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Summary

Highly active antiretroviral therapy (HAART) has proved efficient in increasing CD4 counts in 

many randomized clinical trials. Because randomized trials have some limitations (e.g., short 

duration, highly selected subjects), it is interesting to assess the effect of treatments using 

observational studies. This is challenging because treatment is started preferentially in subjects 

with severe conditions. This general problem had been treated using Marginal Structural Models 

(MSM) relying on the counterfactual formulation. Another approach to causality is based on 

dynamical models. We present three discrete-time dynamic models based on linear increments 

models (LIM): the first one based on one difference equation for CD4 counts, the second with an 

equilibrium point, and the third based on a system of two difference equations, which allows 

jointly modeling CD4 counts and viral load. We also consider continuous-time models based on 

ordinary differential equations with non-linear mixed effects (ODE-NLME). These mechanistic 

models allow incorporating biological knowledge when available, which leads to increased 

statistical evidence for detecting treatment effect. Because inference in ODE-NLME is 

numerically challenging and requires specific methods and softwares, LIM are a valuable 

intermediary option in terms of consistency, precision and complexity. We compare the different 

approaches in simulation and in illustration on the ANRS CO3 Aquitaine Cohort and the Swiss 

HIV Cohort Study.

* mprague@hsph.harvard.edu. 

Web-Supplementary Materials
Web-Supplementary Material referenced in Sections 3, 4 and 5, the simulated data analyzed in Section 3 and a R program 
implementing Models 1-6 are available with this paper at the Biometrics website on Wiley Online Library. Programs to estimate the 
parameters with Model 7 are available on a dedicated website: http://www.isped.u-bordeaux.fr/NIMROD.

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2017 March 24.

Published in final edited form as:
Biometrics. 2017 March ; 73(1): 294–304. doi:10.1111/biom.12564.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.isped.u-bordeaux.fr/NIMROD


Keywords

Dynamic mechanistic models; Linear Increment Models (LIM); Marginal Structural Models 
(MSM); Non-Linear Mixed Effect Models (NLME); Observational study; Ordinary Differential 
Equation (ODE)

1. Introduction

Randomized clinical trials often have short durations and include highly selected subjects, 

thus assessing the effect of a treatment using observational studies is useful. However, it is 

challenging because the treatment may change, and covariate history of a subject up to time t 
may influence treatment given after t, and may also influence the outcome of interest, which 

induces a time-dependent confounding. For instance, one may wish to assess the effect of 

antiretroviral therapy in HIV infected subjects. As CD4+ T-lymphocytes (CD4, in short) are 

the main target cells of the HIV virus, it is possible to assess the effect of a treatment on the 

blood concentration of these cells: CD4 counts are measurements of this concentration. In 

observational studies, however, the decision to start an antiretroviral therapy may depend on 

CD4 counts as well as on other covariates. In this setting, it has been demonstrated that a 

conventional regression analysis leads to biased estimates of the treatment effect, typically 

underestimating it, and possibly (wrongly) indicating a negative effect. This is called 

“confounding by indication” (Walker, 1996).

Marginal structural models (MSM) (Robins et al., 2000) have been proposed for dealing 

with this issue; this is based on choosing a causal model in terms of potential responses, 

which are often counterfactual, to the different treatment histories. The parameters of a 

MSM can be estimated through a weighted approach but other methods exist (Petersen et al., 

2006). The weights are the inverse probability of treatment assignment and are obtained 

through a “treatment model” which includes the covariates linked to the outcome. Because 

data are correlated, we use an inverse probability weighted generalized estimating equation 

(GEE). This approach has been applied by Hernán et al. (2002) and Cole et al. (2005) for 

estimating the effect of zidovudine and of highly active antiretroviral therapy (HAART) on 

CD4 count.Cole et al. (2007) and Sterne et al. (2005) used it for estimating the effect of 

HAART on viral load and on AIDS or death.

An alternative view to causality, that does not use the potential responses representation is to 

use dynamic models. This has been pioneered by Granger (1969); Dawid (2000), and further 

developed by Didelez (2008), Commenges and Gégout-Petit (2009), Gégout-Petit and 

Commenges (2010) and Eichler and Didelez (2010). Assumptions needed for a causal 

interpretation of dynamic models have been presented in Arjas and Parner (2004) and 

Commenges and Gégout-Petit (2015). Dynamical models in discrete time, and in particular 

linear increment models (LIM), have been proposed by Diggle et al. (2007) and Ho et al. 

