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The current study characterizes a cohort of limb-girdle muscular dystrophy (LGMD) in the United
States using whole exome sequencing. Fifty-five families affected by LGMD were recruited using
an institutionally-approved protocol. Exome sequencing was performed on probands and selected
parental samples. Pathogenic mutations and co-segregation patterns were confirmed by Sanger
sequencing. Twenty-two families (40%) had novel and previously reported pathogenic mutations,
primarily in LGMD genes, but also in genes for Duchenne muscular dystrophy,
facioscapulohumeral muscular dystrophy, congenital myopathy, myofibrillar myopathy, inclusion
body myopathy, and Pompe disease. One family was diagnosed via clinical testing. Dominant
mutations were identified in COL6A1, COL6A3, FLNC, LMNA, RYR1, SMCHDI1, and VCP,
recessive mutations in ANO5, CAPN3, GAA, LAMAZ, SGCA, and SGCG, and X-linked
mutations in DMD. A previously reported variant in DMD was confirmed to be benign. Exome
sequencing is a powerful diagnostic tool for LGMD. Despite careful phenotypic screening,
pathogenic mutations were found in other muscle disease genes, largely accounting for the
increased sensitivity of exome sequencing. Our experience suggests that broad sequencing panels
are useful for these analyses due to the phenotypic overlap of many neuromuscular conditions. The
confirmation of a benign DMD variant illustrates the potential of exome sequencing to help
determine pathogenicity.

Introduction

Limb girdle muscular dystrophy (LGMD) is a broad and increasingly heterogeneous
category of inherited muscle diseases!. LGMD typically causes progressive proximal muscle
weakness and has been associated with classic histological abnormalities on muscle biopsy.
As genetic discoveries in LGMD proliferate, it has become clear that the clinical and
histological presentations, as well as outcomes, may vary widely between subtypes and
among different affected individuals. However, these variations are not consistent enough to
enable clinicians to identify subtypes based on phenotype alone. Two major subcategories
are recognized based on inheritance patterns: LGMD type 1 (LGMD1) is dominantly
inherited and LGMD type 2 (LGMD?2) is recessively inherited. To date, 8 dominant forms
(LGMD1A-H) and 23 recessive forms (LGMD2A-W) have been described, each
corresponding to a different causative gene2. Onset of symptoms may occur at almost any
age, with the exception of infancy, which would indicate the presence of a congenital
muscular dystrophy. Traditional approaches of identifying pathogenic mutations by
immunohistochemistry, western blotting and Sanger sequencing of selected genes can yield
genetic diagnoses in 35% of families3. Clinical exome sequencing in general has been
reported to have a diagnostic rate of 25%%, whereas recent studies of exome sequencing for
neuromuscular disease show a 46% diagnostic rate in the United States® and 73% in a highly
consanguineous population from Iran®. Diagnostic rates in LGMD have recently been
reported to be 45% in Australia using exome sequencing’ and 33% in Germany using
targeted sequence capture®. The results of exome sequencing in LGMD for a large cohort
from the United States has not previously been published.

We analyzed 55 families from the United States, each of which has one or more individuals
with the clinical diagnosis of LGMD. Pathogenic mutations were identified in 22 of 55
families using exome sequence analysis in concert with clinical findings and Sanger
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sequence confirmation. Our results correlate with the results of studies performed in other
countries, and yield interesting observations about approaches to genetic diagnosis in
muscular dystrophy.

Materials and Methods

Recruitment of families and sample collection

Patients with the clinical diagnosis of LGMD who did not have a genetic diagnosis after
clinical evaluation (including some clinical genetic testing), as well as their available
informative family members, were recruited for this study. Onset of symptoms for all
probands was over 1 year. A total of 55 families were enrolled via an institutionally
approved research protocol at Boston Children’s Hospital. One of the authors (EE), a
certified genetic counselor, personally enrolled all of the subjects and reviewed risks and
benefits in detail during the consent process. Clinical data collected included medical and
family histories, physical examinations, laboratory results, clinical genetic test results, and
clinical muscle biopsy data, which were stored in a secure Filemaker Pro v.10 database (see
Supplementary Figure 1 for sample form). Peripheral blood or saliva samples were collected
from probands and informative relatives for DNA extraction. Any clinical information that
indicated specific gene candidates, such as deficiencies of protein expression on
immunohistochemistry, was taken into account when analyzing the exome sequencing data.

