39.8%. Expressed as percentages of training-phase A/B Tests comparing 

noise reduction active and off (regardless of microphone mode), NR_ON was favored 28.9% 

of the time, NR_OFF 20.2%, and no difference in the remaining 50.9%.

When we broke down the same preference data by participant, a different picture emerged. 

Figure 8 illustrates individual setting preferences according to gold-standard ESC 

classifications, where each of the 16 squares represents data from a single participant 

numbered across rows from p1 in the upper left corner to p16 in the lower right. Three of the 

squares are entirely blank: p2 (partial training data lost due to technical error), p10 (did not 

give permission to record audio), and p16 (data not usable). If the participant completed 

fewer than five valid evaluations in a particular ESC, usually QUI, the column is also blank. 

Figure 8 shows that individual preferences can be strong and idiosyncratic. One participant 

(p1) strongly preferred the DIR/NR_ON setting for all four ESCs, while two others (p4 and 

p14) strongly preferred OMNI/NR_OFF in the ESCs in which they performed evaluations. 

Two participants, p11 and p15, predominantly preferred OMNI/NR_ON. The χ2 statistic 

was used to compare the distribution of individual settings preferences (%) for each of the 

four ESCs to the overall distribution. None of the participants showed significant (p < 0.05) 

differences from the overall distribution in QUI (n = 6) or SiQ (n = 10). However, the 

preferences of seven individuals significantly differed from the overall distribution in NOI (n 

= 13) and eight individuals in SiN (n = 13).

Environmental Sound Classification

Environmental sound classification was the basis for a number of the research findings. The 

gold-standard ESCs were used to evaluate the relative performance of HALIC’s ESC 

classifier and the hearing aid’s built-in classifier. Each classifier’s ESC prediction was 

considered correct if it matched the one or, in 52% of the instances, two gold-standard ESCs 

for that listening evaluation.

Each column of the confusion matrix (Table 2) gives the HALIC-predicted ESC, while each 

row lists the gold-standard, or actual, ESC. Correct classifications, therefore, appear along 
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the main diagonal of the matrix. As expected, HALIC performed best on the QUI class, both 

in terms of recall and precision. The class with the lowest recall was SiN, as HALIC 

achieved a true positive rate of 46%. On the other hand, the classifier frequently predicted 

the PTY class incorrectly (30% precision). Over the six classes, the classifier managed an 

accuracy of 78% on the full data set.

The hearing aid classifier had only four possible outputs (QUI, NOI, SiN, or SiQ), and this is 

reflected in Table 3. Over these four classes, the hearing aids achieved 70%. For the 

purposes of comparison, we deleted the rows and columns corresponding to MUS and PTY 

from Table 2 (Table 4). Considering only the remaining four classes, HALIC’s accuracy was 

85%. Although this is a significant improvement, it is important to compare the results 

between the hearing aids and HALIC with caution. The hearing aids were probably designed 

with one set of objective classification criteria, and in this study, they were evaluated against 

a subjective sound environment rating.

Location

In completing 3,758 listening evaluations, participants tagged 3,195 locations as Places and 

563 as Routes. The distribution of Places followed a power-law function. Although >50% of 

all tagged Places fell into the category of Home, the distribution also had a long tail. Of the 

52 Place categories available to participants, only 5 (bus station, boat terminal, nightclub, 

museum, and zoo) were not tagged. Participants also tagged 330 locations as Other, 

indicating the broad range of Places in which they performed listening evaluations. For 

instance, participant p7 reported completing listening evaluations in an amusement park and 

a bowling alley, neither of which appeared in the Places list.

Similarly, the distribution of Routes also followed a power-law function. Car dominated, 

with 73% of all tagged Routes. Although car and walking together accounted for 90% of all 

tagged Routes, the long tail was again evident. Of the 10 Route categories available to 

participants, only two (bicycling and boat) were not tagged, whereas four locations were 

tagged as Other Routes.