(2014). Aalen et al. (2012) have suggested that such models can be useful for studying the 

HAART effect on CD4 counts or viral load. Discrete-time models, however, may not be 

completely satisfactory because the processes of interest most often exist in continuous time. 

Systems of differential equations in continuous time can also be used to model the 

interaction between HIV and CD4 cells populations. Models based on differential equations, 
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called “mechanistic”, considerably helped in understanding some important features of the 

infection: see Perelson (2002) for a review. In our setting, it is possible to model the 

treatment effect from a biological perspective. Introducing random effects is an efficient way 

to model differences between subjects with a minimum of additional parameters (Wu, 2005; 

Guedj et al., 2007; Lavielle et al., 2011). Mechanistic models have mostly been used to 

analyze data from clinical trials. Using mechanistic models to estimate the effect of HAART 

based on data of large observational cohorts is possible, but to our knowledge, has never 

been attempted.

The aim of this paper is to propose dynamic models in discrete and continuous time for 

assessing the causal effect of a treatment on a marker in observational studies. Specifically, 

we aim to estimate the HAART effect in HIV infected patients. We present several possible 

dynamic models, as well as MSMs, and compare them using simulations and real data. 

Although we worked out analytics in simple cases (see Appendix), the comparison is mainly 

empirical and aims to describe the assumptions and variability of results provided by the 

various methods. In Section 2, we present the statistical models: the naive model, the MSMs, 

the discrete-time dynamic models and the mechanistic approach. In Section 3, we compare 

the results of these models in simulation, where the data are generated from a complex 

mechanistic model. Section 4 is the application on the data of two cohorts of HIV infected 

patients: the Swiss HIV Cohort Study (SHCS) and the ANRS CO3 Aquitaine cohort. 

Section 5 concludes.

2. Modeling the treatment effect in observational studies

2.1 Notations and the naive model

We denote the value of a physiological marker for subject i at time t by , say the CD4 

count. The value of a treatment given at time t to subject i is denoted by , say HAART. For 

sake of simplicity, we only model two treatment states:  when treatment is not given, 

and  when treatment is given, and we assume that once initiated the treatment is not 

interrupted; however, one could expand the model to accommodate different levels of 

treatment. If treatment is started at time t then  and . We use overbars to 

represent the histories of these processes: for instance . We denote by 

 the cumulative time under treatment until time t. In the absence of 

confounding by indication, the simplest model would be to regress  on . Cole 

et al. (2005) notes the advantages of a piecewise linear regression model that allows a 

change in the effect of treatment after one year. Thus, our Model 1 is a naive model with 

different treatment effects before and after one year:

(2.1)
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where  is the cumulative time under treatment up to time t minus one year: 

(with the convention  for t < 0). The β’s 

can be estimated by conventional GEE (Liang and Zeger, 1986) because we are interested in 

the population average. We use the independence working correlation structure in our 

analyses; otherwise results could be biased because of the presence of time-varying 

covariates (Pepe and Anderson, 1994).

2.2 Marginal structural models (MSM)

Because treatment is given to subjects with low CD4 counts, treated subjects tend to have 

low CD4 counts. Thus, the true value of parameter β1 in Model 1 cannot be interpreted as 

the causal effect. MSMs are designed to estimate the causal effect of a treatment given time 

dependent confounding. It is assumed that to each particular value of treatment history  of 

, a potential outcome  is associated (possibly contrary to the treatment actually 

received). A model is postulated to describe how the potential outcomes vary as a function 

of the different treatment trajectories. Hernán et al. (2002) and Cole et al. (2005) proposed 

benchmark models that also adjust for confounders such as time (t) and baseline value of 

biomarkers (Y0) in the regression. To duplicate this, our Model 2 is::

(2.2)

Robins et al. (2000) showed that the causal parameters of this model can be estimated with a 

suitably weighted GEE. The weights represent the inverse probability of treatment. The 

probability of treatment at time t depends on the history up to time t of a vector of variables 

L denoted  typically includes include . The probability of treatment 

is estimated at each point in time using a treatment model (generally a logistic model) and 

the weights are the product over time of these probabilities; one often use stabilized weights 

as in Equation 2.3. An extension allows for censoring (Cole et al., 2005; Cole and Hernán,

