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Abstract

Randomized controlled trials can benefit from proactive assessment of how well their participant 

selection strategies during the design of eligibility criteria can influence the study generalizability. 

In this paper, we present a quantitative metric called generalizability index for study traits 2.0 

(GIST 2.0) to assess the a priori generalizability (based on population representativeness) of a 

clinical trial by accounting for the dependencies among multiple eligibility criteria. The metric 

was evaluated on 16 sepsis trials identified from ClinicalTrials.gov, with their adverse event 

reports extracted from the trial results section. The correlation between GIST scores and adverse 

events was analyzed. We found that the GIST 2.0 score was significantly correlated with total 

adverse events and serious adverse events (weighted correlation coefficients of 0.825 and 0.709, 

respectively, with P < 0.01). This study exemplifies the promising use of Big Data in electronic 

health records and ClinicalTrials.gov for optimizing eligibility criteria design for clinical studies.
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Introduction

Randomized controlled trials are the gold standard for generating high-quality medical 

evidence. An important expectation of any clinical trial is that the results are generalizable, 

extending to patients with the same condition and for whom the treatment is intended but 
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who are not in the study. In other words, generalizability measures whether the results 

obtained by testing on a population sample are applicable to a larger population from which 

the sample was drawn. The need for generalizing study results to real-world populations 

should be addressed by research investigators and sponsors during the design of clinical 

trials.

Population representativeness of study populations is one of the determining factors for 

generalizability. The concepts generalizability and representativeness are related, but 

distinct. Representativeness measures the study population’s coverage of real-world patients, 

often with respect to multiple study traits—quantitative (e.g., lab results, age) or categorical 

(e.g., diagnosis, procedures). Generalizability is the portability of causal effects of a clinical 

intervention to a different situation.1–4 Besides population representativeness, multiple other 

factors affect the generalizability of a clinical study, such as variation in patient care across 

different clinical settings and discrepancies in conditions under which a trial is conducted.4–6 

The major causes affecting generalizability are discussed in more detail by Bonell et al.6 and 

Kukull et al.7 In this study, we focused on measuring population representativeness.

One major factor affecting population representativeness is the study’s eligibility criteria. 

Restrictiveness of eligibility criteria can jeopardize the extrapolation of trial results to wider 

populations.8 Highly restrictive eligibility criteria can also result in studies that exclude 

patients who might benefit from the intervention or jeopardize patient safety by not 

recognizing possible postmarketing adverse intervention effects in untested populations.9–11 

Conversely,loosely formed criteria can lower the effectiveness of the intervention in 

unselected populations. Several limitations exist with the current design of eligibility 

criteria, including criteria being (1) restrictive,12 (2) ambiguous,13 (3) reused with minimal 

modifications,14 (4) subjective,15 and (5) requiring frequent amendments owing to the lack 

of feasibility based on trial and error iterations.16 One of the main causes of the limitations 

of such designs is lack of information about the distribution of real-world patients.17

The emergence of vast electronic health records, comprehensive clinical data warehouses, 

and interoperable data networks have made enormous amounts of electronic patient data 

available. Some examples include public medical record databases, such as Multi-parameter 

Intelligent Monitoring in Intensive Care II (MIMIC II; https://mimic.physionet.org/), the 

international collaborative consortium for Observational Health Data Sciences and 

Informatics (OHDSI; http://www.ohdsi.org), the Clinical Data Warehouse (CDW) at 

Columbia University,18 and the Knowledge Program (KP) data warehouse.19 Access to these 

data infrastructures enable scalable analytics for phenotype modeling and population 

profiling, as well as for generating a low-bias approximation of the real-world population. 

Meanwhile, clinical trial registries and study result databases are becoming increasingly 

available publicly, especially through ClinicalTrials.gov, which is a registry for publically 

and privately funded clinical research studies conducted worldwide. Some sponsors are 

required by U.S. law to register their trials on ClinicalTrials.gov, with each study record 

consisting of the purpose, recruitment status, eligibility criteria, location, and contact 

information. The public’s trust in clinical research can benefit from such transparency in 

study information. The vast data resources mentioned above can enable evaluation and 

optimization of eligibility criteria design using data-driven approaches. This, in turn, can 
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provide useful decision aids to eligibility criteria designers by determining (1) which 

patients should be studied and which patients should be excluded, and (2) how the study 

population would be representative of real-world patients and enable modification of 

eligibility criteria on the basis of this early feasibility feedback (before the start of 

recruitment).