It is important to remember that we obtained data from participants who lived in the United 

States, and that distributions might look significantly different if a similar user study took 

place in another part of the world. On average, participants ate out in restaurants regularly, 

and strongly preferred traveling in cars to public transport. They also traveled frequently, 

completing listening evaluations throughout California (including Lake Tahoe, Los Angeles, 

and San Diego) as well as Santa Fe (New Mexico), Houston (Texas), Chicago (Illinois), Ann 

Arbor (Michigan), Orlando (Florida), upstate New York, and Hawaii.

Sensor Sensitivity

At the conclusion of the training phase, HALIC had built a trained model for each 

participant based on five sensor classifications—ESC, sound level, location, day of week, 

and hour of day. Using each participant’s trained model, we ran the inference engine for 

each of the corresponding validation-phase listening evaluations (without reinforcement 

learning). We took the resulting set of output settings as the ground truth. In subsequent 

inference engine runs, we removed each one of the five sensors from the model and the 
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output setting compared against the ground truth (Table 5). The results indicated that the 

output was most sensitive to ESC, as holding it out of the model resulted in ~20% error in 

output. The second most sensitive output was sound level, as dropping it resulted in a 15% 

error in output. Holding out hour of day yielded an 8% error in output, making it the least 

sensitive sensor.

DISCUSSION

A number of technologies have been developed to increase the benefit provided by hearing 

instruments to their wearers. The purpose of the present user study was to investigate 

whether participants could train a prototype hearing system, using a smartphone in the real 

world, to provide settings preferred to untrained hearing aid settings. The experimental data 

on 16 participants suggest that the self-trained system became more strongly preferred to the 

hearing aids’ untrained system. Of the 15 participants with valid data, 7 had a significant 

preference for the trained settings, 1 participant had a significant preference for the untrained 

settings, and the remaining 7 participants had nonsignificant results.

The finding that about half of the participants who provided valid data reported no 

preference for either response is in agreement with the Keidser and Alamudi (2013) study. 

Zakis et al (2007) reported that only about one-quarter of participants had nonsignificant 

preferences. One possible reason for this discrepancy is that participants in the present study 

completed an average of 142 training-phase listening evaluations over four weeks, fewer 

than the 300 adjustments required by Zakis et al. Although no overall significant correlation 

between number of training-phase listening evaluations and preference for trained settings 

existed, among participants who completed more than 150 training-phase listening 

evaluations, 80% (4/5) had a significant preference for trained settings. Zakis et al (2007) 

and Keidser and Alamudi (2013) also found that training was effective for 75–80% of those 

participants who had trained the devices sufficiently across several environments.

The participant who demonstrated a significant preference for the untrained settings, p10, 

had the lowest reliability of any individual with valid data. However, this participant also had 

the greatest average HL (63 dB HL), and the data suggested a significant inverse correlation 

between preference for trained settings and dB HL. Keidser and Alamudi also found a 

tendency for the eight participants who showed no preference to have a higher degree of HL 

(55.7 dB HL versus 50.8 dB HL; p = 0.13) than the eight participants who preferred the 

trained response. Mueller et al (2008) observed no significant correlation between average 

dB HL and gain deviation from NAL-NL1 targets.

Combined, participants voted for the trained settings 49.2% of the time. Again, this value is 

lower than the 68% reported by Zakis et al using the SHARP prototype. One possible 

explanation is that the SHARP had no other signal processing features—such as directional 

microphones, feedback reduction, and wind noise reduction—and allowed participants to 

appreciate fully the difference between trained and untrained compression and noise 

suppression parameters. In the present study, differences between the trained setting and the 

untrained setting may not have always been clear; in fact, it was possible that in a given 

listening evaluation, both the hearing aid and HALIC could present identical settings. For 
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this reason, a “no difference” button was provided, which was absent in the Zakis et al study, 

and contributed to the lower percentage of votes for the trained settings.

Directional Microphones and Noise Reduction

Little information exists about training microphone mode and noise reduction preferences. 

In Trial II of the Zakis et al (2007) study, noise reduction was enabled for the trained settings 

(with trained noise reduction strength), whereas in Trial III, noise reduction was disabled for 

both the trained and untrained settings. The outcome for the group data was that the 

provision of trained noise suppression did not have a significant effect on the preference for 

the trained settings.

