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Abstract

Background—DNA methylation leaves a long-term signature of smoking exposure and is one 

potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as 

cancers, osteoporosis, lung, and cardiovascular disorders.

Methods and Results—To comprehensively determine the association between cigarette 

smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation 

assessed using the Illumina BeadChip 450K array on 15,907 blood derived DNA samples from 

participants in 16 cohorts (including 2,433 current, 6,518 former, and 6,956 never smokers). 

Comparing current versus never smokers, 2,623 CpG sites (CpGs), annotated to 1,405 genes, were 

statistically significantly differentially methylated at Bonferroni threshold of p<1×10−7 (18,760 

CpGs at False Discovery Rate (FDR)<0.05). Genes annotated to these CpGs were enriched for 

associations with several smoking-related traits in genome-wide studies including pulmonary 

function, cancers, inflammatory diseases and heart disease. Comparing former versus never 

smokers, 185 of the CpGs that differed between current and never smokers were significant 

p<1×10−7 (2,623 CpGs at FDR<0.05), indicating a pattern of persistent altered methylation, with 

attenuation, after smoking cessation. Transcriptomic integration identified effects on gene 

expression at many differentially methylated CpGs.

Conclusions—Cigarette smoking has a broad impact on genome-wide methylation that, at many 

loci, persists many years after smoking cessation. Many of the differentially methylated genes 

were novel genes with respect to biologic effects of smoking, and might represent therapeutic 

targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could 

also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke.
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Introduction

Cigarette smoking is a major causal risk factor for various diseases including cancers, 

cardiovascular disease (CVD), chronic obstructive pulmonary disease (COPD)1, and 

osteoporosis1. Worldwide cessation campaigns and legislative actions have been 

accompanied by a reduction in the number of cigarette smokers and corresponding increases 

in the number of former smokers. In the US, there are more former smokers than current 

smokers1. Despite the decline in the prevalence of smoking in many countries, it remains the 

leading preventable cause of death in the world, accounting for nearly 6 million deaths each 

year2.

Even decades after cessation, cigarette smoking confers long-term risk of diseases including 

some cancers, chronic obstructive pulmonary disease, and stroke1. The mechanisms for 

these long-term effects are not well understood. DNA methylation changes have been 

proposed as one possible explanation.

DNA methylation appears to reflect exposure to a variety of lifestyle factors3, including 

cigarette smoking. Several studies have shown reproducible associations between tobacco 

smoking and altered DNA methylation at multiple cytosine-phosphate-guanine (CpG) 

sites4–15. Some DNA methylation sites associated with tobacco smoking have also localized 

to genes related to coronary heart disease5 and pulmonary disease16. Some studies have 

found different associated CpGs in smokers versus non-smokers8,11. Consortium-based 

meta-analyses have been extremely successful in identifying genetic variants associated with 

numerous phenotypes, but large-scale meta-analyses of genome-wide DNA methylation data 

have not yet been widely employed. It is likely that additional novel loci differentially 

methylated in response to cigarette smoking remain to be discovered by meta-analyzing data 

across larger sample sizes comprising multiple cohorts. Differentially methylated loci with 

respect to smoking may serve as biomarkers of lifetime smoking exposure. They may also 

shed light on the molecular mechanisms by which tobacco exposure predisposes to multiple 

diseases.

A recent systematic review13 analyzed published findings across 14 epigenome-wide 

association studies of smoking exposure across various DNA methylation platforms of 

varying degrees of coverage and varying phenotypic definitions. Among these were 12 

studies (comprising 4,750 subjects) that used the more comprehensive Illumina Human 

Methylation BeadChip 450K array (Illumina 450K), which includes and greatly expands on 

the coverage of the earlier 27K platform. The review compares only statistically significant 

published results and is not a meta-analysis which can identify signals that do not reach 

statistical significance in individual studies 17.

In the current study, we meta-analyzed association results between DNA methylation and 

cigarette smoking in 15,907 individuals from 16 cohorts in the Cohorts for Heart and Aging 

Research in Genomic Epidemiology (CHARGE) consortium using a harmonized analysis. 

Methylation was measured on DNA extracted from blood samples using the Illumina 

Human Methylation BeadChip 450K array. In separate analyses, we compared current 

smokers and past smokers to non-smokers and characterized the persistence of smoking-
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related CpG methylation associations with the duration of smoking cessation among former 

smokers. We integrated information from genome-wide association studies (GWAS) and 

gene expression data to gain insight into potential functional relevance of our findings for 

human diseases. Finally we conducted analyses to identify pathways that may explain the 

molecular effects of cigarette exposure on tobacco-related diseases.