To this end, we present a metric for quantifying a priori generalizability, or population 

representativeness, of an individual clinical study by considering multiple eligibility criteria 

simultaneously. With this metric, we aim to answer the following questions about eligibility 

criteria: (1) How restrictive are the overall eligibility criteria?, (2) Is there a specific 

eligibility criterion that lowers population representativeness?, and (3) How robust is the 

population representativeness to small changes in eligibility criteria? Answering these 

questions could optimize study generalizability within the constraints of patient safety.

On this basis, we aim to answer the vital research question, How might the population 

representativeness of a clinical trial (measured by our metric) be correlated with the reported 

adverse events associated with the trial? We hypothesize that more stringent eligibility 

criteria may lead to study populations with less risk of adverse events.20–24 In a clinical trial, 

an adverse event can be any unfavorable and unintended sign, symptom, or disease 

temporarily associated with the intervention, without any judgment about causality or 

relationship to the drug.25 Serious adverse events may refer to death, life-threatening 

emergencies, hospitalization, congenital or birth defects (in the case of pregnant women), 

and other serious medical conditions. The set of non-serious adverse events is much larger 

and may include, for example, tachycardia, anemia, diarrhea, decrease in urine output, and 

headache. Reported serious adverse events have been on the rise, as shown by data collected 

from the U.S. Food and Drug Administration (FDA) between 1998 and 2005.26 Moreover, it 

was also shown that 14% of adverse events were due to organizational factors, of which 93% 

were preventable.23

Background

For a clinical trial, there are typically four associated populations, one of which is the target 

population (TP), corresponding to the entire universe of patients affected by the condition 

under consideration and for whom the results of the clinical trial are intended. However, 

since it is virtually impossible to precisely define the TP, the electronic health record (EHR) 

population (EP), which includes those patients who visit medical facilities to receive care, is 

often used as its approximation. A study population (SP) is the set of all patients who satisfy 

the eligibility criteria of a particular trial. Finally, the patients who actually enroll for the 

clinical trial constitute the study sample (SS). While part of the SP may lie outside of the EP, 

we assume that, during the screening for a trial, an enrolled patient’s medical data will 

become available electronically so that the SS will always be within the EP. A Venn diagram 

for these populations is shown in Figure 1. It must be noted that, in outpatient community-

based trials, the EP may be a poor approximation of the TP and parts of the SS may lie 

outside of the EP.

Generalizability in clinical trials is of two types: eligibility driven and sample driven. 

Eligibility-driven generalizability is computed prior to the trial and calculates the 
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representativeness of the SP within the TP. Note that the SP is defined literally by the 

eligibility criteria. Sample-driven generalizability is calculated after a trial has been 

completed, using patient-level (or aggregate) data, and this computes the representativeness 

of the SS within the TP. As the SP subsumes the SS, the sample-driven generalizability is 

usually lower than eligibility-driven generalizability. Only in cases of ideal recruitment is the 

SS completely representative of the SP, resulting in the two generalizability calculations 

being equivalent. In this paper, our focus is on eligibility-driven generalizability, and unless 

specified otherwise, we use the term generalizability to refer to eligibility-driven 

generalizability throughout the rest of the paper.

Previous assessments of eligibility-driven generalizability have been based on visualization 

techniques and statistical tests. For example, Schoenmaker et al. used comparisons of 

histograms to show that TP patients are generally older than patients recruited for trials.9 

Furthermore, Pressler et al. used propensity scores to estimate the generalizability bias in 

simulated observational data,27 and Greenhouse et al. computed generalizability bias by 

comparing the characteristics of SS patients to a simulated TP.28 At present, there are 

relatively few robust methods for quantifying generalizability during the study design 

process. Moreover, many of these compute sample-driven (rather than eligibility-driven) 

generalizability after the publication of study results.29–31

In a study by Bleeker et al,32 eligibility-driven generalizability was computed using Receiver 

Operating Characteristic analysis. Specifically, infants with fever were evaluated for the 

presence of bacterial infection by a binary classifier, and training and testing sets comprised 

of patients from two different hospitals in different time periods. The framework of this 

study is different from a clinical trial, as ground truth knowledge cannot be assumed in 

clinical trial situations. Weng et al. introduced the generalizability index for study traits 

