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Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate mRNA expression mainly by

silencing target transcripts via binding to miRNA recognition elements (MREs) in the 3’untrans-

lated region (3’UTR). The identification of bona fide targets is challenging for researchers

working on the functional aspect of miRNAs. Recently, we developed a method (miR-CATCH)

based on biotinylated DNA antisense oligonucleotides that capture the mRNA of interest and

facilitates the characterisation of miRNAs::mRNA interactions in a physiological cellular con-

text. Here, the miR-CATCH technique was applied to the mesothelin (MSLN) gene and cou-

pled with next generation sequencing (NGS), to identify miRNAs that regulate MSLN mRNA

and that may be responsible for its increased protein levels found in malignant pleural meso-

thelioma (MPM). Biotinylated MSLN oligos were employed to isolate miRNA::MSLN mRNA

complexes from a normal cell line (Met-5A) which expresses low levels of MSLN. MiRNAs

targeting the MSLN mRNA were identified by NGS and miR-21-5p and miR-100-5p were

selected for further validation analyses. MiR-21-5p was shown to be able to modulate MSLN

expression in miRNA mimic experiments in a panel of malignant and non-malignant cell lines.

Further miRNA inhibitor experiments and luciferase assays in Mero-14 cells validated miR-21-

5p as a true regulator of MSLN. Moreover, in vitro experiments showed that treatment with

miR-21-5p mimic reduced proliferation of MPM cell lines. Altogether, this work shows that the

miR-CATCH technique, coupled with NGS and in vitro validation, represents a reliable method

to identify native miRNA::mRNA interactions. MiR-21-5p is suggested as novel regulator of

MSLN with a possible functional role in cellular growth.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules, 20–25 nucleotides long, highly

conserved in the plant and animal world. They play a major role in post-transcriptional regula-

tion, mainly silencing target mRNAs by binding to miRNA recognition elements (MREs) in

the 3’untranslated region (3’UTR) and thus decreasing their corresponding protein levels.

Although the basic mechanisms underlying their biogenesis and function are mostly known,

the identification of bona fide targets of miRNAs represents the most challenging aspect for

researchers in this field. Recently, different methods have been developed to identify multiple

miRNAs binding to a single mRNA of interest [1,2]. Since these methods are limited to the

3’UTR of the mRNA, miRNAs targeting the 5’UTR or the coding sequence cannot be

identified.

More recently, we have developed an alternative experimental approach using biotin-conju-

gated oligonucleotides and magnetic beads [3]. This protocol provides a reliable method to

identify specific mRNA::miRNA interactions in a cellular context that decreases the chance of

false-positive results compared to miRNA over-expression methods [4]. Moreover, miRNA

identification is not limited to the 3’UTR, since mRNAs are studied in their physiological envi-

ronment, thus miRNAs binding to MREs in the 5’UTR and coding sequence can also be cap-

tured. In the original report miRNAs binding the mRNA of interest were identified by using

qRT-PCR or miRNA profiling [3]. Recently, this technique was employed to show the physical

binding between miR-659-3p and progranulin (GRN) mRNA in neuroblastoma cell lines [5].

Moreover it has also been used to validate novel miRNA regulators of Rac1 mRNA in mouse

retina (A. Palfi, personal communication). Here we employ next generation sequencing (NGS)

for downstream analysis thereby offering a more unbiased and accurate method to characterise

the miRNAs binding the captured mRNA.

In the present work, the “miR-CATCH” technique, as it was then named [6], was further

developed and applied to discover miRNAs regulating the human Mesothelin (MSLN) gene.

MSLN encodes a ~70kDa precursor protein, that is cleaved into a ~ 31kDa soluble protein

(megakaryocyte potentiating factor, MPF) and a ~ 40kDa membrane bound glycoprotein

(mature mesothelin, MSLN) [7]. Although the physiological role of this protein is still

unknown [8], over-expression of MSLN is often observed in some types of human tumours,

namely MPM (Malignant Pleural Mesothelioma), pancreatic and ovarian carcinomas [9].

Moreover, it has been reported that MSLN could have a driving role in cancer by regulating

cell proliferation and invasiveness [10,11]. The mechanisms of MSLN over-expression in

cancer have not yet been elucidated. Hypomethylation of the MSLN promoter and tran-

scriptional up-regulation have been suggested in MPM [11,12], pancreatic [13,14] and ovar-

ian carcinoma [15,16], but few studies have reported post-transcriptional regulation of

MSLN by miRNAs [17,18]. The present work aimed to identify previously unreported

miRNAs involved in the modulation of MSLN expression. Thus, we first applied the miR-

CATCH protocol in the Mero-14 MPM cell line [19], a model of MSLN over-expression

[11] that allowed the identification of the best capturing oligo. Then we employed the Met-

5A cell line [20] for the miR-CATCH analysis followed by NGS. Met-5A is a mesothelial cell

line immortalised with SV40 that expresses low levels of MSLN [11]; given that miRNAs

and their targets usually display reciprocal expression patterns, Met5A should therefore

express high levels of MSLN-regulating miRNAs. Finally, we validated the role of the miR-

NAs selected after the NGS in a panel of mesothelial cell lines, and demonstrated a func-

tional role for miR-21-5p in cell proliferation.
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Materials and Methods

Cell lines

Cell lines were grown in 5% CO2 at 37˚C in media supplemented with 10% FBS and 1% pen/

strep. Non-malignant transformed human pleural mesothelial cells (Met-5A) were purchased

from ATTC (American Type Tissue Collection) and cultured in Medium 199 (Gibco in Life

Technologies, Cat # 22340–020). Human epithelioid malignant mesothelioma cells (Mero-14)

were kindly donated by Istituto Tumori of Genova (National Research Council, Genova,

Italy), and maintained in Dulbecco’s Modified Eagle Medium (Lonza, Cat # BE12-604F).

