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Summary

Here we report proteomic analyses of 129 human cortical tissues to define changes associated with 

asymptomatic and symptomatic stages of Alzheimer’s Disease (AD). Network analysis revealed 

16 modules of co-expressed proteins, 10 of which correlated with AD phenotypes. A subset of 

modules overlapped with RNA co-expression networks, including those associated with neurons 

and astroglial cell types, showing altered expression in AD, even in asymptomatic stages. Overlap 

of RNA and protein networks was otherwise modest, with many modules specific to the proteome, 
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including those linked to microtubule function and inflammation. Proteomic modules were 

validated in an independent cohort, demonstrating some module expression changes unique to AD 

and several observed in other neurodegenerative diseases. AD genetic risk loci were concentrated 

in glial-related modules in the proteome and transcriptome consistent with their causal role in AD. 

This multi-network analysis reveals protein- and disease-specific pathways involved in the 

etiology, initiation, and progression of AD.

eTOC Blurb

Using label-free ‘single shot’ proteomics, we define changes in the proteome of human brain 

linked to preclinical and clinical stages of Alzheimer’s Disease (AD). These data reveal modules 

of co-expressed proteins that correlate with AD phenotypes, are distinct from modules identified 

from gene co-expression data, and highlight non-neuronal drivers of disease.

Introduction

The neuropathological changes of Alzheimer’s disease (AD) begin two decades or more 

before signs of cognitive impairment (Sperling et al., 2011). Currently, our understanding of 

the pathological events and the molecular transition from the asymptomatic phase 

(AsymAD) (Driscoll et al., 2006) to clinically evident dementia is limited. Although 

amyloid-beta (Aβ) deposition in the brain is hypothesized to be a central force driving AD 

pathogenesis (Selkoe and Hardy, 2016), individuals remain cognitively normal for many 

years despite accumulating aggregates of Aβ plaques and tau neurofibrillary tangles 

(Sperling et al., 2011). Large-scale analysis of molecular alterations in human brain provides 

an unbiased, data-driven approach to identify the many complicated processes involved in 

AD pathogenesis and to prioritize their links to relevant clinical and neuropathological traits, 

including changes in the asymptomatic phase of disease.

Systems-level analyses of large data sets have emerged as essential tools for identifying key 

molecular pathways and potential new drug targets. Algorithms such as weighted gene co-

expression network analysis (WGCNA) classify the transcriptome into biologically 

meaningful modules of co-expressed genes linked to specific cell types, organelles, and 

biological pathways (Miller et al., 2008; Oldham, 2014). Co-expression modules also link to 

disease processes in which the most centrally connected genes are highly enriched for key 

drivers that play prominent roles in disease pathogenesis (Cerami et al., 2010; Huan et al., 

2013; Tran et al., 2011). However, there are marked spatial, temporal, and quantitative 

differences between mRNA and protein expression (Abreu et al., 2009). In human tissues 

only about one-third of mRNA-protein pairs show significant correlation in expression 

levels, with marked variation depending on their functions (Zhang et al., 2014a). This 

relationship is not well understood in complex tissues such as brain; mRNA-protein 

correlation coefficients reach no higher than 0.47 even in acutely isolated brain cell types 

(Sharma et al., 2015). While transcriptome networks in AD brain have been examined 

(Miller et al., 2008; Miller et al., 2013; Zhang et al., 2013), network changes in the AD brain 

proteome, including those associated with early asymptomatic stages of disease, have not 

been explored.

Seyfried et al. Page 2

Cell Syst. Author manuscript; available in PMC 2018 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this study, we coupled label-free mass spectrometry based proteomics and systems 

biology to define networks of highly correlated proteins associated with neuropathology and 

cognitive decline in the brains of healthy controls, AsymAD, and AD. Similar to RNA-based 

networks, the brain proteome is organized in biologically meaningful networks related to 

distinct functions and cell types (i.e., neurons, oligodendrocyte, astrocyte, and microglia). 

Downregulation of modules associated with neurons and synapses and up-regulation of 

astroglial modules were strongly associated with amyloid plaque and neurofibrillary tangle 

pathologies, consistent with RNA-based networks previously reported for late stage AD. 

However, comparison of RNA and protein networks shows that more than half of the protein 

co-expression modules are not well represented at the RNA level. These include modules 

associated with microtubule function, RNA/DNA binding, post-translational modification, 

and inflammation that were also strongly associated with AD phenotypes. Moreover, several 

of these were linked to AsymAD, progressively changing with cognitive status, and disease 

specific (i.e., not altered in other neurodegenerative diseases). Finally, common AD risk loci, 

identified by the IGAP consortium genome wide association study (GWAS) were 

concentrated in glial-related modules in both the proteome and transcriptome consistent with 

their causal role in AD. Our findings highlight the use of large-scale proteomics and 

integrated systems biology to unravel the molecular etiology promoting initiation and 

progression of AD.

Results

Proteomic analysis of human brain tissues

We collected post-mortem brain tissue from 50 individuals representing 15 controls, 15 

AsymAD and 20 AD cases from the Baltimore Longitudinal Study of Aging (BLSA) 

(O’Brien et al., 2009). For 47 cases, we analyzed tissue from both the dorsolateral prefrontal 

cortex (FC, Brodmann Area 9) and precuneus (PC, Brodmann Area 7). Both regions are 

affected in AD, and PC is a site of early amyloid deposition and glucose hypometabolism 

(Rabinovici et al., 2010). All case metadata including neuropathological criteria for amyloid 

(CERAD) and tau pathology (Braak) are provided in Table S1.

Samples were uniformly homogenized and analyzed by SDS-PAGE prior to proteolytic 

digestion with trypsin for subsequent proteomic analysis (Fig. S1A). To account for 

technical variation, each peptide digest was spiked with an isotopically labeled internal 

reference standard before analysis by liquid chromatography coupled to tandem mass 

spectrometry (LC-MS/MS) on an Orbitrap Q-Exactive mass spectrometer (Fig. S1B–C). 

Protein abundance was determined by peptide ion-intensity measurements across LC-MS 

runs using the label-free quantification (LFQ) algorithm in MaxQuant (Cox et al., 2014) 

(Fig. S1D). In total, 64,938 peptides mapping to 5,130 protein groups were identified. One 

limitation of “shotgun” label free quantitative proteomics is missing data (i.e. missing 

protein identifications or abundance values), especially for low abundance proteins 

(Karpievitch et al., 2012). Thus, only those proteins quantified in at least 90% of samples for 

each brain region were included in the analysis, resulting in the final quantification of 2,735 

protein groups mapping to 2,678 unique gene symbols across the 97 samples (n=47 FC and 

n=50 PC) (Table S2). To quantify Aβ levels in the brain samples, the ion intensities for two 
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amyloid precursor protein (APP) peptides, corresponding to residues 6–16 and residues 17–

28 of the Aβ sequence, were summed for each individual case (Fig. S2). It is important to 

note that although these two peptides are derived from APP, they do not discriminate 

between the full-length APP and cleaved Aβ fragments. However, APP peptides mapping 

outside of the Aβ sequence did not show a significant increase with pathology or clinical 

symptoms, whereas the two peptides mapping to Aβ regions strongly correlate with CERAD 

and disease status across brain regions (Fig. 1A–C and Fig. S2). Thus, these two APP 

peptides serve as measures of Aβ levels in brain. Based on these findings, the LFQ 

intensities for these two Aβ peptides were calculated in each individual sample and 

manually included as a separate protein measurement (assigned symbol ABETA) for 

subsequent differential and co-expression analyses.