Materials and Methods

Study participants

This study comprised a total of 15,907 participants from 16 cohorts of the Cohorts for Heart 

and Aging Research in Genetic Epidemiology Consortium (Supplementary Table 1). The 16 

participating cohorts are ARIC, FHS Offspring, KORA F4, GOLDN, LBC 1921, LBC 1936, 

NAS, Rotterdam, Inchianti, GTP, CHS European Ancestry (EA), CHS African Ancestry 

(AA), GENOA, EPIC Norfolk, EPIC, and MESA. Of these, 12,161 are of European 

Ancestry (EA) and 3,746 are of African Ancestry (AA). The study was approved by 

institutional review committees for each cohort and all participants provided written 

informed consent for genetic research.

DNA methylation sample and measurement

For most studies, methylation was measured on DNA extracted from whole blood, but some 

studies used CD4+ T cells or monocytes (Supplementary Table 1). In all studies, DNA was 

bisulfite-converted using the Zymo EZ DNA methylation kit and assayed for methylation 

using the Infinium HumanMethylation 450 BeadChip, which contains 485,512 CpG sites. 

Details of genomic DNA preparation, bisulfite conversion, and methylation assay for each 

cohort can be found in the online Supplementary Materials.

Raw methylated and total probe intensities were extracted using the Illumina Genome Studio 

methylation module. Preprocessing of the methylated signal (M) and unmethylated signal 

(U) was conducted using various software tools, primarily DASEN of wateRmelon18 and 

BMIQ19, both of which are R packages. The methylation beta (β) values were defined as β 
= M/(M+U). Each cohort followed its own quality control protocols, removing poor quality 

or outlier samples and excluding low quality CpG sites (with detection p-value>0.01). Each 

cohort evaluated batch effects and controlled for them in the analysis. Details of these 

processes can be found in the online Supplementary Materials.

Smoking phenotype definition

Self-reported cigarette smoking status was divided into three categories. Current smokers 

were defined as those who have smoked at least one cigarette a day within 12 months prior 

to the blood draw, former smokers were defined as those who had ever smoked at least one 

cigarette a day, but had stopped at least 12 months prior to the blood draw, and never 

smokers reported never having smoked. Pack years was calculated based on self-report as 

the average number of cigarettes per day smoked divided by 20 multiplied by the number of 

years of smoking, with zero assigned to never smokers. A few cohorts recorded the number 

of years since each former smoker had stopped smoking.
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Cohort specific analyses and meta-analysis

Each cohort analyzed its data using at least two linear mixed effect models. Each model was 

run separately for each CpG site. Model 1 is as follows:

(1)

where blood count comprises the fractions of CD4+ T-cells, CD8+ T-cells, NK cells, 

monocyte, and eosinophils either measured or estimated using the Houseman et al. 

method20. The blood count adjustment was performed only in cohorts with whole blood and 

leukocyte samples. Familial relationship was also accounted for in the model when 

applicable (e.g., for FHS, see Supplementary Material for details). Acknowledging that each 

cohort may be influenced by a unique set of technical factors, we allow each cohort to 

choose its cohort-specific technical covariates. Model 2 added to model 1 body mass index 

(BMI) because it is associated with methylation at some loci, making it a potential 

confounder21. Only three cohorts participated in model 2 analysis: FHS, KORA, and NAS. 

Model 3 substituted smoking phenotypes for pack years. Only three cohorts participated in 

model 3 analysis: FHS, Rotterdam, and Inchianti. The pack year analysis was performed 

only on two subsets: current vs. never smokers and former vs. never smokers. Combining all 

three categories would require accurate records of time of quitting, which among the three 

cohorts was available for only FHS. To investigate cell type differences, we removed blood 

counts from Model 1 and called it Model 4. Only three cohorts participated in this analysis: 

FHS, KORA, and NAS. All models were run with the lme4 package22 in R23, except for 

FHS (See Supplementary Materials for details).

Meta-analysis was performed to combine the results from all cohorts. Due to the variability 

of available CpG sites after quality control steps, we excluded CpG sites that were available 

in fewer than three cohorts. The remaining 485,381 CpG sites were then meta-analyzed with 

a random-effects model using the following formula:

(2)

where Ei is the observed effect of study i, µ is the main smoking effect, si is the between-

study error for study i, and ei is the within-study error for study i, with both si and ei are 

assumed to be normally distributed. The model is fitted using the restricted maximum 

likelihood (REML) criterion in R’s metafor24 package. Multiple-testing adjustment on the 

resulting p-values was performed using the False Discovery Rate (FDR) method of 

Benjamini and Hochberg25. In addition, we also report results using the Bonferroni-

corrected threshold of 1 × 10−7 (≈ 0.05/485,381).