Human biphasic (MSTO-211H) and sarcomatoid (H2052) malignant mesothelioma cells were

kindly donated by the Department of Molecular Medicine in RCSI (Royal College of Surgeons

in Ireland, Dublin, Ireland) and maintained in RPMI medium (Lonza, Cat # BE12-702F/U1).

MSLN mRNA::miRNA complex isolation

The following protocol was initially applied to identify the best MSLN capture oligo, and in

this process Mero-14 cells were used, since they express a high level of the target mRNA. Once

the oligo was chosen, three biological replicates of Met-5A were processed according to the

protocol, checked for MSLN mRNA enrichment and used in the NGS pipeline to identify one

or more miRNAs potentially binding to MSLN mRNA.

MSLN oligo design. mFold (http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form)

and UGENE [21] software were employed to visualise the secondary structures of the MSLN
mRNA (transcript variant 1 NM_005823.5) and to identify suitable sequences for oligo design.

Three DNA antisense oligos (MSLN_1, MSLN_2 and MSLN_3) were designed to target ss

regions in the MSLN secondary structure. The thermodynamic properties of the oligos and

their specific complementarity towards MSLN mRNA were assessed with Oligo Analyzer soft-

ware (http://eu.idtdna.com/calc/analyzer) and BLAST (Basic Local Alignment Search Tool,

http://blast.ncbi.nlm.nih.gov/Blast.cgi), respectively. A not-targeting scrambled oligo was

employed to assess the specificity of the MSLN capture: 5’-GTGAGGCGTTGTAAGAGTGGTT
AAG-3’.All the oligos were modified with a 3’ biotin-TEG (triethyleneglycol) tail. The main

features of the three oligos are reported in Table 1. One long single-strand (ss) region was

identified with mFold in the coding sequence between bases 328–358 of transcript variant 1

(NM_005823.5), and another 22 bp ss strand was predicted between bases 1445–1466. These

exposed regions were also present in the other transcript variants, respectively between bases

271–301 and 1412–1433 for transcript variant 2 (NM_013404.4) and between bases 267–297

and 1384–1405 for transcript variant 3 (NM_001177355.1). Oligo MSLN_1 was designed

Table 1. Characteristics of MSLN_1, _2 and _3 oligos.

MSLN_1 MSLN_2 MSLN_3

Sequence 5’-AGAGGCTGGAAATGTTAGGTGGGTT-3’ 5’- AGGGTGTCTAGGGTGTCTTTGT-3’ 5’-TATTCGGACCCGTTCATGTTCTGGA-3'

Position 328–352 bp 1445–1466 bp 1619–1643 bp

GC 48% 50% 48%

Tm oligo::target (0.5 M NaCl) 70.6˚C (ΔG: -48.13 kcal/mole) 77.9˚C (ΔG: -39.24 kcal/mole) 72.6˚C (ΔG: -48.6 kcal/mole)

Self-Dimer ΔG: -3.14 kcal/mole (6.5%) ΔG: -4.16 kcal/mole (10.6%) ΔG: -6.68 kcal/mole (13.7%)

Sequence complementarity with off-

target genes

18/19 LRP5L; 14/14 NBEA 15/15 FBXL16; 15/15 KRT71 (14/14

CHMP6)

14/14 CTNND1; 14/14 CEP170B

For each MSLN oligo, the following features are reported: bp sequence, position of complementarity on MSLN mRNA sequence (transcript variant 1

NM_005823.5), % GC pairs, melting Temperature (Tm) and binding free-energy (ΔG) of the hybridisation oligo::mRNA, ΔG of self-dimers structures and its

% referred to the ΔG of hybridisation with target mRNA, non-specific targets (with bp complementarity) predicted with BLAST. All the thermodynamic

properties were calculated with Oligo Analyzer software.

doi:10.1371/journal.pone.0170999.t001
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within the first ss region, whereas MSLN_2 was designed to bind the full length of the second

ss region. MSLN_3 was not complementary to a fully ss region (bases 1619–1643), but mFold

software predicted a stretch of 5+3+5 ss bases within this region. Regarding the thermody-

namic properties, all the combinations of oligo::target mRNA had a high melting temperature

(>70˚C) and the self-dimer binding free-energy (ΔG) was less than 15% of the ΔG of the hybridi-

sation oligo::mRNA. The top two off-targets (i.e. mRNAs with the potential to be captured using

these oligos) according to BLAST are reported in Table 1 and were tested for non-specific cap-

turing. For MSLN_2, KRT71 (keratin 71, which encodes for a keratin, typical of epithelial tissues)

was not expressed in Mero-14. Thus, the third non-specific complementary transcript (CHMP6,

charged multivesicular body protein 6) was included in the off-target analysis of MSLN_2.

miR-CATCH protocol. The miR-CATCH protocol [3] was employed with minor modifica-

tions highlighted in the discussion section. Briefly, three confluent 75 cm2 flasks of cells were

pooled and fixed with formaldehyde (0.2%) to cross-link miR-Ago-RISC complexes with mRNAs,

lysed and incubated with MSLN or scrambled biotinylated oligos previously immobilised on

streptavidin-coated magnetic beads. An incubation of 60’ tumble—30’ rest—45’ tumble was per-

formed at 37˚C to allow the annealing of MSLN mRNA to the oligo-beads complexes. After a

washing step to minimise the binding of non-specific targets, samples were eluted from the mag-

netic beads and the formaldehyde cross-links were reversed by proteinase K treatment. The result-

ing samples were used for RNA extraction (miRNeasy Mini Kit, Qiagen, Cat # 217004), qRT-PCR

and next generation sequencing.

qRT-PCR for assessment of MSLN and off-target mRNAs enrichment. Real-time PCR

primers were designed with Primer-Blast and checked for specificity and efficiency (S1 Table).

qRT-PCR analyses were performed to evaluate the enrichment of MSLN and off-target mRNAs

in the MSLN- vs scrambled- captured samples. The enrichment of mRNAs was calculated with

the 2-ΔΔCt method using RPLP0 as a reference gene [22], as a representative of highly expressed

mRNAs that might non-specifically bind to the oligo beads.