Classification of AD and AsymAD cases by proteomic measures

A total of 362 unique proteins in both brain regions (FC and PC) showed significantly 

altered levels of expression (ANOVA followed by Tukey’s comparison post-hoc test, p 

<0.01) across three comparisons: (i) controls vs. AsymAD, (ii) controls vs. AD, and (iii) 

AsymAD vs. AD (Fig. 1D). The number of significant proteins compared to controls was 

proportional to disease severity in a cross-sectional analysis of AsymAD (n=63), and AD 

(n=280) indicating that differences in the proteome correlate with neuropathological burden 

and cognitive dysfunction. The differential proteome was consistently more complex (i.e., 

greater n of significantly altered proteins) in the FC compared to the PC (Supplemental 

Figure S3).

To determine whether differentially expressed proteins could be used as classifiers of disease 

status, we performed a supervised cluster analysis using Cluster 3.0 across control, 

AsymAD, and AD cases (Fig. 1E). We restricted the analysis to those proteins significantly 

altered in at least two of the aforementioned comparisons across both FC and PC (n=123; 

Fig. S3A and Table S2). As expected, the resulting dendrogram segregated the majority of 

control (green) and AD (blue) cases. In addition, AsymAD (red) cases, with rare exceptions, 

clustered between the control and AD cases. Thus, these select differentially expressed 

proteins provide a molecular signature distinguishing control, AsymAD and AD brains.

Gene ontology (GO) enrichment analysis of classifier proteins that are significantly 

decreased (n=67) in AD indicated overrepresentation of ‘protein folding capacity’ and 

‘microtubule cytoskeleton’ proteins, whereas those related to ‘response to protein stimulus’ 

and ‘response to biotic stimulus’, were over-represented among proteins increased in AD 

(n=55) (Fig. S3). Several proteins displayed progressive increases or decreases in abundance 

across control, AsymAD, and AD cases (Fig. 1F, and Table S2). These included progressive 

increases in chondroitin sulfate proteoglycan (CSPG), aggrecan (ACAN), and CSPG binding 

protein pleitrophin (PTN) in AsymAD and AD. In contrast, proteins involved in synaptic 

function and synaptogenesis, including SYNPO1, VGF, and the kinases CAMKK2 and 

CAMK4 displayed a progressive decrease across AsymAD and AD. Several proteins were 

altered exclusively in the symptomatic phase of disease, including increases in clusterin 

(CLU) and peptidase D (PEPD), and decreases in proteins involved in GTPase signaling 

including RHOB and G protein subunit alpha i protein (GNAI1). Some changes in the 
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proteome were of maximum magnitude and significance in AsymAD cases, including 

decreases in the synaptic protein HOMER1 and guanine deamidase GDA, and increases in 

lysosomal marker LAMP1 and G-rich RNA binding protein GRSF1 (Fig. 1F). Of note, these 

latter 3 proteins are in a brain tissue-specific genetic interaction neighborhood (Greene et al., 

2015) that is highly significantly (FDR-corrected p<1×10−7) enriched for the lysosome 

KEGG pathway. Endosomal-lysosomal dysfunction is strongly implicated in AD (Hu et al., 

2015). Considering other proteins significantly changed in AsymAD, like TMPO and 

HNRNPF (Table S2), the genetic interaction network landscape had edges that were 

consistently supported by changes found in a microarray study which identified transcripts 

altered downstream of an age-associated overexpressed circulating and brain-resident 

microRNA, mIR34-a (Chang et al., 2007; Li et al., 2011). Overall, these results highlight the 

potential utility of differentially expressed proteins for classifying AD and identifying 

disease-related pathways including those altered in the preclinical stage of AD.

Protein co-expression network analysis of AD brain

Co-expression analysis of the brain transcriptome effectively organizes RNA into networks 

related to molecular pathways, organelles, and cell types impacted by AD (Miller et al., 

2008; Miller et al., 2013). Correlation between RNA and protein in any given brain cell type 

is generally weak (Sharma et al., 2015), and it is unclear whether similar networks manifest 

at the protein level in AD brain. Thus, we applied WGCNA (Langfelder and Horvath, 2008) 

to define trends in protein co-expression across FC and PC in BLSA brains (n=97 samples). 

We corrected for age, sex, and PMI-mediated covariance of protein measurements, and then 

normalized baseline protein expression differences between regions, setting a small 

minimum WGCNA module size of 17 proteins with a low propensity to merge modules 

(merge height of 0.07). These parameters identified 16 modules of strongly co-expressed 

groups of proteins, and ranked by size, ranging from BLSA M1, BM-1 (largest, 396 

proteins) to BM-16 (smallest, 28 proteins). Reducing the minimal module size in WGCNA 

for proteomic datasets facilitates module identification, although final modules were 

somewhat larger owing to final module member reassignment by eigenprotein correlation p 

value (reassignThresh parameter was set to p=0.05 instead of the default p=10−6). It should 

also be noted that a label-free protein expression matrix differs from a microarray or even 

RNA-Seq expression matrix because of the missing quantitative data for some proteins in a 

sample due to the stochastic nature of LC-MS/MS. Therefore, choices for the threshold of 

missing data allowed into the matrix, and also for imputation of those values, if any, 

becomes an important consideration for protein co-expression analysis. Networks were also 

analyzed for prefrontal and precuneus cortical regions, and because they showed significant 

overlap (data not shown), the expression data were combined as described above to 

maximize power.

Many of these modules were significantly enriched for brain-specific gene ontologies as 

well as established cellular functions and/or organelles (Fig. 2A and Table S3). The three 

largest modules were associated with categories of ‘synaptic transmission’ (B-M1), ‘myelin 

sheath’ (B-M2), and ‘mitochondrion’ (B-M3), whereas B-M5 represented ‘extracellular 

matrix’ and B-M6, ‘inflammatory response’. Other modules included those with GO terms 

linked to synaptic membrane and dendrites (B-M4), protein folding (B-M7 and B-M11), 
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oxidoreductase activity (B-M9), DNA/RNA binding (B-M10), microtubules (B-M12), 

regulation of apoptosis (B-M13), hydrolase activity (B-M14), regulation of microtubule 

polymerization (B-M15) and ribosome (B-M16).

Transcript-based network analyses have shown that modules represent major sources of 

biological variance across the cortex and that some modules are enriched in genes expressed 

by different cell types (Oldham et al., 2008a). To determine if a similar relationship exists 

with protein-based networks, we evaluated the overlap of proteins in each module with brain 

cell-type-specific proteomes (Fig. 2B and Table S4) generated previously from acutely 

isolated neurons, oligodendrocytes, astrocytes, and microglia from mouse brain (Sharma et 

al., 2015). The largest module, B-M1, was enriched with neuron-specific proteins, including 

neuritic (CAMK2A and CAMKK2) and synaptic (SYNGAP1, RTN1, L1CAM) proteins. 