The regression coefficient β (from meta-analysis) is interpretable as the difference in mean 

methylation between current and never smokers. We multiplied these by 100 to represent the 

percentage methylation difference where methylation ranges from 0–100%.
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Literature review to identify genes previously associated with smoking and methylation

We used the same literature search strategy published previously26. A broad query of 

NCBI’s PubMed literature database using medical subject heading (MeSH) terms (“((((DNA 

Methylation[Mesh]) OR methylation)) AND ((Smoking[Mesh]) OR smoking))”) yielded 

775 results when initially performed on January 8, 2015 and 789 studies when repeated to 

update the results on March 1, 2015. Results were reviewed by abstract to determine 

whether studies met inclusion criteria: 1) performed in healthy human populations, 2) 

agnostically examined >1,000 CpG sites at a time, 3) only cigarette exposure was 

considered, and 4) with public reporting of P-values and gene annotations. A total of 25 

publications met inclusion criteria, listed in the fourth supplementary table of Joubert et 

al.26. CpG level results (P-values and gene annotations) for sites showing genome-wide 

statistically significant associations (FDR<0.05) were extracted and resulted in 1,185 genes 

previously associated with adult or maternal smoking. All CpGs annotated to these 1,185 

genes were marked as “previously found.”

Gene set enrichment analysis (GSEA)

Gene-Set Enrichment Analysis (GSEA)27 was performed in the website (http://

software.broadinstitute.org/gsea/msigdb/annotate.jsp) on significant findings to determine 

putative functions of the CpG sites. We selected gene ontology (GO) biological process (C5-

BP) and collected all categories with FDR<0.05 (up to 100 categories).

Enrichment analysis for localization to different genomic features

Enrichment analysis on genomic features were performed using the annotation file supplied 

by the Illumina (version 1.2, downloaded from manufacturer’s website, http://

support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit/

downloads.html), which contains information of CpG location relative to gene (i.e., body, 

first exon, 3’ UTR, 5’UTR, within 200 base pairs of Transcriptional Start Site [TSS200], and 

TSS1500), the relation of CpG site to a CpG island (i.e., island, northern shelf, northern 

shore, southern shelf, and southern shore), whether the CpG site is known to be in 

differentially methylated regions, and whether the CpG site is known to be an enhancer or a 

DNAse I Hypersensitive Site (DHS). Enrichment analysis was performed using one-sided 

Fisher’s exact set for each feature, using R’s fisher.test.

Genome-wide association study (GWAS) analysis

We intersected our results with SNPs having genome-wide association study (GWAS) p-

values≤5 × 10−8 in the NHGRI GWAS catalog (accessed November 2, 2015)28. The catalog 

contained 9,777 SNPs annotated to 7,075 genes associated with 865 phenotypes at 

p≤5×10−8. To determine the genes, we looked up each significant CpG on the annotation file 

supplied by Illumina. Enrichment analysis was performed on a per gene basis using one-

sided Fisher’s exact test.

For bone mineral phenotype enrichment, we included all SNPs containing terms “bone 

mineral density” or “osteoporosis”. For cardiovascular disease (CVD), we included all SNPs 

containing terms “cardiovascular disease”, “stroke”, “coronary disease”, “cardiomyopathy”, 

or “myocardial infarction”. For CVD risk factors, we included all SNPs containing terms 
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“blood pressure”, “cholesterol”, “diabetes”, “obesity”, or “hypertension”. For overall cancer 

enrichment, we included all SNPs containing terms “cancer”, “carcinoma”, or “lymphoma”, 

while removing those pertaining to cancer treatment effects. For overall pulmonary 

phenotype enrichment, we included all SNPs containing terms “pulmonary disease”, 

“pulmonary function”, “emphysema”, “asthma”, or “airflow obstruction”.

Analysis of persistence of methylation signals with time since quitting smoking among 
former smokers

We examined whether smoking methylation associations were attenuated over time in the 

FHS cohort, which had ascertained longitudinal smoking status of over 35 years. The 

analysis was performed on seven dichotomous variables, indicating cessation of smoking for 

5, 10, 15, 20, 25, and 30 years versus never smokers. For example, for five year cessation 

variable, those who quit smoking five years or more are marked as ones, while never 

smokers are marked as zeroes and current smokers are excluded. For this analysis, we used 

the pedigreemm package29 with the same set of covariates as in the primary analysis. Sites 

with p<0.002 across all seven variables were deemed to be statistically significant compared 

to never-smoker levels.

Methylation by expression (MxE) analysis

To determine transcriptomic association of each significant CpG site, we interrogated such 

CpG sites in the FHS gene-level methylation by expression (MxE) database, at genome-wide 

false discovery rate (FDR)<0.05. The MxE database was constructed from 2,262 individuals 

from the FHS Offspring cohort attending examination cycle eight (2005–2008) with both 

whole blood DNA methylation and transcriptomic data based on the Affymetrix Human 

Exon Array ST 1.0. Enrichment analysis was performed using a one-sided Fisher’s exact 

test. We defined that the methylation CpG site and the corresponding transcript are 

associated in cis if the location of the CpG site is within 500 kilobases of the transcript’s 

start location.

Analysis of ethnic discrepancy between African Ancestry (AA) and European Ancestry 
(EA) cohorts

Meta-analysis of the current versus never smoker results of EA cohorts (FHS, KORA, 

GOLDN, LBC 1921, LBC 1936, NAS, Rotterdam, Inchianti, EPIC, EPIC Norfolk, MESA, 

CHS-EA) was performed separately from those of AA cohorts (ARIC, GTP, GENOA, CHS-

AA).