Next generation sequencing

Library construction was performed using the NEBNext1 Multiplex Small RNA Library Prep Set

for Illumina1 (Set 1) according to the protocol’s recommendation for low input samples starting

with half of the available material as input. For the size selection of amplified cDNA libraries, PCR

products were loaded on an agarose gel (4%) and passed on to gel extraction with the MinElute

Gel Extraction Kit (Qiagen, Cat # 28604). Sequencing of the libraries was performed on an Illu-

mina MiSeq Platform using the Miseq Reagent Kit v2 reading a standard flowcell with 50 cycles.

Sequence data were trimmed using the Trimmomatic software application (http://www.

usadellab.org/cms/index.php?page=trimmomatic) to remove linker sequences. The trimmed

sequences were then aligned to the human genome (build Hg19) using the Bowtie aligner [23].

The resulting alignments were resolved to read counts aligning to the mature miRNA coordi-

nates from MiRBase [24] version 20 using custom perl scripting. The detection of differentially

expressed miRNAs in MSLN- vs scrambled- captured samples was achieved using DESeq2

Package [25]. Selection criteria for validation analyses of miRNA(s) highlighted by NGS were:

(i) a significant enrichment in MSLN- compared to scrambled- captured samples and (ii) a

number of reads> 20, indicating a possible biological role of the miRNAs in binding MSLN.

In silico prediction of selected miRNAs

The PITA algorithm [26], where the whole length of an mRNA can be tested for miRNA binding,

was employed to investigate the predicted binding sites of the selected miRNAs within MSLN
(transcript variant 1 NM_005823.5) and CEP170B (transcript variant 1 NM_001112726.2)

MiR-CATCH and NGS Identify MiR-21-5p as a Mesothelin Regulator
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mRNAs. Target predictions were not performed on CTNND1due to the very low presence of this

transcript in the captured samples.

Experimental validation of miRNAs targeting MSLN mRNA through

transfection of miRNA mimics

In three independent miRNA mimic experiments, Met-5A, Mero-14, MSTO-211H and H2052

cells were seeded at a density of 250000 cells/well. After 24 hours they were transfected with either

miRVana hsa-miR-21-5p or hsa-miR-100-5p mimics (Life Technologies, Cat # MC10206 and

MC10188, respectively) at 30 nM, using Ribojuice (Novagen, Cat # 71115–4) in OptiMem-reduced

serum media (Life Technologies, Cat # 31985–070). mirVana miRNA Mimic Negative Control #1

(Life Technologies, Cat # 4464058) was used as a negative control. The effect of transfection of

miRNA mimics on MSLN protein was assessed at 72 hours after transfection. Briefly, proteins were

collected with RIPA buffer (supplemented with Halt Protease inhibitor Cocktail, Cat # 1862209,

Thermo Scientific, and 0.5M EDTA solution, Cat # 1861274, Thermo Scientific), resolved by 10%

SDS-PAGE, transferred to polyvinylidene difluoride (PVDF) membranes and incubated at 4˚C

with primary anti-mesothelin antibody (Santa Cruz, Cat # sc-271540, Lot # F0111; overnight,

1:250). Stripping protocol was performed using Restore Western Blot Stripping Buffer (Cat # 21059,

Thermo Scientific) on the same membrane to obtain β-actin signal. Briefly, after 15 minutes of incu-

bation with stripping buffer, membranes were washed and treated with blocking solution (3% dry

milk, 1% bovine serum albumin). The membranes were then incubated for 30 minutes at 4˚C with

anti-ß-actin antibody (Millipore, Cat # MAB1501, Lot # 2384641; 30 minutes, 1:50000). Anti-

mouse IgG, HRP-linked antibody (Cell Signaling, Cat # 7076S, Lot # 32; 1:2500) was used as a sec-

ondary antibody for one hour at RT for both MSLN and β-actin antibodies. Detection was achieved

using Immobilon Western Chemiluminescent HRP Substrate (Millipore, Cat # WBKLS0100) and

membranes were analysed by densitometry using the ImageLab software. For quantitative analysis,

the signal intensity of each band was normalized with ß-actin densitometry values.

In parallel, in order to measure the transfection efficiency, Met-5A, Mero-14, MSTO-211H

and H2052 cells were seeded at a density of 50000 cells/well in duplicate in p24-well plates.

The transfection protocol with miRVana miRNA mimics was carried out as described above. At

48 hours after transfection, RNA was isolated with Trizol reagent (Sigma-Aldrich, Cat # T9424)

and miRNAs levels were measured with TaqMan microRNA Assays (Cat # 4427975, Assay ID

000397 for hsa-miR-21-5p and 000437 for has-miR-100-p) according to manufacturer’s proto-

col. Reverse transcription was performed with TaqMan1 MicroRNA Reverse Transcription

Kit (Life Technologies, Cat # 4366596) using stem-loop specific miRNA primers starting from

100 ng of total RNA. Expression of miRNAs relative to U6 snRNA (Cat # 4427975, Assay ID

001973) was determined using the 2-ΔΔCt method [22].

Experimental validation of miR-21-5p as a regulator of MSLN

MiR-21-5p ability to regulate MSLN was further validated in Mero-14 cells with anti-miR

experiments and luciferase assay.