2008), however, the most important correction is generally for the probability of treatment 

(Ko et al., 2003). Stabilized inverse probability of treatment weights are defined as:

(2.3)

Results from Model 2 are consistent if the treatment model corresponds to the true treatment 

assignment mechanism; i.e. if all the confounders (factors influencing both the outcome of 

interest and treatment assignment) have been taken into account. We defined L for treatment 

model in Model 2 as baseline and time-varying CD4 count in categories (< 200, [200; 400], 

> 400), viral load in categories (< 401, 401 – 10000 and > 10000), and an indicator of 

undetectable viral load. In Models 1 and 2 the effect of treatment on CD4 counts during the 

first year is given by β1 and the effect after one year of treatment is given by β1 + β2.
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2.3 Modeling the increment with a dynamical MSM

It is more relevant to model the change in the marker of interest, rather than its current value. 

This fits well with a causal thinking which considers that the change of a process depends on 

its present, and possibly past, states. Thus, we could model ; in order to account 

for non-equally spaced measurements, we might assume that the change in biomarker values 

is proportional to the time elapsed between two measurements; that is, , where 

 is the tth calendar time of observation since the baseline measure of subject i. We define 

the biomarkers increments as . We take this approach when developing linear 

increment models in Section 2.4. However it is possible to express a MSM for the ’s as:

(2.4)

Our Model 3 is then the combination of this MSM for  together with the treatment model 

(2.3). Note that with equally spaced measurements, Model 2 and 3 will be structurally 

identical if the same unit of time (e.g. year) is used for  and the cumulative exposures (see 

Appendix). Inference approaches will be different, thus, Model 3 should be more suitable 

than Model 2 because we use an independence working correlation matrix for the ’s, 

which is much more acceptable than assuming independence for the ’s.

2.4 Full discrete-time dynamical models - linear increment models (LIM)

We can also fit a linear mixed-effects model for the ’s. The inter-subject variability is 

accounted for by a random effect b assumed normally distributed with zero expectation. 

Thus, LIM specify the distribution of Zi conditional on the bi. We propose three LIM; the 

simplest is Model 4, where the ε’s are i.i.d. normal variables with zero expectation:

(2.5)

In both Models 3 and 4, the effect of treatment on the CD4 counts is  during the first 

year of treatment, and  after one year, where  is the mean of all the .

Many deterministic dynamical models have equilibrium points; similarly many stochastic 

dynamical models tend toward a stationary process. This property fits very well with the 

behavior of biological systems since concentrations of many molecules or cells have a 

tendency to return to the same value, a property called “homeostasis”. Difference equations 

of the type  correspond to an autoregressive model of order one, 

denoted AR(1):  with γ′ = (γ1 + 1). It is well known that if |γ′| < 1 this 

process converges toward a stationary process (in discrete time) with expectation 

; this is always defined unless γ1 = 0, as is the case in Model 4 
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which does not have a finite stationary expectation. When using a model which has this 

convergence property, it may not be necessary to have a two-slope model. For example, we 

define Model 5, which tends to a stationary process with expectation  for treated 

patients if −2 < β2 < 0 and β0 + β1 > 0:

(2.6)

A more realistic modeling of CD4 counts takes viral load into account. Here, we make a step 

toward mechanistic models because we know that the virus concentration and the CD4 

concentration are inter-related processes. Thus, Model 6 is based on a system of two 

difference equations:

(2.7)

where , with  the viral load at time t for patient i. The random effects 

di and bi, and the errors  and  are all i.i.d. and normally distributed with zero 

expectation. In Model 5 and 6, one year and subsequent years increase in CD4, as well as the 

long term change, are easily computed by solving the difference equations numerically. 

Moreover, for testing whether the treatment has an effect, it is convenient to test the 

hypotheses β1 = 0 and α1 = 0, by Wald tests for instance. As a reviewer notes, an interesting 

question is the correspondence between LIM and MSM. The Appendix shows that under 

some (rather strong) assumptions, Model 4 estimates the same causal parameters as Models 

2 and 3 without using a treatment model.

