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Abstract

Cytolysin, a two-component lanthipeptide comprising cytolysin S (CylLS″) and cytolysin L 

(CylLL″), is the only family member to exhibit lytic activity against mammalian cells, in addition 

to synergistic antimicrobial activity. A subset of the thioether crosslinks of CylLS″ and CylLL″ 
have LL-stereochemistry instead of the canonical DL-stereochemistry in all previously 

characterized lanthipeptides. The synthesis of a CylLS″ variant with DL stereochemistry is 

reported. Its antimicrobial activity was found to be decreased but not its lytic activity against red 

blood cells. Hence, the unusual LL-stereochemistry is not responsible for the lytic activity.

Graphical Abstract

Lanthipeptides belong to the class of ribosomally synthesized and post-translationally 

modified peptides (RiPPs) and bear lanthionine (Lan) and methyllanthionine (MeLan) 

structures as well as dehydroalanine (Dha) and dehydrobutyrine (Dhb) residues (Figure 1).1 

Two-component lanthipeptides are an interesting subclass of lanthipeptides, in which two 

peptides synergistically act to provide antibacterial activity.2 Cytolysin is a two component 

lanthipeptide and comprises cytolysin S (CylLS″) and cytolysin L (CylLL″).3 In addition to 

exhibiting synergistic antimicrobial activity, cytolysin is the first and thus far only 

lanthipeptide shown to potently lyse mammalian cells.4 Cytolysin is responsible for the 
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enhancement of enterococcal virulence and is produced by many clinical isolates of 

Enterococcus faecalis.5 Compared to most lanthipeptides, cytolysin exhibits unusual 

stereochemistry. This class of molecules generally contain Lan and MeLan with DL-

stereochemistry, i.e. (2S,6R)-lanthionine and (2S,3S,6R)-methyllanthionine.6 In the case of 

cytolysin, the B ring of CylLS″ and the C ring of CylLL″ contain Lan with the canonical 

stereochemistry, but LL-stereochemistry (i.e. (2R,6R)-Lan and (2R,3R,6R)-MeLan) was 

observed for the A ring of CylLS″ and the A and B rings of CylLL″ (Figure 1).7 These 

observations suggested a possible correlation between the unique stereochemistry and the 

unusual lytic activity against mammalian cells. To test this hypothesis, we report the total 

synthesis of a diastereomer of cytolysin to investigate the effect of stereochemistry of the 

thioether crosslinks on the biological activity.

Synthesis of just five lanthipeptides or their variants has been reported thus far – nisin, 

lactosin S, both components of lacticin 3147, epilancin 15x, and lacticin 481.8 Four of these 

have been completed on solid phase utilizing an orthogonal protection scheme that allows on 

demand cyclization (Figure 2A). Cytolysin synthesis poses several challenges not present in 

these previously synthesized compounds. Firstly, the sequences of CylLS″ and CylLL″ are 

extremely hydrophobic, with only a single charged residue in each peptide (Figure 1). 

Hydrophobic peptides are prone to incomplete coupling during solid phase peptide synthesis 

(SPPS) because of inaccessibility of the reagents to the N-terminus of the elongating peptide 

chain.9 Secondly, the structures of cytolysins contain a dehydro amino acid in the second 

position within the thioether rings. Dehydro amino acids cannot be incorporated via the 

usual elongation methods of Fmoc SPPS because the enamine liberated upon Fmoc 

deprotection is very unreactive and would tautomerize to the imine followed by hydrolysis 

to the ketone, preventing further peptide coupling. Therefore, the traditional SPPS routes to 

lanthipeptides rely on preparation of short oligopeptides containing pre-installed dehydro 

amino acids (e.g. Figure 2B).8b–e Unfortunately, this strategy does not work with a dehydro 

amino acid incorporated at the second position of a Lan/MeLan-containing ring because the 

dehydro amino acid is the point of cyclization (Figure 2C). Synthesis of such a structure has 

not been accomplished thus far. We describe here the synthesis of cytolysin S as well as a 

diastereomer by introduction of the dehydro amino acid after cyclization.

To minimize the problem of the high hydrophobicity of the cytolysins, we chose CylLS″ 
rather than CylLL″, as our synthetic target. In addition, the dehydrobutyrine in ring A of 

CylLS″ was substituted with a dehydroalanine (CylLS″-Dhb2Dha), which we envisioned 

could be accessed from a Cys. We first verified that this change would not alter the 

bioactivity of the peptide by preparing CylLS″-Dhb2Dha biosynthetically via co-expression 

of the precursor peptide CylLS-T2S with the lanthipeptide synthetase CylM in Escherichia 
coli using previously described methodology.7 Characterization of the product by tandem 

mass spectrometry and GC/MS analysis of derivatized amino acids after acid hydrolysis of 

CylLS″-Dhb2Dha demonstrated an LL-MeLan A-ring and a DL-Lan B-ring, identical to 

native CylLS″ (Figure S1).7 Purified CylLS″-Dhb2Dha was found to have very similar 

antimicrobial activity as that of native CylLS″ (Figure S2), thus making it a good target for 

synthesis. Hence, we set out to make both native CylLS″-Dhb2Dha and its diastereomer 
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with a DL-MeLan A-ring instead of a LL-MeLan. The desired stereochemistry of the 

thioether crosslinks was preset in building blocks 3 and 4 (Figure 3).8e,11

To aid in the synthesis of the hydrophobic peptide, polyethylene glycol (PEG) based 

ChemMatrix resin was employed instead of traditionally used polystyrene (PS) resin. 