Anti-miR-21-5p experiments. In three independent miR inhibitor experiments, Mero-14

were seeded at at a density of 250000 cells/well and then transfected with either miRVana hsa-

miR-21-5p inhibitor (Life Technologies, Cat # MH10206) or mirVana™ miRNA Inhibitor Neg-

ative Control #1 (Life Technologies, Cat # 4464076) at 100 nM, using Ribojuice (Novagen, Cat

# 71115–4) in OptiMem-reduced serum media (Life Technologies, Cat # 31985–070). The

effect of transfection of miR-21-5p inhibitor on MSLN protein was assessed at 72 hours after

transfection using western blot as previously explained. Routinely the transfection efficiency

was measured with qRT-PCR of miR-21-5p levels as previously explained.

MiR-CATCH and NGS Identify MiR-21-5p as a Mesothelin Regulator
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Luciferase reporter assay. An arbitrarily chosen 223 bp region of the MSLN coding

sequence (nucleotide position 1051–1273 of the RefSeq NM_005823.5), containing the most

likely miR-21 binding site (starting at residue 1237, miRNA seed GATGAGCT), was amplified

by Q51 High-Fidelity DNA Polymerase (NEB, Cat # M0491). The resultant PCR amplicon

was subsequently cloned downstream to the firefly luciferase reporter gene into the XhoI site

of the pmirGLO Dual-Luciferase vector (Promega, Cat # E1330) using CloneEZ1 PCR Clon-

ing Kit (GenScript, Cat # L00339). This construct is from now on referred as

“WT_pmir_MSLN”. Subsequent site-directed mutagenesis reactions were performed with

QuikChange Lightning Multi Site-Directed Mutagenesis Kit (Agilent, Cat # 210515), in order

to generate a plasmid, referred as “MUT_pmir_MSLN”, with mutations in the predicted bind-

ing site (in bold in the miRNA seed GATGCTTT). The fidelity of the resulting construct was

confirmed by sequencing, using the pmirGLO external primers (pmir_F and pmir_R). The

sequence of cloning, mutagenesis and sequencing primers are reported in S2 Table.

In three independent experiments, Mero-14 cells were seeded in 96-wells plates at a final den-

sity of 10,000 cells/well and incubated for 24 hours. Cells were then cotransfected at 60–80% con-

fluence with WT/MUT_pmir_MSLN (100 ng) together with, alternatively, miRVana hsa-miR-

21-5p mimic or miRVana miRNA Mimic Negative Control #1 (30 nM). Transfections were per-

formed using Genejuice (Novagen, Cat # 70967) from plasmid DNA and Ribojuice for miRNA in

OptiMEM reduced serum media as per the recommended conditions. Renilla luciferase expressed

within both the WT_ and the MUT_pmir_MSLN reporters was used as an internal control of

transfection efficiency. Twenty-four hours after transfection, a Dual-Luciferase Reporter Assay

(Promega, Cat # E1910) was performed. Relative luciferase units (RLU) were expressed as mean

value of the firefly luciferase/Renilla luciferase ratio of three independent experiments.

Sulphorhodamine (SRB) and clonogenic assay for functional analyses

on miR-21-5p

The effect of miR-21-5p on mesothelioma cell line proliferation was next assessed with SRB

assay. In three independent experiments, Mero-14 and MSTO-211H cell lines were seeded in

96 wells plate at a density of 3000 cells/well. The following day, cells were transfected with

either miRVana hsa-miR-21-5p or mimic mirVana miRNA Mimic Negative Control #1 at 30

nM, as described previously. In parallel, cells were also seeded and transfected in 6 wells plate

for protein extraction as control for transfection. H2052 cells could not be used since they

were not able to proliferate after transfection. Mesothelioma cells were tested at 72, 96 and 120

hours post-transfection following the SRB protocol as described elsewhere [11]. At each time

point, total proteins were extracted with RIPA buffer and MSLN expression was assessed in

western blot analysis as described previously.

The ability of MPM cells to proliferate indefinitely following miR-21-5p transfection was

tested by clonogenic assay. In three independent experiments, Mero-14 and MSTO-211H cells

were seeded in 6 wells plate at a density of 250000 cells/well. The following day, cells were

transfected with either miRVana hsa-miR-21-5p or mimic mirVana miRNA Mimic Negative

Control #1 at 100 nM, as described previously. After 24 hours, cells were trypsinised, counted

and seed in 6 wells plate at low density (6000–8000 cells/well). Cells were stained with crystal

violet after 10 days and colonies (>50 cells) were counted with ImageJ software.

Statistical analyses

The enrichment of MSLN and of the off-target mRNAs in the miR-CATCH pipeline was statis-

tically evaluated with one-way analysis of variance (ANOVA). Dunnett’s multiple comparison

tests were performed within the ANOVA model to assess pairwise differences between each

MiR-CATCH and NGS Identify MiR-21-5p as a Mesothelin Regulator
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group and the control group. For the validation study, the effect of miRNA mimics on MSLN

protein levels was evaluated with ANOVA, and the punctual P-values for each comparison

were calculated with Dunnett’s test again. The effect of anti-miR-21-5p on MSLN protein lev-

els was evaluated with Student’s t-test. For the luciferase assay, the effect of miR-21-5p on the

wild type and mutant plasmid was compared to its corresponding negative control with Stu-

dent’s t-test. The influence of miR-21-5p mimic on cell proliferation was assessed with a multi-

factorial ANOVA (mANOVA), where the time point post-transfection (72, 96 or 120 h) and

the treatment (miR-21-5p or negative control mimic) were considered as experimental vari-

ables. In the mANOVA, the multiple comparisons were evaluated with Bonferroni’s test. The

effect of miR-21-5p transfection on clonogenicity was assessed with Student’s t-test. GraphPad

Prism 7.0 software package was used for all the statistical analyses.