In the present study, the pooled data revealed that preferences were nearly uniformly 

distributed (25%) for each real-world ESC, with DIR/NR_OFF slightly less preferred in 

QUI, NOI, SiN, and SiQ (Figure 7). This disfavoring of DIR/NR_OFF may have been due to 

an increase in audible circuit noise. Initially, venting and phase relationships between the 

front and rear microphones cause low-frequency roll-off. To compensate for this decrease in 

audibility while in the directional mode, a process called equalization increases the low-

frequency gain so the DIR frequency response nearly matches that of OMNI. Equalization 

has the undesired side effect of increasing audible circuit noise, which some participants 

may have found unpleasant.

The nearly uniform distribution across settings supports previous literature investigating user 

preference for microphone mode and noise reduction in the real world. In a study by Walden 

et al (2004), 17 hearing-impaired participants used pen and pencil to record their preferred 

microphone mode while describing the current listening situation in terms of five variables: 

background noise (“present” or “absent”), signal location (“front” or “other”), signal 

distance (“near” or “far”), reverberation (“low” or “high”), and noise location (“front” or 

“other”). Results suggested that knowing background noise presence, signal location, and 

signal distance were sufficient to make a reasonable guess of preferred mode. Participants 

showed a preference for omnidirectional mode in relatively quiet listening environments and 

in background noise with a relatively distant signal source. Only when background noise 

was present but the signal source was in “front” and relatively “near” the listener did 

participants clearly prefer the directional mode. Overall, OMNI was favored 37% of the 

time, DIR 33%, and there was no preference for either microphone mode in the remaining 

30%. These values are similar to this study’s results:OMNI (33%), DIR(27%), and no 

difference (40%).

Meanwhile, manufacturer-specific noise reduction algorithms vary in the number of 

channels used, the time constants, and the magnitude of gain reduction as a function of 

frequency and sound level (Dreschler et al, 2001), making it difficult to compare results 

across studies. Boymans and Dreschler (2000) measured the effects of both a directionality 

system—the twin-microphone system (TMS)—and a noise reduction algorithm—speech-

sensitive processing (SSP). The study combined laboratory experiments and field trials. 

Alongside objective data, the researchers collected subjective data via paired comparisons, 

with a test after week 4 and a retest after week 12. The four settings were TMS_OFF/

SSP_OFF, TMS_ON/SSP_OFF, TMS_OFF/SSP_ON, and TMS_ON/SSP_ON. The only 
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ESC tested was SiN, specifically speech in cocktail party noise background and speech in 

car noise. Compared to the baseline TMS_OFF/SSP_OFF, results of the paired comparisons 

showed ~60% higher preference for the directional mode (TMS_ON/SSP_OFF), and 10–

20% higher preference for noise reduction (TMS_OFF/SSP_ON). There was not a 

significant difference between TMS_ON/SSP_OFF and TMS_ON/SSP_ON. Crucially, the 

paired comparisons took place in the laboratory, with noise from three sides (90°, 180°, and 

270°) and speech from 0° azimuth. A number of studies (Walden et al, 2000; Surr et al, 

2002; Cord et al, 2004) found no relationship between laboratory performance of speech 

perception in noise, which showed highly significant directional advantages, and field 

ratings of speech understanding in noise, which yielded minimal directional benefit. 

Furthermore, research findings investigating changes in speech intelligibility due to 

implementation of digital noise reduction algorithms have been mixed, tending only to 

indicate that such algorithms can work to increase listener comfort and not showing a clear 

preference for noise reduction (Bentler, 2005).

Although the data in the present study suggest a relatively similar distribution of preferences 

for the four settings and environments across participants, individual results varied 

significantly. Walden et al (2004) observed as much, noting that one participant preferred 

OMNI in 90% of listening situations, whereas another preferred DIR in 73% of listening 

situations. These observations suggest that personalized settings could provide a benefit for 

some individuals not obtainable with an untrained algorithm.