The B-M4 module was also enriched for neuronal protein markers including GBRA1, 

GBRA2, OLFM1, and NRXN3, associated with ‘synaptic membrane and dendrites’. 

Oligodendrocyte-specific proteins were over-represented as hub proteins in B-M2 related to 

myelination, including CNP, MAG, MOG, PLP1, and MBP gene products. Astrocyte 

proteins were predominantly enriched in B-M6 (e.g. GFAP, PBXIP1, and GJA1) and B-M9 

(e.g. SLCA11, ALDOC, and GCSH). Finally, microglial protein markers were over-

represented in the B-M5 module (e.g. ANXA1, ANXA4, CTSZ and CLIC), B-M6 (e.g. 

MSN, LCP1, LSP1, and C1QC) and, to a lesser extent, B-M2 (e.g. CRYL1, NPC2, and 

CNDP2). Thus, as seen in transcriptome level network analyses (Miller et al., 2008; Oldham 

et al., 2008a), certain modules of co-expressed proteins enrich with markers of specific brain 

cell types, and likely reflect changes in the abundance, activation, and/or changing 

phenotype(s) of these cells in AD.

Correlation of protein networks with AD neuropathology and cognitive status

We assessed the module correlations to the hallmark neuropathological traits of amyloid 

plaques (CERAD) and neurofibrillary tangles (Braak) across control, AsymAD, and AD 

cases to identify protein networks associated with both neuropathological features and 

clinical symptoms (Fig. 3A). Five BLSA modules had positive correlation with CERAD 

and/or Braak, and included those associated with ‘inflammatory response’ (B-M6), 

‘ribonucleoprotein function’ (B-M8), and ‘apoptosis’ (B-M13). The eigenproteins for these 

modules also increased between control and AsymAD and between AsymAD and AD (Fig. 

3B), indicating that protein expression changes begin early in the asymptomatic phase of 

disease. In WGCNA, a module eigengene, or in our case, an eigenprotein, is defined as the 

first principal component of a given module and serves as a representative, weighted 

expression profile for the module. Module B-M15 with ontologies associated with 

‘microtubule regulation’ showed significant correlation exclusively with CERAD, whereas 

B-M5 harbored extracellular matrix proteins enriched in astrocyte/microglial markers, and 

showed correlation exclusively with Braak stages (Fig. 3A and B).

Several module expression profiles were significantly decreased in AD and negatively 

correlated with AD neuropathology (Fig. 3A and C). Namely, B-M1 and B-M4, both 

enriched with neuronal markers (Fig. 2B) and associated with related ontologies, were 

negatively correlated with CERAD and Braak scores, consistent with loss of synaptic 
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proteins in AD (Terry et al., 1991) and observed in RNA co-expression modules (Miller et 

al., 2008). Module B-M3, enriched with mitochondrial proteins, was also decreased across 

AD cases, consistent with a loss of mitochondrial function and hypometabolic phenotype 

observed in patients with AD (Alexander et al., 2002).

Two modules enriched with tubulin binding proteins, B-M12 and B-M14, were negatively 

correlated with CERAD score and Braak stage, consistent with a known loss of microtubule 

function with tau aggregation in AD (Feinstein and Wilson, 2005). Notably, B-M14, the 

module with the strongest negative correlation to Braak (cor=−0.57, p=8e–9) and CERAD 

(cor=−0.47, p=3e–6), was enriched with proteins associated with ‘hydrolase activity’, 

represented by the hub protein PPP1R7, a subunit of protein phosphatase 1, and 

deubiquitinase OTUB1 as well as several microtubule proteins (DNM3, RTN4, EPB41L3, 

TUBB3) involved in neurite formation and/or transport. All three isoforms of tau (MAPT) 

correlated negatively with these phosphatase-enriched modules (Table S2), consistent with 

the role of tau hyperphosphorylation in neurofibrillary tangle pathology.

Since little is known about the preclinical molecular changes of AD, one goal of this study 

was to examine AsymAD cases to identify protein networks affected early in AD 

progression. Decreased expression of the B-M1 and B-M4 modules in AsymAD indicates 

loss of synaptic proteins prior to the onset of cognitive impairment. B-M8 was particularly 

elevated among AsymAD and AD samples, implicating perturbations in RNA metabolism. 

We and others have previously identified RNA splicing deficits in AD brain which could 

have profound impact on transcription of many genes, including tau, APP, and presenilins 

(Bai et al., 2013; Tollervey et al., 2011). The correlation of module B-M8 with both 

AsymAD and AD suggests that changes in RNA metabolism occur in preclinical stages of 

disease. B-M6, linked to ‘inflammatory response’, is also increased in AsymAD, which may 

reflect phenotypic activation and/or proliferation of astrocytes and microglia prior to 

cognitive decline. Of note, B-M13 was suppressed and more tightly correlated across 

AsymAD samples compared to control samples (Fig. 3B). Given that this module increases 

in AD compared to AsymAD, proteins within this module may reflect a transient, concerted 

downregulation of a protein network prior to upregulation with symptom onset—potentially 

implicating B-M13 as important for cognitive decline. Key hub proteins in B-M13 included 

MAPK1 and MAPK3, stress-activated kinases previously observed as increased in AD 

transcriptome studies of hippocampus (Miller et al., 2013). Module B-M5, enriched with 

microglia/astrocyte markers, increased only in the symptomatic phase of AD, suggesting 

that neuroinflammation proteins in this module may be important mediators of cognitive 

decline or disease progression. Thus, co-expression analysis effectively organizes the brain 

proteome into protein modules that are strongly linked to neuropathological features of AD 

and presence or absence of clinical symptoms.

Validation of protein expression changes in an independent cohort of brain tissues

To assess the reproducibility of our findings in the BLSA cases, and the specificity of the 

changes for AD versus other neurodegenerative diseases, we performed a second proteomic 

analysis of brain homogenates prepared from the dorsolateral prefrontal cortex of clinically 

and pathologically characterized control, AD, Parkinson’s Disease (PD), and amyotrophic 
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lateral sclerosis (ALS) cases (n=8 per group; Table S5) collected from the Emory 

Alzheimer’s Disease Research Center. In total, 53,313 peptides mapping to 4,356 proteins 

groups were identified. As with the BLSA cases, only those proteins quantified in at least 

90% of cases were included in the analysis, resulting in the final use of 2,491 quantified 

protein groups mapping to 2,433 unique gene symbols. A total of 48 differentially expressed 

proteins in the Emory AD cases overlapped with significant protein changes in the BLSA 

AD cases (Fig. S4). Of these, 47 were consistent in their direction of change in the BLSA 

and Emory AD cases. As seen in the BLSA cases, Aβ (ABETA) represented the most 

increased protein in the Emory AD cases, followed by the small heat shock protein, HSP27 

(HSPB1), which is significantly and selectively elevated only in AD compared to control, 

PD, and ALS (Fig. S4). Thus, the combination of Emory and BLSA proteomic datasets 

confirmed the reproducibility of differentially expressed proteins, and allowed us to identify 

those changes that occur during the asymptomatic phase as well as those which are AD-

specific or shared among neurodegenerative diseases.

We next compared the protein co-expression networks between the BLSA and Emory cases. 