Results

Test for capture efficiency and specificity of MSLN oligos

The miR-CATCH technology uses affinity capture oligonucleotides to co-purify a single

mRNA together with all its endogenously bound miRNAs. In this work, MSLN mRNA was co-

purified with its cognate miRNAs from mesothelial cells pre-treated with formaldehyde, lysed

and then incubated with ad hoc designed MSLN capture oligos. Three oligos were designed

according to RNA structure analyses, thermodynamic properties and specific complementar-

ity to ensure the best capture of MSLN.

Mero-14 lysates were used (in triplicate) to test the efficiency of MSLN capture since their

MSLN expression is higher than in non-malignant cells [11]. This allowed the identification of

the most effective oligo in a context of high expression of the target gene. For each lysate, a

fraction was incubated with MSLN or scrambled oligo, to identify the background noise

caused by abundant transcripts that might bind non-specifically to the oligos or to the mag-

netic beads. The enrichment of MSLN and off-target mRNAs was calculated by qRT-PCR

comparing MSLN- vs scrambled- captured sample, in the same lysate. Fig 1 shows the fold

Fig 1. Test for capture efficiency and specificity of MSLN_1 (A), MSLN_2 (B), and MSLN_3 (C) oligos. QRT-PCR was used

to calculate MSLN and off-target mRNA enrichment for each tested oligo in Mero-14 samples. Relative mRNA expression was

quantified using the 2-ΔΔCt method comparing MSLN-captured vs scrambled-captured samples. The punctual P-value according to

Dunnett’s test calculated within the ANOVA model is also reported. The columns represent mean values, the bars show standard

error of the mean (SEM) of three independent experiments. Ns = not statistically significant.

doi:10.1371/journal.pone.0170999.g001
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enrichment of MSLN mRNA and off-target mRNA for the three MSLN oligos, expressed as

means ± standard error of the mean (SEM). Capture of MSLN mRNA with MSLN_1 led to an

enrichment of 3.11 (± 0.41), whereas no enrichment (0.53 ± 0.11) was reported for the pre-

dicted off-target LRP5L (LDL receptor related protein 5 like) and only a slight enrichment

(1.81 ± 0.23) was evident for NBEA (neurobeachin) mRNA. Capture with MSLN_2 facilitated

better MSLN mRNA fold enrichment (7.52 ± 1.94). Regarding the off-target mRNAs poten-

tially captured by MSLN_2, FBXL16 (F-box and leucine rich repeat protein 16) mRNA was

lower than MSLN (3.23 ± 0.70), but CHMP6 mRNA was highly enriched (27.40 ± 1.25), thus

MSLN_2 was excluded. Capture using MSLN_3 led to the highest MSLN mRNA enrichment

(10.12 ± 1.36) and the lowest off-target mRNA enrichment (2.61 ± 1.16 for CTNND1, catenin
delta 1, and 4.17 ± 1.24 for CEP170B, centrosomal protein 170B). Thus, MSLN_3 was chosen to

be used in the miR-CATCH protocol for NGS analyses with Met-5A samples, which likely

contain less target mRNA [11] but potentially more MSLN-regulating miRNAs.

MSLN mRNA capture for NGS samples

Three independent Met-5A lysates were processed using MSLN_3 oligo. The enrichment of

MSLN and off-target mRNAs was calculated using the 2-ΔΔCt method [22] comparing MSLN_3-

vs scrambled- captured sample. The same samples were then used in the NGS pipeline to iden-

tify one or more miRNAs potentially binding to MSLN. The fold enrichment of MSLN mRNA

was significantly higher than the enrichment of the off-target mRNAs (8.95 ± 2.20 for MSLN vs

3.10 ± 0.75 for CTNND1 and 2.57 ± 0.31 for CEP170B). Notably, CT values for CTNND1were

over 35 for all the MSLN- and scrambled- captured RNAs, suggesting very low presence of this

transcript in all the samples.

Next generation sequencing

Analysis of the Illumina short reads identified 325 miRNAs being present in the samples. Raw

reads counts for each mature miRNA are reported in S3 Table. Differential Expression analysis

performed with DESeq2 in MSLN- vs scrambled- captured samples identified 13 genes with an

adjusted p-value of less than 0.1 in Met-5A (S4 Table). Of these, hsa-miR-21-5p (P = 4.4x10-5,

Fold Change = 2) and hsa-miR-100-5p (P = 0.018, Fold Change = 1.66) passed the criteria to be

selected for further validation.

In silico binding prediction of miR-21-5p and miR-100-5p to MSLN and

off-target mRNAs

The PITA algorithm revealed the presence of four potential binding sites for miR-21-5p within

the coding region of MSLN mRNA (starting at residues 1237, 1302, 1512 and 1507), among

which only the one starting at nucleotide 1237 was predicted to have a negative binding free

energy (ΔΔG) (i.e. -5.64 kcal/mol). Since ΔΔG is the energetic score of the annealing process

between a miRNA and its target site on the mRNA, the lower (more negative) its value, the

stronger the binding of the miRNA is expected to be. Three possible binding sites were pre-

dicted for miR-100-5p (one in the 5’UTR and two in the coding region, starting at residues

122, 659 and 910), all with ΔΔG>0. Regarding CEP170B, miR-21-5p is predicted to anneal

once with a ΔΔG of +8.53 kcal/mol, whereas three putative binding sites are predicted for

miR-100-5p, two of whom with ΔΔG<0.
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MiR-21-5p overexpression decreases endogenous levels of MSLN

protein in a panel of cell lines

As miR-21-5p and, to a lower extent, miR-100-5p were enriched in MSLN-captured samples,

their ability to modulate MSLN protein expression was assessed on a panel of non-malignant

(Met-5A) and malignant (Mero-14, MSTO-211H and H2052) cell lines with miRNA mimic

experiments. As shown in S1 Fig, the levels of miR-21-5p and miR-100-5p in miRNA mimic

transfected cells were both significantly higher than those transfected with the negative con-

trol, indicating that all the cell lines had been successfully transfected with miR-21-5p and

miR-100-5p mimic. A reduction in MSLN protein level was evident after over-expression of

miR-21-5p but not of miR-100-5p in all of the cell lines (Fig 2A, 2B, 2C and 2D). After miR-

21-5p mimic transfection, MSLN protein levels significantly decreased to 58% (±8%), 65%

(±5%), 61% (±2%) and 54% (±8%) of that obtained following transfection with the negative

control (set to 100%) in Met-5A, Mero-14, MSTO-211H and H2052, respectively.