Whole exome sequencing (WES)

The Genomics Platform at the Broad Institute was used to perform whole exome sequencing
of DNA samples representing selected subjects from 45 of the 55 families; the full
sequencing protocol has been published for LGMD cohorts from other countries’ 9. The
Agilent Sure-Select Human All Exon v2.0, 44Mb baited target and the Broad in-solution
hybrid selection process were used to target exons in genomic DNA. At least 250 ng of DNA
with concentrations of at least 2ng/ul were submitted for each sample. The hybrid selection
libraries cover >80% of targets at 20x or more, with a mean target coverage of >80x. Exome
sequencing data was processed through a pipeline based on Picard (https://github.com/
broadinstitute/picard), using base quality score recalibration and local realignment at known
insertions and deletions. The BWA aligner (https://github.com/Ih3/bwa) mapped reads to the
human genome build 37 (hg19) reference sequence. The variant call set was uploaded on to
xBrowse (https://atgu.mgh.harvard.edu/xbrowse/) and an analysis limited to the candidate
gene list was performed using the various inheritance patterns. The main report contains
variants restricted to nonsense, frameshift, essential splice site and missense variants and
filtered on variant site and genotype quality.

DNA samples from the remaining 10 of the 55 families underwent whole exome sequencing
at the Genomic Diagnostic Laboratory and analyzed by the Interpretive Genomic Services
team at Boston Children’s Hospital as previously described0. Briefly, exome capture was
performed using the Agilent V4 Human Exome Kit. Library sequencing was performed on
an Illumina HiSeq, generating 31 million paired end reads (100bp x 2) and a mean target
coverage of 27x, with 81% of the target covered by > 10 reads. Alignment, variant calling,
and annotation were performed with a custom informatics pipeline employing Burrows-
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Wheeler Aligner (BWA), Picard (http://picard.sourceforge.net), Genome Analysis Toolkit
(GATK), and ANNOVAR. The human genome reference used for these studies was hg19/
GRCh37. Single nucleotide changes, microdeletions, and microinsertions were reported and
annotated using the NCBI and UCSC reference sequences and online genome databases
(NHLBI Exome Sequencing Project with ~5400 exomes, 1000 Genomes Project,
dbSNP135, Complete Genomics 52).

A total of 30 exomes were sequenced from the 22 diagnosed families. Seventeen families
had only proband samples available for sequencing. Trios (proband & parents) underwent
exome sequencing in three families, while the proband and an additional informative family
member were sequenced in each of the remaining 2 families. As the exome sequencing was
performed on a research basis, incidental findings of pathogenic mutations for unrelated
diseases were not systematically sought, identified or reported.

In-silico analysis

The candidate variants were identified by xBrowse and other software. The 1000 Genomes
Project (http://www.1000genomes.org) and The Exome Aggregation Consortium (ExAC)
databases (http://exac.broadinstitute.org) were used to determine if the candidate variants
were known single nucleotide polymorphisms (SNPs). Candidate variants that were known
SNPs were required to have a minor allele frequency (MAF) < 0.0001 to be considered for
further analysis. SNPs with a MAF > 0.0001 were determined to be non-pathogenic. The
UCSC browser (https://genome.ucsc.edu/) was used to determine candidate variant amino
acid conservation among species through evolution from lamprey to humans. Species
conservation was determined using the likelihood ratio test of significantly conserved amino
acid positions (LRT) and PhyloP (http://ccg.vital-it.ch/mga/hg19/phylop/phylop.html).
Pathogenicity of these variants was predicted by using SIFT (http://sift.jcvi.org), PolyPhen-2
(http://genetics.bwh.harvard.edu/pph2), Mutation Taster (http://mutationtaster.org), and
FATHMM (http://fathmm.biocomputer.org.uk). Variants affecting conserved amino acids
that were reported to be pathogenic by at least 2 of the 4 prediction programs were selected
for further analysis. In light of the limitations on the accuracy of these programs!!, outputs
from these prediction algorithms were used only for screening purposes with a deliberately
liberal threshold, and were not used to make final determinations of pathogenicity.