Analysis of samples types for DNA extraction

Meta-analysis was performed on the results from cohorts with whole blood/buffy coat 

samples (FHS, KORA, LBC 1921, LBC 1936, NAS, Rotterdam, Inchianti, GTP, CHS-EA, 

CHS-AA, ARIC, GENOA, EPIC, and EPIC-Norfolk). CD4+ samples in GOLDN and 

CD14+ samples in MESA, because they comprise single cohorts, are not meta-analyzed. 

Correlations of results across different cell types were performed on CpG sites with 

FDR<0.05 in at least one cell type.
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Results

Table 1 displays the characteristics of participants in the meta-analysis. The proportion of 

participants reporting current smoking ranged from 4% to 33% across the different study 

populations. The characteristics of the participants within each cohort are provided in 

Supplementary Table 1.

Current versus Never Smokers

In the meta-analysis of current cigarette smokers (N=2,433) versus never smokers 

(N=6,956), 2,623 CpGs annotated to 1,405 genes met Bonferroni significance after 

correction for 485,381 tests (P<1×10−7). Based on genome-wide false discovery rate 

(FDR)<0.05, 18,760 CpG sites (CpGs) annotated to 7,201 genes were differentially 

methylated. There was a moderate inflation factor30 λ of 1.32 (Supplementary Figure 1), 

which is consistent with a large number of sites being impacted by smoking. Our results 

lend support many previously reported loci7,8,11,13, including CpGs annotated to AHRR, 

RARA, F2RL3, and LRRN3 (Supplementary Table 2). Not surprisingly, cg05575921 

annotated to AHRR, the top CpG identified in most prior studies of smoking, was highly 

significant in our meta-analysis (P=4.6×10−26; ranked 36, Supplementary Table 2) and also 

had the largest effect size (−18% difference in methylation) which is comparable to effect 

sizes in previous studies18. Of the 18,760 significant CpGs at FDR<0.05, 16,673 (annotated 

to 6,720 genes) have not been previously reported to be associated with cigarette smoking – 

these include 1,500 of the 2,623 CpGs that met Bonferroni significance. The 25 CpGs with 

lowest p-values for both overall and novel findings are shown in Table 2. Supplementary 

Table 2 provides the complete list of all CpGs that were significantly differentially 

methylated (FDR<0.05) in analysis of current versus never smokers. Adding body mass 

index (BMI) into the model did not appreciably alter the results (Supplementary Figure 2).

Methylation can be either reduced or increased at CpG sites in response to smoking. For the 

53.2% of FDR significant CpGs with increased methylation in response to current smoking 

the mean percentage difference in methylation between current and never smokers was 0.5%

(SD=0.37%, range 0.06–7.3%). For 46.8% of CpGs with decreased methylation in response 

to current smoking the mean percentage difference was 0.65% (SD=0.56, range 0.04–18%) 

The volcano plot can be found in Supplementary Figure 3.

We did not observe correlation between the number of significant CpGs and either the size 

of the gene or the number of exons or the coverage of the methylation platform. We 

performed a formal enrichment test for each of the 7,201 genes in regards to the length of 

the gene or number of exons and found only three for which associations were observed 

(AHRR, PRRT1, and TNF). However, given the robust findings for a specific CpG in AHRR 
in multiple studies in the literature4,7,9 as well as our own, and its key role in the AHR 

pathway which is crucial in the response to polyaromatic hydrocarbons, such as are 

produced by smoking31, it seems very unlikely that the AHRR findings are false positives. 

Likewise there is strong support in the literature for PRRT132 and TNF33. The enrichment 

results for methylation platform coverage also yielded the same three genes.
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In a subset of three cohorts (1,827 subjects), we investigated the association of the number 

of pack-years smoked with the 18,760 CpGs that were differentially methylated (FDR<0.05) 

between current versus never smokers. Significant dose responses were observed for 11,267 

CpGs (60.1%) at FDR<0.05 (Supplementary Table 3).

To investigate the pathways implicated by these genes, we performed a gene-set enrichment 

analysis34 on the annotated genes. The results suggested that cigarette smoking is associated 

with potential changes in numerous vital molecular processes, such as signal transduction 

(FDR=2.8 × 10−79), protein metabolic processes (FDR=1.2 × 10−43), and transcription 

pathways (FDR=8.4 × 10−31). The complete list of 99 enriched molecular processes can be 

found in Supplementary Table 4.