A total of 23 modules (E-M1 to E-M23) were generated from the Emory brain proteome 

using WGCNA (see experimental procedures). The increased number of modules in the 

Emory network (Table S6) compared to the BLSA network can be attributed to the 

additional diversity of neurodegenerative disease cases (AD, PD, and ALS). Importantly, 13 

of the 16 modules in the BLSA network (Fig. 4A) were preserved in the Emory network, 

with Zsummary scores above 2 (p<0.05) (Fig. 4A) (Langfelder et al., 2011). Module overlap 

across networks was also assessed using a hypergeometic Fisher’s exact test (Fig. 5A, left 

panel). Modules showed either significant positive correlation (red), anti-correlation (blue), 

or no correlation (white) in protein membership (via matched gene symbols). The vast 

majority of BLSA modules (14/16) showed at least one cognate module within Emory 

proteome, and conversely, 17/23 modules in the Emory brain network overlapped in the 

BLSA proteome. Thus, protein co-expression networks are conserved across both BLSA and 

Emory brains, supporting the robustness of WGCNA in defining consistent patterns of 

protein co-expression representing shared biology (Parikshak et al., 2015).

AD-specific network changes compared to other neurodegenerative diseases

The Emory proteome allowed us to identify networks that were specific to AD as well as 

those shared across AD, PD, and ALS, the latter potentially representing common 

mechanisms of neurodegeneration. For example, four Emory modules (E-M3, E-M4, E-M11 

and E-M21), were each significantly increased in AD compared to PD, ALS, and control 

cases (Fig. 4B and Fig S5). Three of these modules (E-M3, E-M4 and E-M21) showed 

strong overlap with BLSA modules B-M5 and B-M6. Notably, E-M21 included humoral 

immune response proteins C4 and LTA4H, whereas E-M11, showed a high degree of overlap 

with BLSA module B-M13 that associated with apoptosis (Fig. 5A). In contrast, two 

modules, E-M9 and E-M19 in the Emory network (overlapping with B-M13, and B-M5 plus 

B-M6, respectively, in the BLSA network) (Fig. 4B and Fig. 5A) were increased across AD, 

PD, and ALS cases. E-M9 was represented by GO terms including “defense response”, 

whereas E-M19 was represented by “extracellular region” and “immune response,” 

indicating that common mechanisms in neurodegeneration also involve these ontologies. 
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Other Emory proteome modules, especially E-M3, E-M4, and E-M11 (overlapping with B-

M5, B-M6 and B-M13 respectively in the BLSA) were specifically altered in AD (Fig. 4B). 

Representative module gene ontologies for the Emory network are in Table S7.

Decreases in expression in neuronal and synaptic protein enriched modules E-M7 and E-

M15, overlapping with B-M1 in the BLSA proteome, were selectively observed in AD (Fig. 

4C). Two modules enriched with microtubule/cytoskeletal proteins (E-M10 and E-M20), 

with shared biology common to B-M14 in the BLSA proteomic network, were also 

selectively decreased in AD. In contrast, E-M12 and E-M18, related to ontologies associated 

with ‘centrosome’ and ‘cytoskeleton’ were decreased across all neurodegenerative disease 

groups. Thus, loss of certain cytoskeletal proteins appears to be a common mechanism in 

AD, PD, and ALS, whereas AD-specific modules are linked to a loss of a select group of 

microtubule and related proteins represented respectively by hubs MAP1B (E-M10) and 

DNM3 (E-M20) (Gray et al., 2003; Kawakami et al., 2003). Overall, the direction of change 

of overlapping modules in the Emory AD cases compared to non-AD neurodegenerative 

diseases is highly consistent with the network analysis from the BLSA cohort.

Overlap between RNA and protein co-expression networks in AD reveals both shared and 
protein-specific network changes

Well-established differences between expression of mRNA and their respective translated 

proteins prompted us to investigate the degree of conservation in RNA vs protein-based co-

expression networks. We first generated an RNA co-expression network from previously 

reported microarray measurements of 18,204 genes across AD (n=308) and control (n=157) 

cases from dorsolateral prefrontal cortex (Narayanan et al., 2014). A total of 20 distinct 

transcriptome modules were identified (Fig. 5A, right panel; and Table S8) that closely 

correspond to the originally reported network (Narayanan et al., 2014). The relationships of 

these modules to AD vs control status is shown in Fig. 5B with full list of modules gene 

ontologies provided in Table S9. As expected, we identified a series of RNA modules that 

were enriched for specific cell-type markers (Zhang et al., 2014b), including neuronal (T-

M1, T-M9, TM-16), oligodendrocyte (T-M13, T-M17, T-M19), astrocyte (T-M10, T-M7), 

microglia (T-M3, T-M18), and endothelial cells (T-M3, T-M18, TM-10, T-M15). Moreover, 

consistent with our findings in the protein co-expression networks, transcriptome-based 

modules enriched with microglia and astrocytes genes were among the most significantly 

increased in AD, whereas modules enriched with neuronal genes were among the most 

decreased (Fig. 5B and 5C). Protein and transcriptome modules with the highest degree of 

overlap were those associated with shared cell-type markers; these proteins showed strong 

correlation (cor=0.53) with their cognate RNA compared to all overlapping proteins mapped 

in the transcriptome (cor=0.25) (Fig. 5C and D). Despite the presence of shared cell-type 

specific modules in the protein and RNA networks, only 39% (9/23) of the Emory protein 

modules overlapped with RNA modules. This stands in contrast to the 74% (17/23) module 

overlap observed across the Emory and BLSA brain protein networks (Fig. 5A).

A key finding of this study is that several Emory protein modules that significantly increased 

(E-M9, E-M11, and E-M19) or decreased (E-M6, E-M10, E-M12, E-M18, and E-M20) in 

AD, did not overlap with transcriptome modules, consistent with a weak overall RNA-
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protein correlation (cor= 0.22) for these genes and cognate proteins (Fig. 5D, right panel). 

For example, E-M10 and E-M20 (and the highly related B-M14 module in the BLSA 

proteome) do not have a cognate transcriptome module. Thus, despite manifold deeper 

coverage, the transcriptome does not capture all key changes occurring in the AD brain, 

including reduced levels of protein phosphatases and microtubule-binding proteins that are 

enriched in these modules.

Another protein-based module that shows weak overlap in the RNA networks in brain is E-

M19, which harbors several acute phase reactants (e.g. A2M and CP), immunoglobulins 

(IGHG1 and IGHA1) as well as blood fibrinogens involved in coagulation (Mosesson, 

2005). As most of these genes are not generally well expressed in brain (Zhang et al., 

2014b), protein members of this module could potentially be blood-derived and deposited in 

brain following disruption of the blood-brain barrier, which is exacerbated with aging and 

neurodegenerative disease (Ryu and McLarnon, 2009; Zlokovic, 2008). For example, 

insoluble fibrinogen or fibrin can be deposited in brain and drive adaptive immune responses 

as well as microglial inflammation (Ryu et al., 2015). Other notable protein modules that did 

not overlap in the transcriptome included E-M6, which was decreased across all 

neurodegenerative disease (Fig. S5) and enriched with DNA/RNA-associated proteins 

including splicing factors. Discordant RNA-protein correlation between splicing factors have 

previously been reported (Zhang et al., 2014a). Thus, our findings reveal shared modules 

between the transcriptome and proteome networks that mainly associate with cell-type, as 

well as an AD associated group of divergent or ‘protein-only’ networks associated with 

microtubule binding, inflammation, and DNA/RNA binding functions.