Sanger sequencing confirmation

PCR amplification of selected candidate variants from exome sequence analysis were
amplified using standard PCR primers. Amplicons were assessed via agarose gel
electrophoresis, then purified by treating 5 pul of PCR product with 2ul of Exonuclease and
Shrimp Alkaline Phosphatase (Exo-SAP-IT; Affymetrix) and submitted to the Molecular
Genetics Core Facility at Boston Children’s Hospital or the Interdisciplinary Center for
Biotechnology Research (ICBR) at the University of Florida for sequencing using the ABI
Prism BigDye Terminator cycle sequencing protocols (Applied Biosystems, Perkin-Elmer
Corp., Foster City, CA). Sequence data were generated in an ABI Prism® 3130 or 3730
Genetic Analyzer (Applied Biosystems, Foster City, CA), formatted by ABI Sequencing
Analysis software v.5.2 and KB Basecaller, and analyzed using Sequencher v.5.2.3 or earlier
versions (GeneCodes Corporation, Ann Arbor, MI). Sanger sequencing was performed in
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affected family members and other informative family members to confirm pathogenic
mutations and track co-segregation patterns. The only widespread screening performed via
Sanger sequencing was for FKRPin 18 families who had exome sequencing on an older
platform that did not have good coverage of that gene’.

Clinical features and details of clinical diagnostic testing are summarized in Table 1. Most of
the probands had clinical muscle biopsies, and none of the muscle biopsies led to a genetic
diagnosis prior to enrollment. Analysis of exome sequencing data yielded the identification
of pathogenic mutations in 21 of the 55 families, with one additional family among the 55
receiving a clinical genetic diagnosis during the course of the study (Figure 1 and Table 2).
The 22 families with diagnoses included 11 with dominant mutations, 10 with recessive
mutations, and 1 with an X-linked DAMD mutation. Novel pathogenic mutations were
identified in 8 families; 4 of these novel mutations were heterozygous mutations. Two other
families have pathogenic mutations reported in public databases, including LOVD (http://
www.lovd.nl), Emory Genetics Laboratory (http://geneticslab.emory.edu/emvclass/
emvclass.php), and GeneDx but not published; one pathogenic mutation was in both
categories. Sanger sequencing confirmed these mutations in all probands and also confirmed
expected co-segregation patterns for available family members. Co-segregation was
confirmed in 13 of the 22 families, while the remaining 9 had only proband DNA samples
available. The families with only proband samples available included 7 with previously
reported pathogenic mutations and 2 with novel pathogenic mutations (one family had
compound heterozygous pathogenic mutations that included a previously reported nonsense
mutation and a novel essential splice site mutation). No ~FKRP mtuations were found on
Sanger sequencing.

Autosomal dominant LMNA mutations

Two unrelated individuals representing families 930 and 1125 were found to have LGMD1B
with pathogenic mutations in LMNA. Both affected individuals had onset in the toddler
years, elevated serum creatine kinase levels, and dystrophic muscle biopsies.