Former versus Never Smokers

Meta-analysis of former (N=6,518) versus never smokers (N=6,956) restricted to the 18,760 

CpG sites that were differentially methylated in current versus never smokers identified 

2,568 CpGs annotated to 1,326 genes at FDR<0.05 (Supplementary Table 5). There were 

185 CpGs (annotated to 149 genes) that also met Bonferroni correction (P< 0.05/18760 ≈ 
2.67×10−6). There was no evidence of inflation30 (λ=0.98) (Supplementary Figure 4). We 

also confirmed previously reported findings for CpGs annotated to AHRR, RARA, and 

LRRN37,8,11,13. Effect sizes of these CpGs were all weaker than in the analysis of current 

versus never smokers [61.2% ±15.3% weaker] for the 2,568 CpGs that remained 

significantly differentially methylated in former vs. never smokers compared with current vs. 

never smokers. Results for the top 25 CpGs are displayed in Table 3. Adding BMI to the 

model did not appreciably alter the results (Supplementary Figure 5). A volcano plot can be 

found in Supplementary Figure 6. In a subset of three cohorts (3,349 subjects), analyses 

using pack-years confirmed a significant dose response for 1,804 of the 2,568 CpGs (70%) 

annotated to 942 genes at FDR<0.05 (Supplementary Table 6).

The gene-set enrichment analysis27 in the former versus never smoker analyses on all 1,326 

genes revealed enrichment for genes associated with protein metabolic processes (FDR=1.1 

× 10−23), RNA metabolic processes (FDR=1.4 × 10−17), and transcription pathways 

(FDR=3.9 × 10−18) (Supplementary Table 7). The gene-set enrichment analysis on the 942 

genes for which the 1,804 CpGs exhibited dose responses with pack-years also revealed 

similar pathways to those summarized in Supplementary Table 7, except with weaker 

enrichment FDR values.

In 2,648 Framingham Heart Study participants with up to 30 years of prospectively collected 

smoking data, we examined the 2,568 CpGs that were differentially methylated in meta-

analysis of former versus never smokers and explored their associations with time since 

smoking cessation. Methylation levels of most CpGs returned toward that of never-smokers 

within five years of smoking cessation. However, 36 CpGs annotated to 19 genes, including 

TIAM2, PRRT1, AHRR, F2RL3, GNG12, LRRN3, APBA2, MACROD2, and PRSS23 did 

not return to never-smoker levels even after 30 years of smoking cessation (Figure 1, Table 

4).
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The EPIC studies included cancer cases plus non-cancer controls analyzed together, 

adjusting for cancer status. The other studies were population-based samples not selected for 

disease status. To evaluate residual confounding by cancer status after adjustment, we 

repeated the meta-analysis without the EPIC studies. The effect estimates were highly 

correlated: Pearson ρ = 0.99 for current versus never smoking and 0.98 for former smoking 

versus never.

Enrichment analysis for genes identified in GWAS of smoking related phenotypes

To identify potential relevance of the differentially methylated genes to smoking-related 

phenotypes, we determined whether these genes had been associated with smoking-related 

phenotypes in the NHGRI-EBI GWAS Catalog28 (accessed November 2, 2015). The catalog 

contained 9,777 SNPs annotated to 7,075 genes associated with 865 phenotypes at 

p≤5×10−8. Of the 7,201 genes (mapped by 18,760 CpG sites) significantly differentially 

methylated in current versus never smokers, we found overlap with 1,791 genes (4,187 

CpGs are mapped to these) associated in GWAS with 700 phenotypes (enrichment p=2.4 × 

10−52). We identified smoking-related traits using the 2014 US Surgeon General’s (USSG) 

report1. Enrichment results for a selection of smoking-related phenotypes including coronary 

heart disease (CHD) and its risk factors, various cancers, inflammatory diseases, 

osteoporosis, and pulmonary traits, are available in Table 5. We also performed the same 

enrichment analysis on the 2,568 CpGs associated with former versus never smoking status. 

We identified enrichment for CHD, pulmonary traits, and some cancers (Table 5). More 

detailed results are available in Supplementary Tables 8 and 9. Differentially methylated 

genes in relation to smoking status that are associated in GWAS with CHD or CHD risk 

factors are available in Supplementary Table 10. We also performed enrichment analyses on 

phenotypes that have no clear relationships to smoking, such as male pattern baldness 

(p=0.0888), myopia (p=0.1070), thyroid cancer (p=0.2406), and testicular germ cell tumor 

(p=0.3602) and did not find significant enrichment.

Enrichment analysis for genomic features

We examined the differentially methylated CpGs with respect to localization to different 

genomic regions including CpG islands, gene bodies, known differentially methylated 

regions, and sites identified as likely to be functionally important in the ENCODE project 

such as DNAse1 hypersensitivity sites and enhancers (refer to the Methods section for 

details). We performed this analysis separately for the CpGs related to current smoking and 

past smoking (Supplementary Table 11). Trends were similar for the two sets of CpGs, 

although the power to identify enrichment was much greater for the larger set of 18,760 

CpGs related to current smoking. There was no enrichment for CpG islands. In contrast, 

significant enrichment was observed for island shores, gene bodies, DNAse1 

hypersensitivity sites, and enhancers.