(GIST) as a figure of merit for assessing generalizability.17 In its most general form, GIST 

could compute the generalizability of multiple related trials (of the same disease) at the same 

time and was initially presented for individual study traits, but was later extended to multiple 

traits by He et al.33

However, GIST had a few limitations. Firstly, all clinical traits were considered 

independently and the dependencies between them were not accounted for. In addition, 

every trait was equally weighted (i.e., all traits were assumed to be of equal significance), 

which is contrary to the way that traits are weighted in a clinical trial setting, where some 

traits may be more significant than others; this needs to be incorporated into the 

quantification. With these limitations in mind, we developed GIST 2.0. To differentiate 

between the two versions of GIST we refer to them as GIST 1.0 and GIST 2.0 (the 

shorthand GIST will also refer to GIST 2.0). In this paper, we discuss a pilot study aimed to 

illustrate the methodology of GIST 2.0 using sixteen sepsis trials (all of which reported 

adverse events) and follow with an analysis of the correlation between population 

representativeness and adverse events.
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Methods

The computation of the GIST 2.0 metric has three major preprocessing steps. First, the TP is 

approximated using patient-level EHR data. Second, each study trait is assigned a 

significance, and, finally, the eligibility criteria for the trial under consideration are extracted 

from clinical trial summaries. The three preprocessing steps leading to the computation of 

the GIST 2.0 scores are shown schematically in Figure 2.

Approximation of the target population

We used the EP as an approximation for the TP. Although our methodology can be applied 

to EHR Big Data of hundreds of millions of patients, to make it convenient for others to 

validate the methodology and replicate the results, we used the public data from MIMIC II 

for this study. MIMIC II contains structured EHRs of over 30,000 intensive care unit (ICU) 

patients. To illustrate the ability of the methods to handle a large number of traits, we 

considered sepsis trials, which usually have many traits in their eligibility criteria. Thirteen 

study traits, which are frequently used in sepsis trials, were chosen after consultations with a 

medical expert (Andrew Goldstein) and were extracted for all of the patients. These traits 

were bilirubin, platelet count, glucose, heart rate (HR), white blood cell (WBC) count, 

international normalized ratio (INR), mean arterial blood pressure (MABP), systolic blood 

pressure (SBP), diastolic blood pressure (DBP), respiratory rate (RR), plasma lactate, 

temperature (°C), and activated partial thromboplastin time (APTT). In addition, since age 

and gender are part of the eligibility criteria for all trials, they were added to the set of traits 

for GIST 2.0 calculation.

Out of all patients, 4617 had at least one value for each of the 15 traits. Owing to the large 

number of laboratory traits used in sepsis, we used the presence of the readings for all of the 

sepsis-related traits as an indicator for sepsis cases. Therefore, these 4617 patients formed 

our EP. We used the mean to summarize traits that had multiple readings. Identification of 

sepsis patients through International Classification of Diseases (ICD)-9 diagnosis codes was 

not accurate because of the incompleteness of data. Approximately 500 patients had no 

diagnosis codes and several hundred patients had incomplete sets of codes (e.g., a condition 

mentioned in the clinical notes was not present in the diagnosis codes list).

Significance scaling of study traits

Eligibility traits have varying clinical significance. Assigning a significance rating to each 

trait requires disease-specific domain knowledge. We used a simplified data prevalence-

based significance rating. The significance for a trait was defined as the fraction of patients 

in the data set who had at least one reading for that trait.

Selection of trials and interpretation of eligibility criteria

We searched for sepsis trials in ClinicalTrials.gov that presented results and found 62 such 

trials. Several of these trials were actually for related but different diseases, such as 

bacteremia and candidemia, and were thus excluded from this study. Trials for neonatal and 

pediatric sepsis were also excluded. This left 16 sepsis trials that were used for further 
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analysis. Since the number of traits in MIMIC II is limited, any additional traits in these 

trials (besides the abovementioned traits) were ignored.