Autosomal dominant COL6A1 mutations

Family 1092 was found to have novel dominant missense pathogenic mutations in COL6A1.
This gene is classically associated with Bethlem myopathy and Ullrich congenital muscular
dystrophy, but recent reports also link it with LGMD12 13, The COL6A1 NM_001848.2 c.
868G>A, NP_001839.2 p.Gly290Arg (rs121912939) pathogenic mutation in family 1092
has been reported by GeneDx (http://www.genedx.com/test-catalog/disorders/limb-girdle-
muscular-dystrophy-lgmd/, with NCBI submission accession number: SCV000196773.1)
and Emory Genetics Laboratory (http://geneticslab.emory.edu/index.html, with NCBI
submission accession numbers: SCV000224895.1, SCV000224896.1 and SCVV000111716.3)
as being pathogenic. A dominant missense pathogenic mutation ¢.868G>C that causes the
identical p.Gly290Arg amino acid substitution has been reported in Ullrich congenital
muscular dystrophy4.
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Autosomal dominant COL6A3 mutations

Similarly, pathogenic mutations in COL6A3 are known to cause Ullrich congenital
muscular dystrophy and Bethlem myopathy, but the association with LGMD has only been
reported recently’. We identified pathogenic mutations in COL6A3in three families. A
dominant mutation in COL6A3 (NP_004360.2, p.Glu1386Lys) identified in family 965 was
previously reported as being pathogenicl® and that amino acid residue was highly conserved
across species. Proband 965-1 had neither distal laxity nor a tendency towards keloid
formation, and a thigh MRI did not show findings specific for Ullrich congenital muscular
dystrophy or Bethlem myopathy6. The pathogenic mutations of COL6A3identified in two
other families (1093 and 1115) are de novo essential splice site mutations. The pathogenic
COL6A3 mutation (NM_004369.3, ¢.6283-1C>T) in family 1093 is novel, whereas the
NM_004369.3, ¢.6156+1G>A de novo pathogenic mutation observed in 1115 was
previously reported!®. The proband in family 1093 showed a mixed phenotype of LGMD
and congenital muscular dystrophy.

Autosomal dominant RYR1 mutations

Ryanodine receptor 1 (RYRI) mutations are known to cause a congenital myopathy, central
core disease. A de novo dominant missense pathogenic mutation (NM_001042723.1, c.
14567G>A, NP_001036188.1 p.Arg4856His) in RYR was found in the proband of family
596. This mutation has been reported to cause a congenital neuromuscular disease with
uniform type 1 fibers and an association with central core diseasel’: 18,

Autosomal dominant VCP mutations

Pathogenic VCP mutations are known to cause amyotrophic lateral sclerosis (ALS) and
inclusion body myopathy. The mutation identified in family 1250 (VCPNM_007126.3, c.
572G>A, NP_009057.1, p.Arg191GIn (rs121909334)) was previously reported in familial
amyotrophic lateral sclerosis and in patients with an unusual syndrome of inclusion body
myopathy, Paget disease of bone, and frontotemporal demential®. The inclusion body
myopathy may present with manifestations similar to LGMD?9,

Autosomal dominant FLNC mutations

Pathogenic mutations in gamma filamin (FLAC) usually cause myofibrillar myopathy with
distal weakness, but a recent report showed that they may cause an LGMD phenotype’. The
dominant missense pathogenic mutation FLAC NM_001458.4, ¢.7409C>A, NP_001449.3,
p.Pro2470His identified in 1399 is novel, has not been reported in any population database,
and was predicted to be pathogenic by SIFT, PolyPhen, MutTaster and FATHMM. The
proband of family 1399 showed an LGMD phenotype with cardiomyopathy, accompanied
by features of myofibrillar myopathy, similar to other individuals reported to have
pathogenic FLNC mutations.

Autosomal dominant FSHD

The dominant pathogenic mutation in SMCHD1, identified in family 1090, causes an in-
frame deletion of amino acid lysine at position 275 and has been previously reported0.,
While sequence data were being analyzed, the proband from 1258 informed the research
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team that he had been diagnosed with FSHD1 based on clinical genetic testing of the D424
region on chromosome 4¢35. He had asymmetric weakness in the right chest and arm, but
no facial weakness.