Transcriptomic integration

Of the 18,760 statistically significant CpG sites associated with current smoking in the meta-

analysis, 1,430 were significantly associated in cis with the expression of 924 genes at 

FDR<0.05 (enrichment p=3.6 × 10−215, Supplementary Table 12) using whole blood 

samples from 2,262 Framingham Heart Study participants. Of these, 424 CpGs associated 
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with the expression of 285 genes were replicated at FDR<0.0001 in 1,264 CD14+ samples 

from the Multi-Ethnic Study of Atherosclerosis (MESA)35. These genes are associated with 

pathways similar to those described earlier (Supplementary Table 13).

Comparison between African ancestry and European ancestry

Meta-analysis of the current versus never smokers in 11 cohorts with participants of 

European ancestry (N=6,750 subjects) yielded 10,977 CpGs annotated to 4,940 genes at 

FDR<0.05. Meta-analysis the results of the smaller dataset of four cohorts with African 

ancestry participants (N=2,639) yielded 3,945 CpGs annotated to 2,088 genes at FDR<0.05. 

The effect estimates of the CpGs significant in at least one ancestry (12,927 CpGs) were 

highly correlated in the combined group of individuals of either ancestry (Spearman 

ρ=0.89). The results by ancestry are shown in Supplementary Table 14.

We performed the same ancestry-stratified analysis on former versus never smokers 

(Supplementary Table 15). Meta-analysis of the results of European ancestry participants 

yielded 2,045 CpG sites annotated to 1,081 genes at FDR<0.05. Meta-analysis of the results 

of African ancestry participants yielded 329 CpG sites annotated to 178 genes at FDR<0.05. 

The effect estimates of the union of CpGs significant in at least one ancestry (2,234 CpGs) 

were correlated in the combined group of individuals of either ancestry (Spearman ρ=0.75). 

Of note, one of CpG sites showing differential methylation in ancestry, cg00706683, mapped 

to gene ECEL1P2, did not return to never-smoker levels 30 years after smoking cessation 

(Table 4).

To more directly compare results by ethnicity removing the effect of better statistical power 

in the larger European ancestry sample size, we performed a meta-analysis on subset of 

European ancestry cohorts: the Framingham Heart Study, Rotterdam Study, and KORA, 

such that the total number of smokers, the major determinant of power, would match that of 

African ancestry cohorts. In this subset, similar correlations of the effect estimates were 

observed as in the complete analyses suggesting that the differences in number of 

statistically significant CpGs are indeed due to better power in the European ancestry 

cohorts (Spearman ρ=0.87 and 0.79 for current versus never smokers and former versus 

never smokers, respectively).

Cell type adjustment

We adjusted our main analyses for white blood cell fractions, in studies based on either 

whole blood or leukocytes from the buffy coat of whole blood, either measured or using a 

published method20. Reassuringly, results before and after cell type adjustment were highly 

comparable. The correlation of regression coefficients before and after adjustment is 0.85 for 

the current vs. never smoker analysis (Supplementary Figure 7). Similarly for the analysis of 

former versus never smokers the effect estimates were highly correlated before and after 

adjustment (ρ=0.93; Supplementary Figure 8). In addition, in two cohorts we had results 

from specific cell fractions - CD4+ cells in GOLDN and CD14+ cells in MESA. The 

correlation of results between buffy coat and CD4+ or CD14+ for former versus never 

smokers are generally high (ρ > 0.74; Supplementary Table 16).
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Methylation profile across CpG sites

We assessed methylation profile in FHS cohort as a representative cohort in the study. The 

profile of all 485,381 analyzed CpG sites can be found in Supplementary Figure 9. The 

profile across 18,760 CpG sites significantly associated with current vs. never smoking 

status can be found in Supplementary Figure 10. These plots indicate that most CpG sites 

with less dynamic range are largely not statistically significant in our results.

Discussion

We performed a genome-wide meta-analysis analysis of blood-derived DNA methylation in 

15,907 individuals across 16 cohorts and identified broad epigenome-wide impact of 

cigarette smoking, with 18,760 statistically significant CpGs (FDR<0.05) annotated to over 

7,000 genes, or roughly a third of known human genes. These genes in turn affect multiple 

molecular mechanisms and are implicated in smoking-related phenotypes and diseases. In 

addition to confirming previous findings from smaller studies, we detected over 16,000 

novel differentially methylated CpGs in response to cigarette smoking. Many of these genes 

have not been previously implicated in the biologic effects of tobacco exposure. The large 

number of genes implicated in this well powered meta-analysis might on first glance raise 

concerns about false positives. However, on further consideration, given the widespread 

impact of smoking on disease outcomes across many organ systems and across the lifespan1, 

the identification of a large number of genes at genome wide significance is not surprising. 

In addition, our findings are robust and consistent across all 16 cohorts (Supplementary 

Tables 2 and 5) because we accounted for inter-study variability by using random effect 

meta-analyses, which is conservative when heterogeneity is present36. The implicated genes 

are mainly involved in molecular machineries, such as transcription and translation. 

Furthermore, differential methylation of a subset of CpGs persisted, often for decades, 

following smoking cessation.