Sepsis clinical trial eligibility criteria tend to be vague in their definition and required some 

clinical interpretation. The 16 trials broadly fit into three disease subcategories: sepsis, 

severe sepsis, and septic shock. However, the distinctions between these categories are not 

strictly defined.34 In the present study, we used the following definitions. The broad 

category of sepsis (unless defined otherwise) was interpreted as satisfying at least two of the 

four systemic inflammatory response syndrome (SIRS) criteria: (1) core temperature higher 

than 38 °C or lower than 36 °C, (2) RR greater than 20 breaths per minute, (3) WBC count 

greater than 12,000 per mm3 or less than 4000 per mm3, and (4) HR greater than 90 beats 

per minute. Severe sepsis is characterized by the SIRS criteria accompanied by signs of 

organ failure. In case the conditions for organ failure were not specified, we used the 

following conditions as indicative of organ failure:35 serum lactate greater than 2 mmol/L, 

platelet count less than 100,000, bilirubin greater than 2 mg/dL, or INR greater than 1.5. 

Septic shock requires the fulfillment of the SIRS criteria, advanced organ failure, as well as 

hypotension (SBP < 90 mmHg or MABP < 65 mmHg), or serum lactate levels greater 4 

mmol/L, after adequate fluid resuscitation.

Brief methodology for GIST 2.0

In this section we briefly describe the methods for computing a priori generalizability. The 

patients in the EP are denoted by P1,P2, …,PN and the traits by f1, f2, …, PN. Patients are 

indexed by i and traits by j. An n-dimensional vector of traits can then represent a patient, 

 . Since each trait has a different range of values, we normalized the 

traits with the corresponding Z-scores (using the mean μj and standard deviation σj of a trait 

fj). These normalized traits were then significance scaled. We employed a nonlinear 

regression hyper-surface36 to model the dependencies between the normalized and 

significance-scaled traits, in which one of the traits was treated as the dependent variable and 

all others as independent (e.g, fn = F(f1, f2,… ,fn-1). Next, each patient Pi was assigned a 

weight wi that was inversely proportional to its residual distance from the regression hyper-

surface.

For a trial T, the eligibility range (determined by eligibility criteria) for a study trait fj is 

denoted as Ej(T). The logical combinations of the individual eligibility criteria determined 

the overall eligibility criterion for T, Eall(T). Now, the multiple-trait GIST (mGIST) of T is 

defined as the weighted fraction of patients satisfying the eligibility criteria.

This process of computing mGIST is outlined in Figure 3. We similarly define the single-

trait GIST (sGIST) for each trait by calculating the weighted fraction of patients who satisfy 

the eligibility criteria for that particular trait.
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This process is demonstrated with a simple example using two traits, as shown in Figure 4. 

For simplicity, the normalization and the significance-scaling steps are not shown in this 

figure and the nonlinear regression hyper-surface was calculated directly from the observed 

study traits. The axes represent the heart rate and glucose measurements of 120 randomly 

selected patients from the EP described above. The dashed lines denote typical sepsis 

eligibility criteria for these two traits (HR > 90 beats per minute, glucose > 120 mg/dL). 

Patients in the yellow region satisfy both eligibility criteria. The dotted nonlinear curve 

(calculated by nonlinear regression) models the dependence between the two traits. For a 

patient Pi, its residual distance from this curve is di. Then the weight assigned to it is wi = 

1/(1 + di).

Generalizability versus adverse events

We used mGIST to analyze the correlation between generalizability and the occurrence of 

adverse events. Trial results in ClinicalTrials.gov contain detailed information about serious 

and other adverse events (both grouped by cohorts). We define the total adverse events 

(TAEs) as the sum of serious and non-serious adverse events. For each trial, we computed 

the serious adverse event fraction (SAEF) and total adverse event fraction (TAEF) as the 

fraction of patients (from all cohorts) who suffered SAEs or any adverse events, respectively. 

We used these to compute the weighted correlation coefficients37 between mGIST and T/

SAEs. The number of patients in each trial determined the weights for trial. The correlation 

coefficient measures the linear dependence between two variables and is bounded by –1 and 

1, with the bounds representing perfect negative (inverse) and perfect positive (direct) 

correlations, respectively. For example, a strong positive correlation (with coefficient 0.71) 

was demonstrated between hemoglobin A1C and blood glucose by Sikaris.38

Results

The mGIST scores for the sixteen trials (in ascending order) along with their SAEF and 

TAEF are given in Table 1. The number of patients in the trials ranged from 5 to 745. Of the 

five trials with no reported adverse events, only one had more than 24 patients 

(NCT01947127 with 292 patients). Sepsis trials usually have complicated eligibility criteria 

with several logical connectors. Hence, we specify these conditions in the last column of 

Table 1 (without units), in which SIRS (unless specified otherwise) refers to at least two of 

the SIRS criteria being satisfied. Organ failures are defined as above. In addition, a comma 

implies a logical AND operation.