Autosomal recessive CAPN3 mutations

Compound heterozygous pathogenic mutations in Calpain 3 (CAPN3) were identified in
families 1197 and 1365. The missense mutations found in family 1197 were previously
reported as homozygous mutations in different families2?: 21, Both heterozygous pathogenic
mutations of CAPN3 found in family 1365 affect splicing, and a Western blot of protein
extracted from muscle biopsy tissue showed reduced Calpain 3 expression. The CAPN3
NM_000070.2, ¢.1746-20C>G (rs201892814) pathogenic mutation was reported previously
by the Emory Genetics Laboratory (http://www.ncbi.nlm.nih.gov/clinvar/variation/92408/,
with NCBI submission accession number: SCV000109927.4), and ¢.945+5G>A is a novel
pathogenic mutation that shifts a splice site downstream, extending the exon. The latter was
found to have a minor allele frequency of 0.0000082 (i.e., singleton) in the EXAC database.

Autosomal recessive sarcoglycan mutations

A consanguineous family, 1299, had a pathogenic homozygous recessive missense mutation
(NM_000023.2, ¢.109G>T, NP_000014.1, p.Val37Leu) in SGCA,; these mutations have not
been previously reported. Two pathogenic mutations in SGCG, a previously reported
heterozygous deletion of 4 nucleotides (AGTA) at NM_000231.2, ¢.195+4 195+722 and a
novel heterozygous substitution of ¢.195+1G>C (rs200502077), were found in family 1049.
The latter is an essential splice site mutation. A muscle biopsy was performed on the
proband, but tissue from this biopsy was not available for the current study.

Autosomal recessive ANO5 mutations

Pathogenic mutations in ANO5, which cause LGMD2L, were found in three families (1102,
1105 & 1395). The homozygous recessive mutation found in family 1102, ANO5
NM_213599.2, ¢.191dupA, NP_998764.1, p.Asn64Lys fs Terl5 (rs137854521), is a known
pathogenic mutation23-2° that generates a stop codon 15 amino acid residues downstream of
the mutation. The two other families (1105 & 1395) also have this mutation but in a
heterozygous state; the other allele has novel mutations: a nonsense mutation ¢.835C>T,
p.Arg279Ter in family 1395 and a splicing mutation ¢.2235+5 G>A in family 1105. The
pathogenic ANO5 mutations were confirmed for co-segregation in their respective families.

Autosomal recessive LAMA2 mutations

Pathogenic mutations in LAMAZ have been identified as the cause of merosin-deficient
congenital muscular dystrophy. Several studies have reported that partial merosin deficiency
by LAMAZ mutations and some forms of LAMAZ mutations are known to manifest as
LGMD phenotypes?6-30, suggesting that LAMAZshould be included among the causative
genes for LGMD231. Compound heterozygous pathogenic mutations in LAMAZ, a
previously reported nonsense mutation NM_000426.3, ¢.5116C>T, NP_000417.2,
p.Arg1706Ter?8 and a novel splice site mutation ¢.8703+1G>A r.spl, were identified in
family1409. The phenotype of the proband, 1409-1, was reviewed again and was confirmed
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to meet criteria for LGMD. The proband had some contractures and onset was in early
childhood but was not early enough to be classified as congenital muscular dystrophy.
Mutations in LAMAZ have recently been associated with Emery-Dreifuss muscular
dystrophy32 and this diagnosis has also been a consideration for the proband. However, the
subject was a young adult at the most recent evaluation and ongoing cardiac monitoring has
revealed little to no evidence for overt cardiac complications to date.

Autosomal recessive GAA mutations

Compound heterozygous pathogenic mutations in GAA, known to cause Pompe disease,
were found in family 1117. These were a missense mutation NM_000152.3, ¢.1841C>A,
NP_000143.2, p.Thr614Lys (rs369531647)32 and a substitution c.-32-13T>G r.spl
(rs386834236) that affects splicing34. Both mutations were previously reported.