Anti-miR experiments and luciferase assay confirmed that miR-21-5p

directly regulates MSLN

In order to validate the role of miR-21-5p as direct regulator of MSLN, we performed anti-

miR experiments and luciferase assays on Mero-14 cells. Routinely, after transfection of

hsa-miR-21-5p inhibitor, the levels of miR-21-5p were lower (30–50% reduction) than

those transfected with the negative control. Following miR-21-5p depletion, MSLN protein

levels increased by 33% (±3.4%, P = 0.01) compared to the negative control (set to 100%)

(Fig 3A).

Fig 2. Effects of miR-21-5p and miR-100-5p over-expression in a panel of malignant and non-malignant cell lines. For western blot experiments,

quantification after internal normalisation with β-actin is displayed together with a representative image. Met-5A, Mero-14, MSTO-211H and H2052 are shown

in A, B, C and D, respectively. Negative control-treated samples are reported as reference and set at 1 (or 100%). The punctual P-value according to Dunnett’s

test calculated within the ANOVA model is also reported. The columns represent mean values, the bars show standard error of the mean (SEM) of three

independent experiments. Ns = not statistically significant.

doi:10.1371/journal.pone.0170999.g002
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Mero-14 cells were transiently transfected with a luciferase reporter plasmid containing the

region of MSLN coding sequence that most likely is target of miR-21-5p (WT_pmir_MSLN)

or a reporter with mutations in the predicted binding site (MUT_pmir_MSLN) to validate the

direct interaction between miR-21-5p and MSLN suggested by the miR-CATCH. Cotransfec-

tion with miR-21-5p mimic resulted in a significant decrease (-13%, ±1.4%, P = 0.0031) of

luciferase activity, expressed as RLU, in the WT_pmir_MSLN plasmid, while no significant

difference where observed in the MUT_pmir_MSLN plasmid after transfection of miR-21-5p

(Fig 3B), demonstrating a direct miRNA-target interaction via the predicted binding site.

Functional role of miR-21-5p in the regulation of cellular growth

The effect of miR-21-5p over-expression on cell proliferation was assessed using an SRB assay

at 72, 96 and 120 hours after transfection. S2 Fig shows that treatment with miR-21-5p mimic

led to reduction of MSLN protein levels at each tested time point. Compared to the negative

control, overexpression of miR-21-5p decreased the rate of proliferation of Mero-14 cells and

was 17% lower at 120 h post transfection (Fig 4A, left panel) (P-value = 0.016). In MSTO-

211H cells miR-21-5p overexpression also decreased cell proliferation compared to the

Fig 3. Experimental validation of miR-21-5p as regulator of MSLN expression. Negative control (NC)-treated samples are reported as reference and set

at 1 (or 100%). The P-value according to Student’s t-test is reported. The columns represent mean values, the bars show standard error of the mean (SEM) of

three independent experiments. (A) Effect of miR-21 depletion on MSLN protein in Mero-14 cells. Quantification after internal normalization with β-actin is

displayed together with a representative image. (B) Direct interaction between miR-21-5p and MSLN is confirmed by luciferase assay in Mero-14 cells. RLU

calculated as the ratio firefly luciferase/renilla luciferase are displayed together with the predicted binding site for miR-21-5p on MSLN coding sequence. The

grey box indicates the three nucleotides (AGC) within the miRNA seed that were mutated to CTT in the MUT_pmir_MSLN plasmid in order to disrupt the miR-

21-5p binding site.

doi:10.1371/journal.pone.0170999.g003
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negative control with the most evident reduction (minus 15%, P = 0.048) at 72 h post transfec-

tion (Fig 4A, right panel). Overall, miR-21-5p overexpression led to a significant reduction

(P = 0.0069 for Mero-14 and P = 0.0012 for MSTO-211H) in the proliferation rates of both cell

lines over time.

To delineate the observed effect on cell growth, we performed clonogenic assays on the

same MPM cell lines, whose ability to form colonies was strongly decreased by transfection of

miR-21-5p mimic, as compared to control-transfected cells (Fig 4B). The number of colonies

in wells treated with miR-21-5p was significantly decreased to 53% and to 40% in Mero-14

and MSTO-211H cells, respectively (P = 0.0002 for both cell lines).

Discussion

In this work we applied the previously published miR-CATCH protocol [3] to MSLN mRNA

in order to identify miRNAs targeting this transcript. With this technique, MSLN mRNA was

successfully isolated using MSLN_3 oligo and its cognate miRNAs were identified by next gen-

eration sequencing. In vitro experimental analyses validated the findings suggested by NGS,

namely that miR-21-5p is a regulator of MSLN mRNA.