We found that genes differentially methylated in relation to smoking are enriched for 

variants associated in GWAS with smoking–related diseases1 including, osteoporosis, 

colorectal cancers, chronic obstructive pulmonary disease, pulmonary function, 

cardiovascular disease (CVD) and rheumatoid arthritis. We find it noteworthy that there is 

enrichment of smoking-associated CpGs for genes associated with rheumatoid arthritis 

because DNA methylation is one of the proposed molecular mechanisms underlying this 

disease 37. It is also interesting that the most significant association of smoking with 

methylation was for the gene HIVEP3 (a.k.a. Schnurri3), the mammalian homolog of the 

Drosophila zinc finger adapter protein Shn38. This gene regulates bone formation, an 

important determinant to osteoporosis, which was one of the enriched GWAS phenotypes.

When we examined time since smoking cessation, we found that the majority of the 

differentially methylated CpG sites observed in analysis of current versus never smokers 

returned to the level of never-smokers within five years of smoking cessation. This is 

consistent with the fact that risks of many smoking-related diseases revert to nonsmoking 

levels within this period of time. Our results also indicate that cigarette smoking induces 

long-lasting alterations in DNA methylation at some CpGs. While speculative, it is possible 
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that persistent methylation changes at some loci might contribute to risks of some conditions 

that remain elevated after smoking cessation.

In all but two of our 14 cohorts DNA was extracted from the entire circulating leukocyte 

population. Thus there is the possibility of confounding by the effects of smoking on 

differential cell counts. We attempted to adjust for cell type and found that results were 

generally little changed by the adjustment.

Our significant results are highly enriched for CpG sites associated with the expression of 

nearby genes (i.e., in cis) even though a single measurement of gene expression in blood is 

probably subject to considerably more within-subject variability than DNA methylation,39 

limiting our ability to find correlations. Differential DNA methylation at many of the CpGs 

we identified in relation to smoking status may have a functional impact on nearby gene 

expression. Our analysis of genomic regions further supports the potential functional impact 

of our findings on gene expression. We demonstrated enrichment for sites with greater 

functional impact such as island shores, gene bodies, DNAse1 hypersensitivity sites, and 

enhancers, whereas we found no enrichment for CpG islands. These results reinforce 

previous findings showing that island shores, enhancers, and DHS sites are more dynamic 

(i.e., susceptible to methylation changes) than CpG islands40, which may be more resistant 

to abrupt changes in DNA methylation in response to environmental exposures41. Thus our 

results suggest that many of the smoking-associated CpG sites may have regulatory effects.

While identification of changes in methylation patterns may suggest mechanisms by which 

exposure to tobacco smoke exerts its effects on several disease processes, DNA methylation 

profiles can also serve as biomarkers of exposure to tobacco smoke. Cotinine is a biomarker 

only of recent smoking; DNA methylation signals have the potential to serve as robust 

biomarkers of past smoking history9,42. Indeed, several studies have identified several of 

such markers5,42,43. The large number of persistently modified CpGs may be useful to 

develop even more robust biomarkers to objectively quantify long-term cigarette smoking 

exposure for prediction of risk for health outcomes in settings where smoking history is not 

available or is incomplete as well as to validate self-reported never smoker status. Further, 

our analyses of both former and current smokers show dose-dependent effects at a number 

of CpGs (Supplementary Tables 3 and 7). Methylation based biomarkers could be 

informative for investigating dose response relationships with disease endpoints. This is 

useful because smokers often underreport the amount of smoking, both current and 

historical.

It is possible that smoking related conditions or correlated exposures may contribute to some 

of the methylation signatures identified. However, our studies are nearly all population based 

studies composed of predominantly healthy individuals, not selected for smoking related 

disease. Given the number, strength and robustness to replication of findings for smoking 

across the literature and among our diverse cohorts from various countries the likelihood that 

these are confounded by other exposures or conditions related to smoking is greatly reduced.

There several potential limitations to our study. First, the cross-sectional design limits our 

ability to study the time course of smoking effects. In addition, we analyzed methylation in 
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DNA samples from blood, which is readily accessible. Although we demonstrated that blood 

derived DNA reveals a strong and robust signature of cigarette smoking exposure, studies in 

target tissues for smoking-related diseases (e.g., heart and lung) would be of additional 

interest. In addition, our analyses could not distinguish smoking’s direct effects from its 

indirect effects due to smoking-induced changes in cell metabolism, organ function, 

inflammation, or injury that could in turn influence methylation. However, this is the largest 

examination to date of the effects of smoking on DNA methylation with 16 studies from 

different countries contributing.