The weighted correlation coefficient for mGIST and the SAEF was 0.709 and was higher 

(0.0825) for mGIST and the TAEF. Both of these coefficients were statistically significant at 

the 0.01 level (P = 0.0021 and < 0.0001, respectively), demonstrating a positive dependence 

between mGIST and occurrence of adverse events. The trials that have more restrictive 
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eligibility criteria (thus lowering their generalizability) usually have fewer cases of adverse 

events. However, these correlations should be interpreted with caution because of the 

reasons discussed in the next section.

Although the logical combinations of eligibility criteria are complicated (and different) for 

sepsis trials, the criteria for the individual traits received almost identical sGIST scores. The 

sGIST scores for all eligibility traits in all 16 trials are shown in Table 2 and the main points 

are summarized here. For the four SIRS criteria, the sGIST values were 0.372 for 

temperature, 0.535 for lactate, 0.435 for RR, and 0.512 for HR. For SBP less than 90 

mmHg, the sGIST was 0.159, while for MABP less than 65 mmHg, it was 0.191 (0.115 for 

less than 60 mmHg). Serum lactate had three different eligibility criteria: > 2, > 2.5 mmol/L, 

and > 4 mmol/L. The sGISTs for these cases were 0.483, 0.370, and 0.189, respectively. For 

the organ failure criteria, the sGISTs were: 0.187 for bilirubin, 0.390 for INR, and 0.159 for 

platelet count (0.107 when the criterion was < 80,000). The sGIST for age greater than 18 

years was 0.999 and for the 18–65 year range, the score was 0.501.

Discussion

While the interaction between mGIST and adverse events is interesting, their high and 

significant correlation should be treated with caution—although population 

representativeness is desirable, it cannot come at the cost of patient safety. Most trials are 

designed to minimize adverse events. Hence, the tradeoff between population 

representativeness and adverse events is challenging. Due to a limited number of relevant 

trials with results, our analysis considered only sixteen trials. As mentioned earlier, both the 

SAEF and TAEF are aggregated over all cohorts, and there may be significant differences 

between the various cohorts. Moreover, the adverse event could be independent of the 

clinical trial intervention. Despite these uncertainties, the significant positive correlation 

indicates that trials that have stricter eligibility criteria are less likely to have serious adverse 

events. This is in agreement with previous studies20,21 that have concluded that proper 

screening can lower the risk of adverse events, which also validates the clinical 

meaningfulness of mGIST.

The present study is only a stepping stone toward the leverage of Big Data resources in 

clinical trial generalizability assessment. The MIMIC II data set of approximately 30,000 

patients is relatively small as compared to typical clinical data warehouses (e.g., the 

Columbia University CDW consists of 4.5 million patients’ medical records) or large 

international networks (e.g., OHDSI has approximately 680 million patient records as of 

January 2016). However, the methods presented here can be easily extended to larger data 

sets. The algorithm for calculating GIST 2.0 scores (though not optimized professionally) is 

computationally robust and can compute the fitting hyper-surface (in 15 dimensions) in less 

than a second. Although the addition of patients and traits will amplify the computation, it is 

expected to remain within manageable limits.

In contrast to GIST 1.0, which computes the multiple-trait generalizability by simply 

aggregating the single-trait generalizabilities, GIST 2.0 explicitly models the inter-trait 

dependencies. The weighing scheme for the patients in GIST 2.0 minimizes the effect of 
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outliers. The nonlinear regression model for trait dependencies is capable of handling both 

categorical and numeric traits with different significance. In this study, since the analysis 

was limited to sepsis trials, the ability of GIST 2.0 to handle categorical variables was not 

evident in the results. For a full evaluation, we will expand this analysis to multiple diseases. 