In the present study we achieved two major goals: the optimisation of the miR-CATCH

protocol followed by NGS, and the discovery of a miRNA regulating MSLN mRNA that is not

predicted with certainty according to the classical prediction algorithms. Regarding the opti-

misation of the protocol, three important changes in the experimental procedure were intro-

duced: (i) a scrambled oligo was used as a negative control; this represents an improved

biological reference compared to the total RNA previously used, since both the MSLN and

scrambled oligos underwent the same protocol passages; (ii) a reduced percentage of formalde-

hyde solution was employed (0.2% instead of 1%), thus preserving RNA quality that can be

affected by cross-linking processes [27], and decreasing the background pull-down due to

non-specific cross-linking; and (iii) the hybridisation time of miRNA::mRNAs-oligo-beads

was extended to 135 minutes (instead of 30 minutes) and performed at 37˚C (instead of RT)

allowing a better capture and minimising non-specific binding events.

In order to identify novel miRNAs potentially regulating MSLN mRNA as reliably as possi-

ble, much effort was invested in designing and testing the most effective MSLN oligo in a

model of a high concentration of MSLN mRNA, i.e. Mero-14 [11]. Although the three tested

oligos were predicted in silico to have similar thermodynamic properties and to be specific for

MSLN mRNA, they showed different fold enrichments in their binding with MSLN mRNA.

Likely, this could be ascribed to different “availability” of the targeted sites in the real cellular

environment represented by the Mero-14 cell line. In other words, the capturing process could

be affected by unpredictable secondary structures or interaction with other molecules that

occur in the physiological context. However, the choice of the oligos was also performed taking

into account off-target mRNAs enrichment. Thus, MSLN_2 was excluded due to unacceptably

high capture of CHMP6 mRNA, whereas MSLN_3 was preferable than MSLN_1 because it led

to the highest fold enrichment for MSLN mRNA with a similar off-target mRNAs capture.

Interestingly, one potential off-target, LRP5L, which has complementarity of 18 out of 19 bases

with oligo MSLN_1, was not enriched suggesting that the presence of a single mismatch in the

Fig 4. Functional assays on miR-21-5p-transfected MPM cell lines. The columns represent mean values, the bars show SEM of three independent

experiments. (A) SRB proliferation assay in Mero-14 (left) and MSTO-211H (right) treated with 30 nM of miR-21-5p mimic or negative control mimic.

Asterisk (*) indicates P < 0.05 according to Bonferroni multiple comparison test within the mANOVA model. (B) Clonogenic assay: representative

image of colonies formed by negative control (NC) or miR-21-5p transfected (100 nM) Mero-14 (left) and MSTO-211H (right) cell lines. The number of

colonies is reported in % compared to the average of the three wells transfected with negative control in each experiment. The P-value according to

Student’s t-test is reported.

doi:10.1371/journal.pone.0170999.g004
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middle of a predicted binding site can abrogate the binding of the oligo and prevent mRNA

capture, confirming the observation we reported previously [3].

The miR-CATCH technique was originally coupled with qRT-PCR or miRNA profiling

[3]. Here we demonstrated that the captured miRNAs are amenable to downstream NGS, a

more unbiased approach to identify cognate miRNAs. Met-5A cells were used as a model in

this approach, since their low levels of MSLN mRNA and protein [11] could be ascribed to

high presence of targeting miRNAs detectable with NGS. According to our NGS data, the iso-

lation of miR-21-5p and, to a lower extent, of miR-100-5p was significantly higher in MSLN-

vs scrambled- captured samples. Experimental validation in a panel of four non-malignant

and malignant cell lines using miRNA mimics confirmed miR-21-5p, but not miR-100-5p, as

a regulator of MSLN expression. The lack of effect of miR-100-5p could be partially explained

by the fact that it is predicted to bind with a stronger affinity to the off-target CEP170B rather

than to MSLN mRNA, as shown by our prediction analysis performed with PITA algorithm.

Thus, the possible false positive result for miR-100-5p in NGS may have been due to the pres-

ence of CEP170B rather than MSLN in the MSLN-captured samples.

Further experimental approaches were undertaken in Mero-14 cells in order to validate the

role of miR-21-5p as regulator of MSLN expression. The knock down of endogenous miR-21-

5p showed a significant increase of MSLN protein levels, further confirming the proposed reg-

ulatory mechanism. Since the main feature of the miR-CATCH is the ability to detect physi-

cally bound miRNAs to the target mRNA, the direct interaction between miR-21-5p and

MSLN coding sequence was tested with luciferase assay. Our data showed that miR-21-5p

directly regulated MSLN expression via inhibition of luciferase signal from a WT_pmir_MSLN

reporter, and that the predicted binding site starting at residue 1237 was indeed functional, as

demonstrated by the ineffectiveness of miR-21-5p in decreasing luciferase levels in MUT_p-

mir_MSLN. These data strengthened the evidence that miR-21-5p has been effectively pulled-

down through a direct interaction with MSLN mRNA with the miR-CATCH method and that

it directly regulates MSLN.

Although our major aim was to identify miRNAs regulating MSLN, we also tested the

hypothesis that the depletion of MSLN via miR-21-5p transfection could have functional effect

on cell proliferation and colony formation ability, as it has been shown previously with siRNA

approaches [10,11]. MPM cell lines treated with miR-21-5p mimic showed lower proliferative

abilities compared to cells treated with negative controls, both in a classical proliferation assay

(SRB) and in the colony formation assay. This could be due to transient depletion of MSLN,

which led to a reduction of the cellular growth as already reported by other authors [10,11].

The effects observed on cell proliferation in SRB were modest, but significant. This likely

reflects the role of miRNAs as fine-tuners of gene expression. In the clonogenic assay, the

decrease of proliferative capabilities was more evident. This could be partially ascribed to dif-

ferent doses of miRNA mimic used in the two assay, but other mechanisms occurring in such

a long-term experiment could not be ruled out. For instance, Cioce and collaborators noticed

that cell senescence was involved in the clonogenic assay of MPM cell line transfected with

miR-145 mimic [28]. The role of miR-21-5p in senescence was beyond the scope of the present

study but this and other long-term effects of miR-21-5p could contribute to the more evident

response in the clonogenic than in the SRB assay.