2.5 Continuous Dynamical models, Mechanistic Models (ODE-NLME)

In reality, biomarkers processes exist in continuous time. A natural extension of a dynamic 

model in discrete time, as , is a model based on differential equations. (Perelson, 

2002) give a review of some models for HIV dynamics based on ODE systems. In this 

article, we consider the “target cells model”, called Model 7 and described bellow, which 

proved to provide a good fit and prediction abilities (Prague et al., 2013).

Biological system—We know that only infected cells (T*) can produce viruses (V). The 

target cells model distinguishes between uninfected quiescent cells (Q) and target cells (T). 

The instantaneous change of concentrations of these populations at time t, for all real value 

of t > 0, is given by the ODE system:
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(2.8)

The system is graphically represented in Figure 1a. Here, the parameters have biological 

meanings: λ is the production rate of new CD4 cells, the μ’s are death rates of different 

populations of cells, α and ρ are transition rates between quiescent and target cells, π is the 

rate of production of virions by infected cells, and γ is the infectivity parameter. The model 

assumes that the rate of infection of target cells is γVt.

Inter-individual variability—A model that allows parameters to vary between individual 

is a mixed effects model. We model the inter-individual variability on the log-transformed 

parameters denoted with a tilde to ensure positiveness during estimation. In this application, 

two random effects  and  are introduced (Prague et al., 2012):  and 

. Biologically, the causal effect of treatment can be modeled as an effect on 

the infectivity parameter γ. The parameter γ depends on t through , where we expect β < 

0, so that the treatment decreases the infectivity of the virus:

(2.9)

Observation model—One important consequence of using continuous time models is that 

we must distinguish between the biological system which exists in continuous time and 

observations which are made at discrete times. To make an additive model for measurement 

error acceptable, we use 4th-root transformation for CD4 and a log10 transformation for the 

viral load. With errors  and  both i.i.d. and normally distributed, the observation model 

is:

(2.10)

Inference—Inference is much more complex and computationally demanding than in 

discrete-time models. We base inference on a penalized maximum likelihood approach and 

to achieve identifiability, we include prior knowledge of mechanistic parameters. Our priors 

(Table 1) are based on estimates in the literature of these parameters (Prague et al., 2012). 

This approach has been implemented in the NIMROD program (Prague et al., 2013). 

Assessing the long-term treatment effect in Model 7 is possible by analytically computing 

the equilibrium point. One year and subsequent year increase in CD4 after treatment 

initiation can be computed by solving the ODE system for given values of the random 

effects. The marginal effect can be computed as the mean of the individual effects in the 
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population. The β parameter in the infectivity definition gives the effect of treatment, and a 

Wald test can be used to test the no-effect hypothesis (β = 0).

3. Simulation study

We simulated data with the Adams et al. (2005) model made up of two populations of target 

cells and a population of immune effectors such as cytotoxic T-lymphocytes (see Figure 1b 

and Table 1), which is much more complex than Model 7 (see Web-Supplementary Material 

A4). Individual variability was introduced by drawing parameters from normal distributions 

(with mean values listed in Table 1 and variances chosen to obtain a variation coefficient of 

50%). By controlling the value of random effects, we ensured that the steady state baseline 

distributions of CD4 counts and viral load were consistent with the baseline values 

distributions found in Aquitaine cohort and SHCS dataset. See Web-supplementary Material 

A1 for details. We generated observations every 3 months; the standard deviations of the 

measurement errors were σVL = 0.6 and σCD4 = 0.1. Viral load was artificially made 

undetectable at the level of 50 copies/mL. Treatment assignment was done by simulating a 

CD4 count assessment at every observation and by fixing a probability of treatment 

assignment depending on the observed CD4 count. We took empirical probabilities from the 

Aquitaine cohort and SHCS dataset: treatment was attributed in 2%, 28% or 47% of patients 

where their CD4 count was > 400, [400, 200] or < 200. No other confounder was 

considered. Simulated patients are supposed fully observed for 5 years. We simulated n=200 

and n=1500 patients. Table 3 gives a general description of both simulated and real datasets 

and there is no obvious difference between simulated and real cohort data in their descriptive 

statistics. We define the “average causal effect in treated patients” as the mean difference 

between the observed CD4 according to the observed treatment initiation and the 

counterfactual CD4 under no treatment initiation. The result of this computation was a 350 

cells increase in CD4 after 1 year, a 362 cells increase after 2 years and an overall increase 

of 370 CD4 cells after an infinite (large) time. Technical details and code for analysis are 

described in Web-Supplementary Material C.