AD GWAS candidates are enriched in convergent protein and RNA networks preferentially 
associated with microglia and oligodendrocytes

Integration of genetic risks and gene expression networks has proven fruitful for identifying 

potential causal mechanisms (Voineagu et al., 2011). We used a similar approach to assess 

for enrichment of the proteins encoded by AD risk loci in the BLSA and Emory protein 

networks. Summary data from GWAS of AD, schizophrenia, and autism spectrum disorder 

(ASD) were used as input for MAGMA, which controls for confounders including gene 

length (de Leeuw et al., 2015), to generate a single p-value for each protein coding risk loci 

(Table S10). In the BLSA network, translated protein products from AD candidate genes 

defined with a MAGMA p-value of <0.05 (−log p value >1.3) were over-represented in the 

oligodendrocyte (B-M2) and astrocyte/microglia (B-M5) extracellular matrix protein 

modules. A total of 24 candidate genes mapped to B-M2 including BIN1 and PICALM, 

whereas 11 candidate genes mapped to B-M5 module including APOE, CLU, and FERMT2 

(Fig. 6A and Fig. 2B). Enrichment of candidate genes in B-M5 was not solely driven by the 

presence of APOE, as B-M5 was still significant after omitting APOE from the analysis 

(data not shown). In contrast, candidate genes for ASD and schizophrenia with MAGMA p-

values of <0.05 were significantly over-represented in the B-M1 and B-M4 neuron/synaptic 

modules, which is consistent with a previous finding of enrichment of ASD risk genes in 

neuronal modules (Voineagu et al., 2011). Similar results were also observed for the Emory 

network (Fig. S6). These findings in the proteome were corroborated at the mRNA level, as 

AD candidate risk loci were enriched in T-M3, associated with microglial/endothelial cell 
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markers (Fig. 6B and Fig. 5C). A total of 33 GWAS candidates including HMHA1, 

MS4A6A, CD2AP, MS4A4A, HLA-DRA, and FERMT2 were enriched in T-M3. Also as 

seen in the protein networks, T-M13, associated with oligodendrocyte genes, was also 

enriched with 27 AD GWAS candidates including BIN1, whereas ASD and schizophrenia 

GWAS candidates were mainly over-represented in neuronal modules (T-M1 and T-M9) as 

well as module T-M13 in ASD. Thus, we conclude that genetic risk loci for late onset AD 

overlap in convergent RNA and protein networks preferentially enriched in microglia and 

oligodendrocytes, further providing network-driven evidence implicating glial dysfunction in 

the etiology of late onset AD.

Discussion

Our proteomic studies offer new insights into changes in individual proteins and protein 

networks linked to AD, including changes related to poorly-understood preclinical stages of 

AD. Protein co-expression modules linked to astrocytic/microglial and neuronal functions in 

the BLSA cases revealed strong positive and negative correlations, respectively, with AD 

neuropathological burden and clinical symptoms. These BLSA networks were highly 

preserved in an independent cohort of Emory cases, which also revealed modules specific 

for AD, as well as networks of co-expressed proteins shared with other neurodegenerative 

diseases. We also observed relatively strong preservation of select modules derived from 

proteomics and previously reported transcriptomic studies of AD, especially those enriched 

in cell type-specific markers (neurons, oligodendrocytes, astrocytes, and microglia). 

However, most modules altered in the AD proteome were not well represented in the 

transcriptome, including those associated with microtubule function, RNA/DNA binding, 

and inflammation. These discrepancies may be due to well-known differences between the 

regulation, localization, and functions of mRNA and proteins. For example, a poor 

correlation between expression levels of microtubule-associated mRNA and protein in AD 

may in part be due to a spatial mismatch between neuronal cell bodies that express the 

mRNA and the degenerating axons where the proteins accumulate. Another example is the 

deposition of plasma proteins and peripheral immune cells that are often deposited in brain 

following disruption of the blood brain barrier (Zlokovic, 2008). The observed differences 

between protein- and RNA-based modules highlights the value of incorporating both 

transcriptomic and proteomic data in efforts to advance our understanding of AD 

pathogenesis and identifying novel therapeutic targets.

Despite the divergence in RNA and protein networks, one important similarity across the 

brain transcriptome and proteome was the consistent mapping of AD GWAS candidates to 

networks enriched in oligodendrocytes and microglia markers. This observation strongly 

implies that these modules reflect causal pathogenic processes involved in AD. Protein and 

RNA networks enriched in microglial proteins were significantly increased in AD and 

strongly correlated with both neurofibrillary tangle pathology and cognitive decline. These 

results echo recent large transcriptomic and AD GWAS network studies that show the 

involvement of microglial gene products and GWAS candidates in AD (Jones et al., 2010; 

Zhang et al., 2013). Thus, while significant synaptic and neuronal loss can occur prior to 

symptom onset in the asymptomatic phase of AD, our findings in the proteome suggest that 
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clinical symptoms are associated with the increase in protein networks linked to 

inflammation, in particular those enriched with microglia.

One limitation of our study was the relative lack of proteome depth (~4,500 proteins per 

sample) compared to transcriptomics (~18,000). Each individual case proteome was 

generated from a ‘single shot’ LC-MS/MS analysis (120-minute gradient) without prior 

fractionation at the protein or peptide level. However, the trade-off of proteome depth was 

the increased number of individual samples analyzed (n=129), which bolsters network-based 

approaches requiring a high number of biological replicates to reach consensus (Oldham, 

2014). Of note, future studies incorporating multiplex isobaric peptide mass tagging 

approaches and fractionation will enable both deeper proteome coverage with fewer missing 

values across individual samples (McAlister et al., 2012). Direct comparison of the 

transcriptome and proteome in the same cases will also be possible in the future with the 

Accelerating Medicine Partnership for AD projects using postmortem brains from several 

thousand cases to identify novel therapeutic targets and biomarkers (Hodes and Buckholtz, 

2016). Nevertheless, our studies reveal an impressive integrated view of protein co-

expression that validate across two independent groups of brains highlighting the robustness 

of our approach. Furthermore, our application of multi-network driven approaches (RNA 

and protein) offer new insights into the pathways underlying preclinical changes in AD brain 

and provide further evidence that non-neuronal cells mediate the genetic risk of developing 

AD.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the 

lead contact corresponding author, Dr. Nicholas T. Seyfried (nseyfri@emory.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All brain tissue used in this analysis was derived from the autopsy collection of the 

Baltimore Longitudinal Study of Aging (BLSA) or the Emory Alzheimer’s Disease 

Research Center (ADRC) Brain Bank. Human postmortem tissues were acquired under 

proper Institutional Review Board (IRB) protocols with consent from family. Postmortem 

neuropathological evaluation of amyloid plaque distribution was performed according to the 

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) criteria (Mirra et al., 

1991), while extent of spread of neurofibrillary tangle pathology was assessed in accordance 

with the Braak staging system (Braak and Braak, 1991). Diagnoses were also made in 

accordance with established criteria and guidelines for Parkinson’s Disease (PD) (Gelb et 

al., 1999) and Amyotrophic Lateral Sclerosis (ALS) (Ince et al., 1998). All case metadata 

including, disease status, neuropathological criteria, age, sex, post-mortem interval and 

APOE genotype are provided in Table S1 and Table S5.