However, despite this promise, other challenges need to be overcome. It must be noted that, 

by reusing EHRs for clinical research, we are using data for a purpose different from the 

purpose for which they were acquired, potentially causing major hurdles, particularly 

sampling bias and data incompleteness.39

The mGIST metric has several of the desired mathematical properties. If no patients from 

the TP satisfy the eligibility criteria of a trial, the mGIST of the trial is zero. Similarly, if all 

patients of the TP are eligible for the trial, then its mGIST is one. One of the most 

meaningful properties is the monotonicity property (i.e., if the eligibility criteria of a trial T1 

subsumes the criteria of another trial T2, then mGIST(T1) is greater than mGIST(T2). The 

distributive law also holds, in that when the SP (defined by eligibility criteria) of a trial is 

partitioned into two or more components, the sum of the mGISTs of the components is equal 

to the mGIST of the trial. For example, if a trial open to both genders is restricted to a single 

gender, then its mGIST is halved (assuming an equal distribution of genders and no third 

gender). As a follow-up of the monotonicity property, eligibility criteria connected by the 

logical AND lower the mGIST, while those connected by OR elevate the mGIST.

Our study has certain limitations; namely, it is debatable how well the EP can approximate 

the TP. For example, it has previously been shown that the EP is younger9 (owing to a higher 

number of medical records of recent patients) and sicker.40 Our methodology for defining 

the EP was based on the presence of 15 sepsis-related traits; however, such a selection may 

introduce biases within the EP. Imputation and interpolation are possible ways for dealing 

with patients with missing traits. Further, this method for identifying sepsis patients may 

include some patients in the EP who do not have sepsis. Therefore, in the future we plan to 

use better data sets, such as OHDSI, which encompass a far greater variety of patients. 

Another way to enrich the data is the use of claims data along with EHRs.41 The eligibility-

driven generalizability, as defined here, depends only on the traits that are part of the 

eligibility criteria and not on thousands of other latent traits, many of which may be 

clinically relevant. This can lead to the SP being very different from the EP and TP.

Conclusions

We have applied a quantitative metric GIST 2.0 for evaluating the population 

representativeness of a clinical trial and correlated it with study adverse events. Initial results 

point toward a robust metric with all of the desired mathematical properties.
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Figure 1. 
A schematic representation of the various populations associated with a clinical trial: target 

population (TP), EHR population (EP), study population (SP), and study sample (SS).
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Figure 2. 
A flowchart showing the various preprocessing steps to prepare the data for the computation 

of GIST 2.0.
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Figure 3. 
A summary of the steps involved in computing mGIST 2.0.
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Figure 4. 
An illustration of the hyper-surface fitting and the patient weighting within the GIST 2.0 

methodology using two study traits—heart rate and glucose.
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Table 1
The mGIST scores, SAEF, and TAEF for 16 sepsis trials and their eligibility criteria

Trial mGIST SAEF TAEF Eligibility criteria

NCT00979121 0.113 0.089 0.089 All SIRS conditions except RR, age > 18 years

NCT01443494 0.167 0.000 0.000 SIRS, SBP < 90 or MABP < 65, age > 18 years

NCT01689441 0.167 0.000 0.000 SIRS, SBP < 90 or MABP < 65, age > 18 years

NCT00535821 0.210 0.000 0.000 SIRS, lactate > 4 or SBP < 90, age > 18 years

NCT01150409 0.210 0.818 0.818 SIRS, lactate > 4 or SBP < 90, age > 18 years

NCT00608322 0.211 0.306 0.306 SIRS, lactate > 4 or SBP < 90, age > 14 years

NCT01947127 0.217 0.000 0.000 SIRS, MABP > 70, SBP > 90, age 18–65 years

NCT00633477 0.289 0.235 0.824 At least 3 of the SIRS conditions, age > 18 years

NCT01434121 0.315 0.000 0.000 SIRS, lactate > 2.5 or platelet < 80,000 or MABP < 60,
age > 18 years

NCT00386425 0.380 0.167 0.366 SIRS, 2 or more organ failures, age > 18 years

NCT01027897 0.604 0.267 0.267 SIRS, age 18–90 years

NCT01144624 0.609 0.300 1.000 SIRS, age > 20 years

NCT01145560 0.611 0.289 0.289 SIRS, age > 18 years

NCT01739361 0.611 0.068 0.068 SIRS, age > 18 years

NCT00464204 0.611 0.495 0.989 SIRS, age > 18 years

NCT00279214 0.612 0.163 0.256 SIRS, age > 18 years

Abbreviations: mGIST, multiple-trait generalizability index for study traits; SAEF, serious adverse event fraction; TAEF, total adverse event 
fraction; SBP, systolic blood pressure; MABP, mean arterial blood pressure; SIRS, systemic inflammatory response syndrome.
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