In conclusion we identify an order of magnitude more sites differentially methylated in 

relation to smoking across the genome than have been previously seen. Many of these 

signals persist long after smoking cessation providing potential biomarkers of past smoking 

history. These findings may provide new insights into molecular mechanisms underlying the 

protean effects of smoking on human health and disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Trajectories of CpG sites that did not return to never-smoker levels within 30 years after 

cessation.
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Table 1

Participant characteristics

Characteristics Current Smokers
N=2,433

Former Smokers
N=6,518

Never Smokers
N=6,956

Sex (% Male) 46.3% 55.6% 31.7%

Age (years)* 57.7 ± 7.7 64.8 ± 8.2 61.2 ± 9.7

BMI (kg/m2)* 27.3 ± 5.4 28.7 ± 5.0 28.6 ± 5.3

*
weighted mean ± pooled standard deviation across cohorts
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Table 4

The top 36 most statistically significant CpG sites that did not return to never-smoker levels 30 years after 

smoking cessation in the Framingham Heart Study (N=2,648)

Probe ID Chr Location Gene Symbol P

cg05951221 2 233284402 3.2 × 10−15

cg06644428 2 233284112 1.2 × 10−14

cg05575921 5 373378 AHRR 6.5 × 10−14

cg21566642 2 233284661 8.6 × 10−10

cg03636183 19 17000585 F2RL3 5.7 × 10−7

cg06126421 6 30720080 1.3 × 10−6

cg01940273 2 233284934 1.9 × 10−6

cg23771366 11 86510998 PRSS23 3.1 × 10−6

cg17272563 6 32116548 PRRT1 4.4 × 10−6

cg23916896 5 368804 AHRR 1.3 × 10−5

cg11660018 11 86510915 PRSS23 1.3 × 10−5

cg08118908 16 15787920 NDE1 3.0 × 10−5

cg13937905 12 53612551 RARG 1.5 × 10−4

cg24172324 2 232258363 1.7 × 10−4

cg10780313 6 33501379 2.0 × 10−4

cg14027333 6 32116317 PRRT1 2.1 × 10−4

cg11245297 19 8117898 CCL25 2.1 × 10−4

cg01692968 9 108005349 3.1 × 10−4

cg00706683 2 233251030 ECEL1P2 3.4 × 10−4

cg25317941 2 233351153 ECEL1 4.0 × 10−4

cg25189904 1 68299493 GNG12 4.0 × 10−4

cg14179389 1 92947961 GFI1 4.7 × 10−4

cg13641317 3 127255552 4.9 × 10−4

cg19847577 15 29213748 APBA2 5.1 × 10−4

cg14239618 7 110281356 5.8 × 10−4

cg25955180 6 32116538 PRRT1 6.3 × 10−4

cg00774149 3 52255721 TLR9 6.4 × 10−4

cg21351392 6 161607487 AGPAT4 7.1 × 10−4

cg11902777 5 368843 AHRR 7.6 × 10−4

cg07251887 17 73641809 LOC100130933; RECQL5 7.7 × 10−4

cg19382157 7 2124566 MAD1L1 8.9 × 10−4

cg19925780 1 101509557 1.1 × 10−3

cg03679544 6 155537972 TIAM2 1.1 × 10−3

cg08559712 20 16030674 MACROD2 1.3 × 10−3
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Probe ID Chr Location Gene Symbol P

cg09837977 7 110731201 LRRN3; IMMP2L 1.3 × 10−3

cg00931843 6 155442993 TIAM2 1.4 × 10−3

*
CpG sites without gene names are intergenic. These are all included in all the analyses.
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Table 5

Enrichment of CpGs for genome-wide association study (GWAS) phenotypes that are regarded as causally 

related to cigarette smoking1

GWAS Phenotype Enrichment p-value

Current vs. never smoking

Coronary heart disease (CHD) and Stroke 0.0028

    Ischemic stroke 0.0095

CHD risk factors 1.2 × 10−12

    Blood pressure / hypertension 8.1 × 10−6

        Diastolic blood pressure 6.1 × 10−5

        Systolic blood pressure 0.0008

        Hypertension 0.0150

    Lipids 2.9 × 10−5

        High density lipoprotein (HDL) 0.0009

    Type 2 diabetes 0.0106

Rheumatoid arthritis (RA) 2.9 × 10−5

Bone mineral density (BMD) and osteoporosis 0.0467

All pulmonary traits 2.8 × 10−6

    All chronic obstructive pulmonary disease (COPD) 0.0295

        Moderate to severe COPD 0.0156

    Pulmonary function 0.0044

Crohn’s Disease 9.5 × 10−7

Primary biliary cirrhosis 3.4 × 10−6

Inflammation bowel disease 3.5 × 10−5

Ulcerative colitis 9.8 × 10−5

All cancer 8.0 × 10−15

    Lung adenocarcinoma 0.0015

    Colorectal cancer 0.0014

Former vs. never smoking

CHD risk factors 7.6 × 10−5

    Blood pressure / hypertension 5.8 × 10−5

        Diastolic blood pressure 0.0021

        Systolic blood pressure 0.0002

        Hypertension 0.0023

Rheumatoid arthritis (RA) 6.3 × 10−5

All pulmonary traits 0.0217

Inflammation bowel disease 5.2 × 10−6

Crohn’s Disease 0.0064

All cancer 7.8 × 10−6
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