ChemMatrix resin offers improved chemical stability, and owing to its polar nature, this 

resin does not interact as much with the side-chain protected peptides,12 which we felt was 

important given the hydrophobic nature of CylLS″. Additionally, ChemMatrix resin has 

enhanced swelling properties in a wide range of solvents, including solvents that minimize 

peptide self-association on the resin.12a A trityl group-containing linker to the resin was 

employed to prevent racemization of the C-terminal Lan residue. The bulky linker was also 

envisioned to improve the stability of the C-terminal Lan building block as C-terminal 

protected Cys residues often suffer from base-catalyzed elimination and subsequent β-

piperidyl-alanine formation.13 The entire peptide was successfully synthesized on-resin. In 

place of the dehydroalanine residue in the second position within the MeLan A-ring of 

CylLS″-Dhb2Dha, a cysteine was incorporated as a convenient precursor to Dha.14 After 

cleavage of the peptide from the resin and purification, the peptide was reacted with 2,5-

dibromohexanediamide, resulting in formation of a cyclic sulfonium intermediate at Cys2. 

As reported by Davis and co-workers,14a under basic conditions, elimination generates the 

desired dehydroalanine (Scheme 1, inset). The purity of the final compound 11 was 

confirmed by analytical high performance liquid chromatography and mass spectrometry 

(MS) (Figure S3). The desired stereochemistry of the thioether crosslinks in compound 11 
was confirmed by gas chromatography coupled to MS analysis employing a chiral stationary 

phase (Figure S4). For direct comparison in bioactivity assays, CylLS″-Dhb2Dha with the 

natural LL-MeLan A-ring and DL-Lan B-ring (compound 12) was also synthesized (Scheme 

1). This synthetic compound was expected to be identical to the biosynthetically accessed 

CylLS″-Dhb2Dha and thus was envisioned as a good control compound to assess the 

success of the synthetic procedure. For the synthesis of compound 12, similar synthetic steps 

were employed using synthetic building blocks 3, 5 and 6.

Antimicrobial activity was tested in combination with WT-CylLL″ against Lactococcus 
lactis HP and L. lactis CNRZ 481. None of the peptides displayed antimicrobial activity 

without its partner, and all CylLS″ peptides were active in combination with CylLL″ (Table 

1). Isobolograms demonstrated that WT CylLL″ and CylLS″ act in 1:1 stoichiometry with a 

minimal inhibitory concentration (MIC) of 0.05 μM for each component (Figure 4; Table 1). 

Expressed CylLS″-Dhb2Dha also acted with 1:1 stoichiometry but with a two-fold decrease 

in MIC (0.1 μM). Synthetic 12 exhibited identical antimicrobial activity as expressed 

CylLS″-Dhb2Dha, confirming the fidelity of the synthesis (Table 1, Figure S5). Conversely, 

diastereomer 11 exhibited decreased antimicrobial activity (Figure S5) when combined with 

CylLL″, as illustrated by a markedly smaller zone of growth inhibition and an MIC in liquid 

culture that was increased 10-fold (Table 1).

The cytolysin S peptides were also tested in combination with CylLL″ for synergistic 

hemolytic activity against rabbit red blood cells. Both WT-CylLS″ and expressed CylLS″-

Dhb2Dha exhibited very similar hemolytic activity. Surprisingly, 11 with a DL-MeLan A-

ring and DL-Lan B-ring exhibited no decrease of hemolytic activity (Figure S6). This result 
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shows that the influence of stereochemistry is different on the two activities of cytolysin. 

Similar findings were reported for mutants of cytolysin that affected antimicrobial and lytic 

activity differently.15

In summary, it appears that CylLS″ with the LL stereochemistry of the A-ring has evolved 

for optimal complementary with native CylLL″ with respect to antimicrobial activity. In 

CylLS″ with DL-stereochemistry of the A-ring, the synergy with native CylLL″ is clearly 

attenuated. Regarding the hemolytic activity, the stereochemistry of the A-ring of CylLS″ 
does not appear to be important. These findings further reinforce previous conclusions that 

these two activities have different structure-activity relationships.15 They are also consistent 

with the proposal that cytolysin evolved pre-dominantly for its antimicrobial activity since 

E. faecalis is mostly a commensal organism.16

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of cytolysin S and L. Lan and Dha (both de-rived from Ser) are shown in red, 

MeLan and Dhb (both derived from Thr) are in blue.
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Figure 2. 
(A) Orthogonal protecting groups on a (methyl)lanthionine building block (DL-MeLan here) 

allow elongation and subsequent cyclization of a peptide. For alternative protecting group 

schemes, see 10 (B) Introduction of short oligopeptides containing dehydro amino acids 

(Dhx). (C) If the amine coupling partner for cyclization is a dehydro amino acid (Dha here), 

the low reactivity of the enamine promotes hydrolysis to the ketone preventing cyclization.
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Figure 3. 
Building blocks used in SPPS of cytolysin analogues.
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Figure 4. 
Antimicrobial activity assays of WT cytolysin against Lactococcus lactis 481. The 

isobologram demonstrates that the MIC of the combination of CylLL″ and CylLS″ is 

reached at 0.05 μM of each component, suggesting a 1:1 stoichiometry in the active species.
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Scheme 1. 
Synthesis of (A) CylLS″-Dhb2Dha (DL-A ring, DL-B ring), and (B) CylLS″-Dhb2Dha 

(LL-A ring, DL-B ring).
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Table 1

Minimal inhibitory concentrations of cytolysin and derivatives against L. lactis 481. n.a. not applicable

entry individual MIC (μM) combined with CylLL″ MIC (μM)

CylLL″ >50 n.a.

CylLS″ >50 0.05

11 >50 1.0

synthetic 12 >50 0.1

biosynthetic 12 >50 0.1
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