METHOD DETAILS

Brain tissue homogenization and protein digestion—Each piece of tissue was 

individually weighed (~0.1 g) and homogenized in 500 uL of urea lysis buffer (8M urea, 100 
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mM NaHPO4 buffer system, pH 8.5), including 5 μL (100× stock) HALT protease and 

phosphatase inhibitor cocktail (ThermoFisher, Cat# 78440). All homogenization was 

performed using a Bullet Blender (Next Advance) according to manufacturer protocols. 

Briefly, each tissue piece was added to Urea lysis buffer in a 1.5 mL Rino tube (Next 

Advance) harboring 750 mg stainless steel beads (0.9–2 mm in diameter) and blended twice 

for 5 minute intervals in the cold room (4°C). Protein supernatants were transferred to 1.5 

mL Eppendorf tubes and sonicated (Sonic Dismembrator, Fisher Scientific) 3 times for 5 s 

with 15 s intervals of rest at 30% amplitude to disrupt nucleic acids and subsequently 

vortexed. Protein concentration was determined by the bicinchoninic acid (BCA) method, 

and samples were frozen in aliquots at −80°C. Each brain homogenate was analyzed by 

SDS-PAGE to assess protein integrity (Fig. S1). Protein homogenates (150 ug) were diluted 

with 50 mM NH4HCO3 to a final concentration of less than 2M urea and then treated with 1 

mM dithiothreitol (DTT) at 25°C for 30 minutes, followed by 5 mM iodoacetamide (IAA) at 

25°C for 30 minutes in the dark. Protein was digested with 1:100 (w/w) lysyl endopeptidase 

(Wako) at 25°C for 2 hours and further digested overnight with 1:50 (w/w) trypsin 

(Promega) at 25°C. Resulting peptides were desalted with a Sep-Pak C18 column (Waters) 

and dried under vacuum.

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)—
Brain derived tryptic peptides (2 μg) were resuspended in peptide loading buffer (0.1% 

formic acid, 0.03% trifluoroacetic acid, 1% acetonitrile) containing 0.2 pmol of isotopically 

labeled peptide calibrants (ThermoFisher, #88321). Peptide mixtures were separated on a 

self-packed C18 (1.9 um Dr. Maisch, Germany) fused silica column (25 cm × 75 μM internal 

diameter; New Objective, Woburn, MA) by a NanoAcquity UHPLC (Waters, Milford, FA) 

and monitored on a Q-Exactive Plus mass spectrometer (ThermoFisher Scientific, San Jose, 

CA). Elution was performed over a 120 minute gradient at a rate of 400 nL/min with buffer 

B ranging from 3% to 80% (buffer A: 0.1% formic acid and 5% DMSO in water, buffer B: 

0.1 % formic and 5% DMSO in acetonitrile). The mass spectrometer cycle was programmed 

to collect one full MS scan followed by 10 data dependent MS/MS scans. The MS scans 

(300–1800 m/z range, 1,000,000 AGC, 150 ms maximum ion time) were collected at a 

resolution of 70,000 at m/z 200 in profile mode and the MS/MS spectra (2 m/z isolation 

width, 25% collision energy, 100,000 AGC target, 50 ms maximum ion time) were acquired 

at a resolution of 17,500 at m/z 200. Dynamic exclusion was set to exclude previous 

sequenced precursor ions for 30 seconds within a 10 ppm window. Precursor ions with +1, 

and +6 or higher charge states were excluded from sequencing.

Western blotting—Total brain homogenates in urea (50 μg) were mixed with Laemmli 

sample buffer and resolved by SDS-PAGE before an overnight wet transfer to nitrocellulose 

membranes (BioRad) as previously reported (Diner et al., 2014). Membranes were blocked 

with casein blocking buffer (Sigma B6429) and probed with primary polyclonal antibodies 

for Anti-Hsp27 (HSPB1) antibody [G3.1] (Abcam #ab2790) and TDP-43 (Proteintech, 

Cat#) overnight at 4 °C. Membranes were incubated with secondary antibodies conjugated 

to Alexa Fluor 680 (Invitrogen) or IRDye800 (Rockland) fluorophores for one hour at room 

temperature. Images were captured using an Odyssey Infrared Imaging System (Li-Cor 

Biosciences).
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Supervised Clustering—Individual BLSA cases were clustered using Cluster 3.0 (de 

Hoon et al., 2004) on a scaled log2 (case-specific protein measurement/all-sample geometric 

mean) range of values, with the range of values for each protein fixed at 5 log2 units. 

Proteins were clustered using uncentered correlation and samples were clustered using city-

block distance, with an average linkage clustering method. Clustering results were 

visualized using Java TreeView 1.1.6r2 (Saldanha, 2004).

Weighted Gene Co-expression Network Analysis (WGCNA) of BLSA and 
Emory proteome datasets—Prior to network analysis, missing protein LFQ values were 

imputed using the k-nearest neighbor imputation function in R (impute.knn). Samples with 

low intra-region (PC or FC) network connectivity Z.K<−2.5 standard deviations (outlier 

samples) were identified iteratively and removed using SampleNetworks R package 1.06 

essentially as described in (Oldham et al., 2008b), respectively reducing sample number to 

47+42 samples (n=89 in PC+FC). Bootstrap regression of the LFQ intensity matrix using a 

model incorporating case status and case covariates for age, gender, and postmortem interval 

(PMI) was performed following principal component analysis of the PC+FC data set, where 

notably, none of the top five principle components correlated more than |rhoSpearman| >±0.3 

with any of these three covariates. The ComBat function (Johnson et al., 2007) was then 

used to regress out region-specific (PC versus FC) quantitative baseline protein differences. 

A weighted protein co-expression network was built using the above LFQ-normalized, 

outlier-removed, and post-regressed protein expression values using blockwiseModules 

WGCNA function with the following parameters: soft threshold power beta=6.00, 

deepSplit=4, minimum module size of 17, merge cut height of 0.07, signed network with 

partitioning about medioids respecting the dendrogram, and a reassignment threshold of 

p=0.05. Module preservation was tested using the modulePreservation() WGCNA R package 

function, over 500 iterations for PC+FC vs. a similar network built using FC region- specific 

expression alone and confirmed that the modules were representative of FC specific 

networks.