Although it has been extensively studied in cancer [29,30,31], miR-21-5p has been poorly

investigated in MPM. A role of miR-21-5p in MPM carcinogenesis was reported recently

[32,33,34], although other researchers did not observe any differential expression of miR-21-

5p between cases and controls [35,36], thus the function of miR-21-5p within MPM biology

remains controversial. Whether miR-21-5p expression is altered in other in vitro models of

MPM or in the mesothelium of patients with MPM in vivo is unknown and beyond the scope
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of the current study. The exact role of miR-21-5p in cancer development and progression is cur-

rently unclear and studies on pleural carcinogenesis are lacking. In lung cancer, high expression

of miR-21 is associated with poor prognosis [37]. Computational methods suggested that miR-

21-5p could play an important role in the development and progression of lung cancer through

JAK/STAT, MAPK, Wnt, and PPAR signalling pathways [38]. A number of targets for miR-21-

5p have been experimentally validated, including, among the others, PTEN, Bcl2, JAG1, hMSH2,

PDCD4 [39,40,41,42,43]. Here miR-21-5p appears to act as a tumour suppressor miRNA since it

negatively regulated an oncogene (MSLN) [10,11], and this could be explained considering that

miRNAs could play different roles depending on the pattern of their target mRNAs expressed in

that specific cancer type or tissue.

Conclusions

In conclusion, this work shows the ability of the miR-CATCH method to generate suitable

samples for high-throughput analysis by Next Generation Sequencing. Followed by further

experimental validation of miRNA::mRNA interaction, this technique identified miR-21-5p as

a regulator of MSLN mRNA that may have role in its increased expression and in the prolifera-

tion of tumour cells in MPM.

Supporting Information

S1 Fig. Transfection efficiency in non-MPM and MPM cell lines. MiR-21-5p, miR-100-5p

or negative control miRNA mimic were transfected in Met-5A, Mero-14, MSTO-211H and

H2052 cells, and the transfection efficiency was determined by qRT-PCR. Negative control-

treated samples are reported as reference and set at 1. The columns represent mean values, the

bars show standard error of the mean (SEM). (A) Relative miR-21-5p levels were significantly

higher in the miR-21-5p mimic than negative control transfected cells (the fold change was

3.02±0.46, 8.12±0.21, 14.15±8.71, 34.65±3.95 for Met-5A, Mero-14, MSTO-211H and H2052,

respectively); (B) Relative miR-100-5p levels were significantly higher in the miR-100-5p

mimic than negative control transfected cells (the fold change was 3.91±0.19, 14.05±0.70,

53.37±4.98, 4.37±0.30 for Met-5A, Mero-14, MSTO-211H and H2052, respectively).
�P < 0.05, �� P< 0.01, ���P< 0.001 compared to the negative control-transfected group.

(TIF)

S2 Fig. Effects of miR-21-5p over-expression on MSLN protein levels in Mero-14 (A) and

MSTO-211H (B) at 72, 96 and 120 hours after transfection. Negative control-treated sam-

ples are reported as reference and set at 1 (or 100%). The dividing black line represents the

splice junction between spliced images coming from different blots. Reduction of MSLN pro-

tein levels was evident at all the time points for both cell lines. In Mero-14 cells, MSLN protein

levels significantly decreased to 69%, 22% and 80% of that obtained following transfection

with the negative control (set to 100%) at 72h, 96h or 120h post-transfection, respectively. In

MSTO-211H cells, the levels were reduced to 78%, 71% and 47% at 72h, 96h or 120h post-

transfection, respectively.

(TIF)

S1 Table. Features of real-time PCR primers employed within the miR-CATCH pipeline.

For each primer pair, the sequence, the amplicon length in bp, the concentration in PCR mix

and the efficiency calculated with serial dilution of cDNA from untreated Mero-14 cells are

given. Data for KRT1 are not available since this gene was not expressed in this cell line.

(DOCX)
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S2 Table. Primers names and sequences employed to clone WT_pmir_MSLN and mutate

it into MUT_pmir_MSLN. According to the manufacturer’s instructions for the CloneEZ

PCR cloning kit, cloning primers covered a 15-base sequence add-on at the 5’-end (capital let-

ters, underlined), an optional restriction site in the middle (capital letter, in bold), and the

insert-specific sequence at the 3’-end. MSLN_clon_F and MSLN_clon_R primers were

designed to amplify the coding region from 1051 bp to 1273 bp of MSLN mRNA (RefSeq

NM_005823.5). For the mutagenic primers, the mutant nucleotides are reported in capital let-

ter, bold. The sequencing primers pmir_seq_F and pmir_seq_R were designed on the plasmid

sequence and they were employed for post-cloning screening and sequencing check.

(DOCX)

S3 Table. Raw miRNA reads counts for each biological replicate employed in the NGS

pipeline. Raw reads counts for each mature miRNA are reported for each sample. Scr = sam-

ples produced after capture with scrambled oligo; msln = samples produced after capture with

MSLN_3 oligo. 1-2-3 are the biological replicates.

(XLSX)

S4 Table. Differentially captured miRNAs according to DESeq2 analysis following NGS.

Expression analyses results according to DESeq2 analysis in Met-5A samples when MSLN-

captures were compared to scrambled-captures. MiRNAs are ordered according to their

adjusted p-value.

(XLSX)

Acknowledgments

The authors thank Roberto Favoni (IRCCS A.O.U. San Martino-IST, Laboratory of Gene

Transfer) and Warren Thomas (Department of Molecular Medicine, RCSI) for the donation

of the mesothelioma cell lines. The authors thank also Dr Ombretta Melaiu (Department of

Paediatric Haematology/Oncology, Ospedale Pediatrico Bambino Gesù), Dr Mattia Cremona
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