X-linked mutations

One family was found to have an X-linked pathogenic mutation in the dystrophin gene
(DMD). The pathogenic nonsense mutation ODMD NM_004006.2, c.9G>A, NP_003997.1,
p.Trp3Ter, found in family 1107, was previously reported3>-37,

Possible mutations

Suspected but unconfirmed mutations are listed in Table 3. Exome sequencing analysis
showed that family 1027 has a heterozygous dominant variant in MYOT (NM_006790.2 c.
1345delC, NP_006781.1 p.Pro449GlIn fs Ter16 (rs780331457). Mutations in MYOT are
known to cause LGMD1A, but DNA is only available on the proband for this family, hence
it is difficult to confirm this variant as a pathogenic mutation. It is a novel variant that is not
found in the 1000 Genomes database and with MAF of 0.00004942 in the EXAC database.
The amino acid residue is also very well conserved. We found compound heterozygous
variants of POMGNTZ2 (GTDC2) in family 1255. A rare missense variant (NM_032806.5 c.
190G>A, NP_116195.2 p.Gly64Ser (rs548769646)) is found in the proband as well as both
parents, whereas a 2 base pair deletion (c.740_741delAA, p.Phe247CysfsTerl6) is present in
the proband and absent in both parents; the latter appears more likely to be pathogenic. The
missense variant of COL6AI found in family 1366 is novel (NM_001848.2 ¢.466G>T,
NP_001839.2 p.Vall156Leu), and the affected amino acid residue is conserved from lamprey
through human. The mutation in family 1366 is not found in the 1000 Genomes database
and has a very low minor allele frequency of 0.0000085 in the EXAC database (http://
exac.broadinstitute.org/). It is predicted to be pathogenic by 3 of 4 prediction programs
analysed. The phenotype of the proband in family 1366 showed some overlap with
congenital muscular dystrophy. DNA was only available for the proband in this family, thus
analysis of co-segregation patterns was not possible.

A recurrent DMD variant confirmed to be benign

A DMD NM_004006.2 ¢.8762A>G, NP_003997.1 p.His2921Arg (rs1800279) variant
suspected of being benign37-40 was identified in the probands of four families (1258, 1309,
1365, 1398). In each family, the variant was confirmed to be benign due to causative
mutations found in other genes (Table 4). Two of the families, 1309 and 1398, were from
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Saudi Arabia and were not included in the 55 families for the main analysis noted above, but
are mentioned here as further evidence of the benign nature of this variant. The proband of
family 1258 is male, but his muscle biopsy showed normal dystrophin staining and he was
diagnosed with FSHD1, as noted above. Both the male proband and an unaffected brother in
family 1309 had the hemizygous DMD variant in question. The female proband of family
1365 had confirmed CAPN3 compound heterozygous missense mutations as well as the
heterozygous DMD mutation. Family 1398 was found to have a known homozygous SGCG
NM_000231.2, ¢.212T>C, XP_005266562.1, p.Leu71Ser mutation that co-segregates with
phenotype in this family. The proband of this family is female and was found to have the
heterozygous DMD variant, while the unaffected father was found to have the hemizygous
DMD variant. The minor allele frequency for this variant (rs1800279) in the EXAC database
is 0.02629, which is not compatible with a pathogenic mutation.