Strengths and Limitations

Including a smartphone as part of a hearing system demonstrated several advantages. Three 

smartphone-related factors may have contributed to the participants’ statistically significant 

preference for trained settings. The first consideration is the use of built-in sensors to create 

context awareness. In decreasing order of importance, these were ESC, sound level, location, 

day of week, and hour of day. The second factor is the graphical user interface, giving 

participants the ability to train the system via listening evaluations. The third contributor is 

smartphone memory and processing power. The use of machine learning and digital signal 

processing algorithms on the smartphone improved environmental sound classification 

performance; in QUI, NOI, SiN, and SiQ, the HALIC classifier achieved 84% accuracy, 

compared to 70% accuracy for the hearing aid classifier. In addition, the knowledge-based 

engine implemented reinforcement learning, which could adjust to user preferences even in 

the validation phase.

All 16 participants (those who remained after five dropped out during the initial phase) 

completed the study, although two participants required extra time to complete the requisite 

number of evaluations. Participants averaged 5.5 listening evaluations per day for ~6 weeks, 

a remarkable achievement considering that they did not receive any reminders or prompts 

from the research team. Every participant encountered technical difficulties and received 

either in-person or telephone support at some point during the study. During the 

postinterview, 14 of 16 participants reported positive feelings of clarity, competence, and 

mastery of listening evaluations. The sustained commitment of the participants, resulting in 

their successful completion of the study, demonstrated their extreme motivation when 
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engaged in an issue as fundamental to well-being as hearing. The participants’ positive 

attitude and involvement supports the claim by Dillon et al (2006) that trainable hearing aids 

offer the advantage of increased sense of ownership and engagement.

The process of selecting participants for the study indicated that smartphones are not an 

appropriate part of a hearing system for a segment of the hearing-impaired population. The 

average age of the study participants was 55.5 yr, compared to the average age of a hearing 

aid user, ~70 yr (Kochkin, 2005). A major exclusion criterion was lack of technology use 

(persons who did not own computers or cell phones, or were never online), which is more 

prevalent among the 80+ age group. Of the 21 individuals who agreed to participate in the 

study, 5 dropped out just after getting started, with 2 of them citing insecurity about proper 

usage of the technology. It is possible that these people could have completed the study had 

they received more instruction, not only on the HALIC system but also on the function of 

the Streamer and the smartphone.

The present study had a number of notable limitations. First, the fitting rationale was 

manufacturer specific, and therefore could not be verified with probe-mic measurements. 

Given that starting gain has been shown to be associated with final hearing aid gain settings 

(Mueller et al, 2008), over- or under amplification may have significantly affected user 

preferences for trained and untrained hearing aid settings. Second, for the 16 individuals 

who did complete the study, we were not able to control for acclimatization to the hearing 

aids. It is possible that preferences for trained or untrained settings would change over time 

as participants acclimated to the new amplification. User test data showed a weak inverse 

correlation between preference for trained settings and years of hearing aid experience. 

Lastly, we acknowledge the limitations of training hearing aids using a smartphone. 

Participants did not train the system uniformly across ESCs and locations due to varying 

levels of commitment as well as social norms regarding use of mobile phones.

Future Work

This article has presented the design and evaluation of a novel trainable hearing system 

comprising two hearing aids and a smartphone, wirelessly connected through a body-worn 

gateway, which was required at the start of the study but is already becoming obsolete. The 

space of settings chosen was limited to microphone mode and digital noise reduction, and 

further restricted to on/off functionality. We hope to extend the prototype system to include 

other parameters as well. The question of which gain-frequency response to implement is 

almost as old as electronic hearing aids themselves, and has been addressed in past trainable 

hearing aids. A smartphone-based system could provide a novel method for the selection of 

gain-frequency responses and compression parameters, as is evident by the development of 

recent smartphone-based fitting algorithms (Nelson et al, 2014). Although participants felt 

confident using the A/B Test that they were giving “good data,” a limitation of paired 

comparisons is that they require many iterations to train if the setting space is large.