WGCNA of the AD transcriptome dataset—The R package WGCNA was used to 

construct a co-expression network using the data downloaded from GEO (#GSE33000) 

(Narayanan et al., 2014). Briefly a thresholding power of 9 was chosen (as it was the 

smallest threshold that resulted in a scale-free R2 fit of 0.8) and the network was created by 

calculating the component-wise minimum values for topologic overlap (TO). Using 1 − TO 

(dissTOM) as the distance measure, genes were hierarchically clustered. Initial module 

assignments were determined by using a dynamic tree-cutting algorithm (cutreeHybrid, 

using default parameters except deepSplit = 4, cutHeight = 0.999, minModulesize = 100, 

dthresh=0.1 and pamStage = FALSE). The resulting 20 modules or groups of co-expressed 

genes were used to calculate module eigengenes (MEs; or the 1st principal component of the 

module). MEs were correlated with different biological traits indicating certain AD-specific 

modules. Multiple comparisons were accounted for by FDR correction across modules, and 

the P values for the model are reported.
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QUANTIFICATION AND STATISTICAL ANALYSIS

MaxQuant for label-free proteome quantification—Data files for the 97 samples 

were analyzed using MaxQuant v1.5.2.8 with Thermo Foundation 2.0 for RAW file reading 

capability. The search engine Andromeda was used to build and search a concatenated 

target-decoy UniProt Knowledgebase (UniProtKB) containing both Swiss-Prot and TrEMBL 

human reference protein sequences (90,411 target sequences downloaded April 21, 2015), 

plus 245 contaminant proteins included as a parameter for Andromeda search within 

MaxQuant (Cox et al., 2011). Methionine oxidation (+15.9949 Da), asparagine and 

glutamine deamidation (+0.9840 Da), and protein N-terminal acetylation (+42.0106 Da) 

were variable modifications (up to 5 allowed per peptide); cysteine was assigned a fixed 

carbamidomethyl modification (+57.0215 Da). Only fully tryptic peptides were considered 

with up to 2 miscleavages in the database search. A precursor mass tolerance of ±20 ppm 

was applied prior to mass accuracy calibration and ±4.5 ppm after internal MaxQuant 

calibration. Other search settings included a maximum peptide mass of 6,000 Da, a 

minimum peptide length of 6 residues, 0.05 Da tolerance for high resolution MS/MS scans. 

The false discovery rate (FDR) for peptide spectral matches, proteins, and site decoy fraction 

were all set to 1 percent. Quantification settings were as follows: re-quantify with a second 

peak finding attempt after protein identification has completed; match full MS1 peaks 

between runs; a 0.7 min retention time match window was used after an alignment function 

was found with a 20 minute retention time search space. The label free quantitation (LFQ) 

algorithm in MaxQuant (Cox et al., 2014; Luber et al., 2010) was used for protein 

quantitation. The quantitation method only considered razor and unique peptides for protein 

level quantitation. The total summed protein intensity was also used to assess overall signal 

drift across samples prior to LFQ normalization. Retention time internal standards were 

identified by searching against a small database containing the isotopic peptide standard 

sequences, keratins, and brain-specific spectrins with fixed modification of +8.014 Da (Lys) 

and +10.008 Da (Arg) using Proteome Discoverer 1.4. Briefly, precursor mass tolerance was 

±10 ppm, fragment ion tolerance was 0.05 Da, and FDR was enforced by Percolator (Yang 

et al., 2012) at 1%, enabling identification of MS/MS spectra for 14 of the 15 standard 

peptides. Thermo MSF files were imported as peptide searches into Skyline 3.1 (MacLean et 

al., 2010) with chromatograms within 2 minutes of a MS/MS match to one of the standard 

peptides. Identified peak boundaries were visually checked and adjusted as necessary, and 

precursor (M, M+1, and M+2) isotopic peak areas were exported. These areas were summed 

and each peak area was divided by the average area of the corresponding peak across all runs 

to calculate aggregate signal responsiveness within the run.

Differential Expression Analysis—Differentially expressed proteins in the BLSA and 

Emory cohorts were found using one-way ANOVA followed by Tukey’s comparison post-

hoc test in both the PC and FC independently. Three comparisons were considered for 

BLSA: i) controls vs. AsymAD ii) controls vs. AD and iii) AsymAD vs. AD samples in each 

brain region (FC and PC). All six pair-wise comparisons were considered for the Emory 

dataset. Significantly altered proteins with corresponding p-value are provided in Table S2 

and Table S6.
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Cell Type Enrichment—Cell type enrichment was assessed by cross-referencing module 

genes with lists of genes known to be preferentially expressed in different cell types. Cell 

type-specific gene lists from RNA-Seq (Zhang et al., 2014b) and mass spectrometry-based 

proteomics (Sharma et al., 2015) were filtered as follows: transcript or protein 

log2(abundance/geometric mean abundance), (log2 value) was required to be 0.8 log2 units 

in measurement above the next most abundant cell type measurement if the log2 value was 

greater than 1.4, and was required to be greater than 1.6 log2 units higher if the log2 value 

for that cell type was less than 1.4. Mouse homologs of the module genes were identified 

using the mygene R package (Mark et al., 2014). The total list of identified protein groups 

was used as the background and the cell-type specific gene lists were filtered for presence in 

the total proteins list prior to cross-referencing. Significance of cell type enrichment was 

assessed using the one tailed Fisher’s exact test and corrected for multiple comparisons by 

the FDR (Benjamini-Hochberg) method. These lists are provided in Supplemental Table S4.

Gene Ontology (GO) Enrichment—Functional enrichment of differentially expressed 

proteins and within the WGCNA modules was determined using the GO-Elite (v1.2.5) 

python package (Zambon et al., 2012). GO-Elite Hs (human) databases were downloaded on 

or after June 2016. The set of all proteins identified and considered in the network was used 

as the background. Z score determines overrepresentation of ontologies in a module and one 

tailed Fisher’s exact test (Benjamini-Hochberg FDR corrected) was used to assess the 

significance of the Z score. Z score cut off of 1.96, P value cut off of 0.01 and a minimum of 

5 genes per ontology were used as filters prior to pruning the ontologies.

Over-representation analyses for RNA and protein networks—Gene set 

enrichment analysis was performed using a two-sided Fisher exact test with 95% confidence 

intervals calculated according to the R function fisher test. We used p values from this two-

sided approach to the one-sided test (which is equivalent to the hypergeometric p-value) as 

we did not a priori assume enrichment (Rivals et al., 2007). To reduce false positives, FDR 

adjusted p-values were used for multiple hyper-geometric test comparisons. The background 

for over-representation analysis was chosen as brain region (frontal cortex) expression levels 

from array data.

GWAS module association—To determine if any protein products of GWAS targets 

were enriched in a particular module, we used the single nucleotide polymorphism (SNP) 

summary statistics from the International Genomics of Alzheimer’s Project (http://

www.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php) (Lambert et al., 2013) to 

calculate the gene level association value using MAGMA (de Leeuw et al., 2015). Notably, 

MAGMA takes the mean of all the transformed SNP P values associated with a particular 

gene and uses a known approximation of the distribution to get the gene association value. 

MAGMA accounts for linkage disequilibrium (LD) using reference data with similar 

ancestry. Gene identifications in the Magma output file were converted to gene symbols 

using the biological Database Network (https://biodbnet-abcc.ncifcrf.gov/db/db2db.php). 