Discussion

Among the 55 families studied, exome sequencing analysis identified pathogenic mutations
in 21, while clinical genetic testing revealed the diagnosis for an additional family. The
overall success rate of 40% is comparable to recent previous reports of exome sequencing
analysis for LGMD and neuromuscular diseases in non-consanguineous populations®: 7- 8,
Traditional genetic, biochemical and histopathological examinations yield diagnoses in 30 —
40% of LGMD cases® 41, and targeted sequence capture has similar yields®. Exome
sequencing has improved the diagnostic yield to the 40 — 45% range, both in our cohort and
in the literature® 7: 8, likely due in part to the use of trios and family studies. As the subjects
had varying degrees of clinical evaluation prior to enrollment, including clinical genetic
testing, a similar approach would be expected to have an even higher yield in the clinical
setting for patients who had not had prior genetic testing or were screened appropriately for
pathogenic mutations not amenable to sequencing technologies. Several families had
pathogenic mutations in CAPNS3, sarcoglycans, and ANO5, common LGMD genes for
which clinical genetic testing is readily available. The absence of any subjects with
pathogenic DYSF mutations is notable, as well as the under-representation of common genes
aside from ANOS5. The depth of clinical evaluations varied among these families. Many
patients with pathogenic mutations in common LGMD genes were likely diagnosed on
clinical genetic testing and this cohort does not represent those individuals. Most of the
subjects who had extensive LGMD genetic testing prior to enroliment underwent those
evaluations prior to the association of ANO5with LGMD that was first described in 2010.

Among the pathogenic mutations identified in our cohort, six were found in loci not
traditionally classified as being associated with LGMD (e.g., DMD, GAA, SMCHD1, VVCF,
FLNC, and the D4Z4 region of 4g35), suggesting that these genes could account for at least
some of the increased diagnostic yield, as recently noted’. These findings, along with the
decreasing use of muscle biopsy in clinical settings, indicate that diagnostic genetic testing
panels based on targeted sequence capture for LGMD should include a broad array of
muscle disease genes, not only ones that meet the strict definition of LGMD. The diversity
of causative genes also illustrates the importance of accurate clinical phenotyping for both
clinical and research purposes. There is significant phenotypic overlap between LGMD and
diseases that are not traditionally considered to be LGMD, such as Pompe disease, and
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though the subjects in our cohort with non-LGMD causative genes could not be
distinguished from the others based on clinical presentation, there may be other cases where
this is possible. Of note, given the availability of a treatment for Pompe disease, the
individual with the GAA mutations had clinical confirmation in compliance with our IRB
protocol so that treatment options could be offered.

This study confirmed that DMD NM_004006.2, ¢.8762A>G, NP_003997.1, p.His2921Arg
is a non-pathogenic benign variant, as it was found in multiple unaffected individuals in the
hemizygous state, and affected individuals were also found to have confirmed pathogenic
mutations in other genes. The variant has been increasingly suspected of being benign37-49.
The additional findings in our study illustrate one of the benefits of accumulating databases
of exome sequences. Though the amount of data is significantly larger, requiring
sophisticated computational approaches to analyze completely, the array of identified
variants for each individual tested is more complete, which over time will permit more
definitive assignments of pathogenicity, fewer “variants of unknown significance”, and
correction of reported mutations that may not truly be pathogenic#2.

These diagnostic outcomes have been consistent across multiple exome sequencing studies
performed on disease categories that are genetically heterogeneous, as LGMD is. This
suggests that the previous estimate that 85% of pathogenic mutations are found in coding
regions*3 may be too high. However, the subjects selected for the current study and similar
studies were ones who had previously had clinical evaluations, including genetic testing,
suggesting that the yield would be higher had the cohorts not been pre-screened. In addition,
certain types of pathogenic mutations affecting coding regions are not easily detected with
current exome sequencing technologies. For example, single and multiple exon deletions and
duplications comprise the majority of pathogenic mutations in Duchenne and Becker
muscular dystrophy, trinucleotide repeat expansions cause the most common form of
myotonic dystrophy, and the D424 macrosatellite deletion on 435 that is associated with
facioscapulohumeral muscular dystrophy type 1 is also not easily detected on exome
sequencing. A number of our subjects who had phenotypes suggestive of these specific types
of muscle disease had appropriate clinical genetic testing, but a patient with an atypical
presentation of facioscapulohumeral muscular dystrophy type 1 was enrolled in our research
and received a clinical genetic diagnosis of LGMD due to his phenotype. Careful
phenotyping of individuals and family members proves to be very important to help keep the
investigator on the proper course to ultimately lead to a molecular diagnosis.