Due to institutional review board considerations, the prototype hearing system only 

controlled the hearing aid settings during listening evaluations, as this minimized the 

chances for the system to malfunction or cause harm. Consequently, participants reported 

frustration with selecting a preferred setting in a listening evaluation and then having the 
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hearing instruments revert back to an undesired setting immediately afterward. Participant 

p6 expressed disappointment at being a “passive recorder” and lamented that the system did 

not become “a dynamic participant in my hearing.” Clearly, the capability to remain in the 

preferred setting after the conclusion of the listening evaluation would provide an improved 

user experience. As the hearing system learned, the user’s need to perform listening 

evaluations should decrease over time, giving the user a greater sense of involvement.

A second possible enhancement of the system would be to allow gradual changes. For 

example, if a participant responded well to a mild noise reduction algorithm, HALIC could 

present the wearer with increasingly more aggressive responses to find the optimum setting. 

This gradual change method is readily applicable to frequency-gain adjustments as well.

Although the results of this study are encouraging, future research on the reliability of 

training and the effect of training on additional objective and subjective measures of benefit 

is needed to evaluate the overall value of training with a smartphone-based hearing system.
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Abbreviations

DIR directional microphone mode

EMA ecological momentary assessment

ESC environmental sound class

GPS Global Positioning System

HALIC Hearing Aid Learning and Inference Controller

HL hearing loss

MUS Music environmental sound class

NAL-NL1 National Acoustic Laboratories-nonlinear 1

NAL-NL2 National Acoustic Laboratories-nonlinear 2

NOI Noise environmental sound class
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NR_OFF noise reduction off

NR_ON noise reduction on

OMNI omnidirectional microphone mode

PTY Party environmental sound class

QUI Quiet environmental sound class

SD standard deviation

SHARP Stereo Hearing Aid Research Processor

SIM Subscriber Identification Module

SiN Speech in Noise environmental sound class

SiQ Speech in Quiet environmental sound class

SSP speech-sensitive processing

TMS twin-microphone system

VAC Oticon Voice Aligned Compression rationale

WiFi wireless local area network
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Figure 1. 
Principal components of HALIC: context (ESC, location, time, and movement) is gathered 

via the smartphone’s built-in sensors, user input is captured via listening evaluations, and the 

knowledge-based agent is in charge of learning and inference. Accel = accelerometer 

(detects movement); GSM = Global System for Mobile Communications (this cellular tower 

has a uniquely identifiable ID, making it useful in location estimation).
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Figure 2. 
Smartphone screen shots of the A/B Test sequence: Listening to setting A (left), listening to 

setting B (center), and choosing the best setting (right).
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Figure 3. 
Mean left- and right-ear audiometric thresholds (± SD) of the 16 participants.
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Figure 4. 
Validation-phase normalized preference score for trained (positive values) versus untrained 

(negative values) settings for each participant. *p < 0.05; **p < 0.01.
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Figure 5. 
Validation-phase normalized preference score versus reliability, defined in Equation 1 

(minimum 50% reliability).
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Figure 6. 
Validation-phase normalized preference score versus degree of HL.
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Figure 7. 
Pooled training-phase setting preferences according to gold-standard ESC. Area of circles 

indicates proportions of preference for each ESC.
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Figure 8. 
Individual training-phase setting preferences according to gold-standard ESC. Data from 

participants, p2, p10, and p16, were excluded for various reasons (see text). Area of circles 

indicates proportions of preference for each ESC.
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Table 1

List of Smartphone Sensors Used in the Prototype Hearing System

Sensor Number Values

ESC 6 QUI, MUS, NOI, PTY, SiQ, SiN

Sound level 5 Silent, soft, moderate, loud, very loud

Location 52 Places Home, work, airport, restaurant, zoo, …

10 Routes In car, running, walking, …

Time of day 24 00:00–00:59, 01:00–01:59, 02:00–02:59, …

Day of week 7 Monday, Tuesday, Wednesday, …
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Table 5

Effect of Dropping a Sensor on Classification Accuracy

Sensor Misclassifications % Error

Drop none (ground truth) 0 0

Drop ESC 212 19.7

Drop sound level 164 15.3

Drop day of week 133 12.4

Drop location 113 10.5

Drop hour of day 87 8.1

Note: n = 1,075 validation-phase listening evaluations.
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