These gene lists were further filtered to select for genes that have a MAGMA defined gene 

association value > 1.3 (−log p value). APOE was added to the gene list and assigned a −log 

p value of 50, given its known strong association with AD (Coon et al., 2007). For each 
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module in the protein network, the mean GWAS significance value (−log P) was calculated 

as the enrichment score for the module. Random sampling (10,000 times) of the MAGMA 

gene list was used to assess the significance of the module enrichment score. The 

enrichment scores were then scaled by subtracting the mean and dividing by the standard 

deviation of the random samplings. The P value was calculated as the proportion of 

samplings that have a scaled enrichment score greater than or equal to the module 

enrichment score. Similar analyses were performed with GWAS candidates for 

Schizophrenia (SCZ) and Autism Spectrum Disorders (ASD) (Sullivan, 2010). These GWAS 

datasets were provided and downloaded from the Psychiatric Genomics Consortium (http://

www.med.unc.edu/pgc/downloads). MAGMA significance values for each candidate gene 

associated with AD, ASD, or SCZ used in these analyses are provided in supplemental 

TableS10.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Protein modules correlated with cognition and Alzheimer’s Disease (AD) 

pathology

• Modules associated with brain cell types overlapped in protein and RNA 

networks

• Many protein-based modules were distinct from those in RNA-directed 

networks

• AD risk loci converged in glial-related modules in the proteome and 

transcriptome
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Fig. 1. Differential abundance of Aβ and other proteins observed in AsymAD and AD brain
(A and B) Aβ measurements measured by LFQ ion intensity correlate with CERAD and 

disease status in precuneus (PC) and frontal cortex (FC). (C) Correlation for Aβ levels 

across 47 paired samples in the PC and FC. (D) Venn diagram showing a total of 362 unique 

proteins in both brain regions (FC and PC) that were determined to be significantly altered 

(decreased or increased) by ANOVA followed by Tukey’s post-hoc test (p <0.01) in the three 

comparisons. (E) Supervised hierarchical clustering of 123 significant proteins altered in FC 

and PC by criteria described in methods. (F) Several significant proteins in AD displayed a 
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progressive change across comparisons of control, AsymAD and AD groups (top panel), 

whereas other proteins were significantly changed only during the symptomatic phase of AD 

(middle panel). Protein markers which trended as changing in both the preclinical and 

symptomatic stage of AD (bottom panel) compared to control group(s).

Seyfried et al. Page 23

Cell Syst. Author manuscript; available in PMC 2018 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Protein co-expression classifies the proteome into modules associated with specific gene 
ontologies and brain cell types
(A) WGCNA cluster dendrogram groups proteins (n=2,735) measured across FC and PC 

into distinct protein modules (M1–16) defined by dendrogram branch cutting. These 

modules were significantly enriched for gene ontologies linked to discrete cellular functions 

and/or organelles in the brain. (B) Cell type enrichment was assessed by cross-referencing 

module proteins (via matching gene symbols) using the one-tailed Fisher’s exact test against 

lists of proteins determined as enriched in neurons, oligodendrocytes, astrocytes and 

microglia (Table S4). The FDR was corrected for multiple comparisons by the Benjamini-

Hochberg (BH) method, bars extending above the line represent BH p<0.01.
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Fig. 3. BLSA protein modules correlate to cognitive status and AD neuropathological burden
(A) BLSA protein modules were clustered to assess module relatedness based on correlation 

of protein co-expression eigenproteins. Pearson correlation and P value between module 

eigenprotein expression and CERAD (top) and Braak (bottom). (B) Module expression 

profiles and key hub proteins that are positively correlated with CERAD and/or Braak. (C) 
Module expression profiles and key hub proteins that are negatively correlated with CERAD 

and/or Braak. Box plots with error bars are displayed for each of the three groups of case 

samples (control, AsymAD and AD). Significance was measured using one-way 
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nonparametric ANOVA, Kruskal-Wallis p-values. Cell type associated modules are encircled 

(dashed line).
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Fig. 4. BLSA network changes are preserved in the Emory proteome
(A) In the BLSA proteomic network, 13 of the 16 modules were highly preserved in the 

Emory proteomic network, with Zsummary scores above 2 (p<0.05). Larger modules were 

some of the most preserved (above red line, p<0.01). (B) Emory protein modules and top 

hub proteins that increased in AD selectively or across all neurodegenerative diseases. (C) 

Emory protein modules and top hub proteins that decreased in AD selectively or across all 

neurodegenerative diseases. Significance was measured using one-way nonparametric 

ANOVA, Kruskal-Wallis p-values.
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Fig. 5. Overlap between RNA and protein co-expression networks in AD
(A) A hypergeometric two-tailed Fisher’s exact test was used to determine which modules 

shared significant overlap or depletion of module members between the Emory and BLSA 

proteome networks (left panel) and Emory proteome and RNA networks (right panel). The 

23 modules in the Emory case network (x-axis), clustered by module eigenprotein 

relatedness, were aligned to the 16 modules in the BLSA network (y-axis). Module gene 

symbol lists showed either significant overlap (red), depletion (blue) or no significant under- 

or over-representation (white) in protein membership. Numbers are positive signed 
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−log10(FDR-corrected overrepresentation p values) representing degree of significance of 

overlap; asterisks also represent degree of significance for either positive or depleted 

comparisons: *, p<0.05; **, p<0.01, ***, p<0.005. (B) The degree of significance related to 

AD with correlation sign [signed −log10(FDR corrected p value)] is provided for each 

transcriptome module. Module eigengenes were correlated to AD status and multiple 

comparisons were accounted for by FDR correction (Benjamini-Hochberg) across modules 

with significance. (C) RNA modules were found enriched for specific cell type markers 

(Table S4) including neuronal, oligodendrocyte, astrocyte, microglia and endothelial cells 

following one-way Fisher’s exact test overlap with cell-type specific transcriptomes. (D) 

Pearson correlation analysis between all overlapping protein-RNA targets (n=2,406, left 
panel). Pearson correlation analysis between Protein-RNA targets in Emory modules that 

overlap with the transcriptome and change in the AD proteome (n=411, middle panel). This 

included protein modules increased in AD (E-M4, E-M21 and E-M3) that are enriched in 

astrocyte/microglia/endothelial markers and modules decreased in AD (E-M15 and E-M7) 

that are enriched with neuronal markers. Pearson correlation analysis between Protein-RNA 

targets in Emory modules that did not overlap with modules in the transcriptome (n=411, 

right panel), yet were increased (E-M19, E-M11 and E-M9) or decreased (E-M20, E-M10, 

E-M6, E-M18 and E-M12) in AD. Genes and cognate proteins were grouped and colored by 

their Emory protein module membership.
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Fig. 6. AD GWAS candidates are over-represented in protein and RNA networks associated glial 
cell types
(A) AD GWAS candidate genes (darkslateblue) in the BLSA network were found 

significantly over-represented in oligodendrocyte module (B-M2), and in the astrocyte/

microglia (B-M5) module. GWAS risk candidate genes for both ASD (darkgreen) and 

schizophrenia (magenta) were significantly over-represented in the B-M1 and B-M4 neuron/

synaptic modules (B) AD GWAS candidate genes in the transcriptome were overrepresented 

microglial/endothelial modules T-M3 and T-M18 and an oligodendrocyte associated module 
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(T-M13). Similar to the proteome, ASD and schizophrenia GWAS targets were significantly 

over-represented in neuronal transcriptome modules (T-M1 and T-M9). ASD was also found 

in the oligodendrocyte enriched T-M13 module. Random sampling (10,000 times) of the 

MAGMA gene list was used to assess the significance of the module enrichment score (* p 

value <0.05).
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