Ethical issues persist in the collection of exome and genome-wide sequencing data with
respect to the potential for the identification of incidental pathogenic mutations. These
mutations are often hidden in the mountains of data generated, as research laboratories and
clinical laboratories typically extract only those variants that lie in a specific, limited set of
genes of interest. Incidental variants would only be found if they were actively sought during
variant analysis. Another problem is that if some pathogenic mutations may not lead to
symptomatic disease for decades, what would be an optimal time to discover and report such
mutations. Various national and international organizations are actively discussing this issue.
One solution is to provide patients and research subjects access to their electronic
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sequencing data, so that they may, if they choose, seek additional analysis by other facilities
and investigators without having to have the sequencing repeated..

Further analysis continues on the families in whom pathogenic mutations were not identified
in the current study. Some of the probands had clinical muscle biopsies performed, and
when available, biopsy reports and slides were reviewed to confirm the absence of
pathogenic findings. The possibility of digenic compound heterozygous mutations will be
considered, as has been described for specific diseases*4, including muscular

dystrophy?® 46, To extend the current study, we plan to perform whole genome sequencing
and other genetic analyses on selected families in an attempt to detect larger pathogenic
mutations such as copy number variants, inversions, and large-scale deletions such as the
D4z4 macrosatellite contraction. The rare pathogenic mutation in a non-coding region will
be difficult to identify and confirm, even with the assistance of whole genome sequencing,
given the collective size of the intronic regions and the number of variants that will be
identified for each affected individual. Exceptions may be found in regions with known
functions such as miRNA binding sites, where pathogenic mutations have been confirmed in
a handful of cases. And there is of course the promise that novel disease genes remain to be
identified. We are currently examining candidate mutations in several potential novel genes
that have been identified on the exome sequencing analysis. Though such genes are
becoming more difficult to discover and confirm, it is unlikely that we have identified all the
genes associated with LGMD, and the number of cases that remain without a genetic
diagnosis provide a tantalizing clue that more such genes are out there.

The current analysis of whole exome data from a sizeable cohort of families affected by
LGMD in the United States has yielded similar overall findings to those reported in other
countries. Most of the pathogenic mutations identified were in known LGMD genes, but a
few were in muscle disease genes that are not strictly considered to be LGMD, indicating
that clinical genetic testing panels should include a broad array of genes to maximize the
yield. A previously reported pathogenic mutation in DMD was found to be a benign variant
in multiple families, providing an example of how candidate mutations in both known and
novel disease genes should be scrutinized carefully. The number of cases without a genetic
diagnosis remains stubbornly high, even after exome sequencing, suggesting that there are
unusual pathogenic mutations in known genes and all manner of pathogenic mutations in
novel disease genes that have yet to be identified.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Recruitment of LGMD patients & informative relatives

]

’ Clinical diagnosis ‘

!

| Exome sequencing ]

l

Analysis by xBrowse and other software
(candidate mutations)

!

Sanger sequencing with DNA samples from proband & other family members
(final confirmation)

I 55 LGMD families undiagnosed by traditional methods |

] ]

I 22 diagnosed LGMDs | I 33 undiagnosed LGMDs ‘
|
' | I
recessive Dominant Duchenne/
LGMDs LGMDs Becker
2 CAPN3 2 LMNA 1DMD
2 SGCG
1SGCA
3 ANOS I Other myopathy genes |
1 LAMA2
{ ] ! 1 !
Collagen Pompe ESHD Myofibrillar || Congenital || Inclusion body
myopathy disease myopathy myopathy myopathy
3 COL6A3 1 GAA 1D4z4 1 FLNC 1RYR1 1VCP
1 COL6A1 1SMCHD1

Figurel.
Flow chart of analytic process for the cohort of families with LGMD (top), along with a

breakdown of genetic diagnoses by category (bottom).
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