Table 2 presents the estimates for Models 1-7 on the simulated datasets. The naive Model 1 

largely underestimated the treatment effect. This was corrected by the MSM Models 2 and 3 

(see details about weights in Web-Supplementary Material A2). Model 4 also yielded good 

estimates of the mean causal effect in treated patients. Moreover, it led to an increased 

significance of results compared to Model 3 for increase in CD4 count during the first year. 

Regarding increase in CD4 count in subsequent years, whereas the Model 3 underestimate 

its variability (for large samples, 12 ∉ [2; 6]), Model 4 is more reliable (for large samples, 12 

∈ [−1; 15]). This underestimation of the variance of Model 3 may be driven by an overfitting 

of inverse probability of treatment weights. This overfitting could have arisen because the 

data generation was based on CD4 cell count evolution and not on viral load, whereas the 

inverse probability of treatment weights were calculated from treatment models with both 

past CD4 cell count and viral load as predictors. We note that long-term increase in CD4 is 

infinite in Models 1 to 4, even though it happens at a really slow rate. On the contrary, 

Models 5-7 exhibit an equilibrium point which makes it possible to consider the long-term 

causal effect of treatment. All dynamic models gave an estimate of the long-term effect of 

treatment for which the true value was included in the 95% confidence interval. The initial 
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increase in CD4 during the first year was not correctly reproduced by Model 5. Models 6 

and 7 which both incorporate the dynamics of viral load gave a better estimate of the 

increase in CD4 count (see details about estimated values of biological parameters in the 

Model 7 in Web-Supplementary Material A3). All models found a significant effect of 

treatment on CD4 counts in the first year. Sandwich estimators were used for calculating the 

standard errors for GEE methods and Fisher information matrix was used for methods based 

on maximum likelihood. Altogether, the dynamic models (Model 4-7) have greater statistical 

evidence, with higher Z-statistics rejecting the no-effect hypotheses, than the GEE based 

models (Models 1-3). Finally, while fitting Models 1-6 took less than a minute on a typical 

laptop, fitting Model 7 took about 10 hours of parallel computing with 100 cores. All results 

and conclusions are similar in small and large samples.

4. Real data

We used two large cohorts: the ANRS CO3 Aquitaine cohort (Thiébaut et al., 2000) and the 

Swiss HIV Cohort Study (SHCS) (Sterne et al., 2005; Gran et al., 2016). Like Cole et al. 

(2005), we took a sub-sample of patients who were alive, HIV positive, yet untreated and 

under follow-up in April 1996 when HAART became available. All patients taking only one 

or two antiretroviral drugs (rather than HAART) were excluded. Once a patient was on 

HAART, we assumed he or she remained on it. For each patient, follow-up began with the 

first visit after April 1996 and ended with 1) the last visit at which he or she was seen alive, 

2) the last visit before patient discontinued the study, or 3) April 2003, whichever comes 

first. Data were assumed missing completely at random (MCAR); thus we deleted 

observations where either the viral load or CD4 count was missing. Patients with only one 

observation were excluded. After exclusions, there were 1591 patients from the Aquitaine 

cohort and 1726 patients from the SHCS (see Web-Supplementary Material B1 for a 

description of patient selection). Table 3 gives descriptive statistics. For most patients, 

follow up ended with administrative censoring and therefore we assumed censoring was not 

informative.

Table 4 displays the results we obtained for the effect of treatment on CD4 counts. The naive 

Model 1, not corrected for treatment assignment, indicated a small and non-significant 

increase in CD4 for SHCS cohort, and a significant negative effect for the Aquitaine Cohort; 

thus illustrating the need for modeling treatment assignment. This is corrected by the use of 

a treatment model in MSM Models 2. Models 3 and 4 led to similar results in the SHCS and 

different results in the Aquitaine cohort. For Model 4, this may be because covariates other 

than CD4 count are also confounders (such as viral load). For Model 3, some covariates 

driving the choice of treatment initiation may have been omitted in the treatment model. 

Estimates from both Models 3 and 4 suggest that treatment causes a significant increase in 

CD4 within the first year and in subsequent years. The one-year increase, however, was 

much smaller for the Aquitaine cohort than for the SCHS when using MSM-based models. 

See Web-Supplementary Material B2 for a discussion of this result in relation with a 

possible practical violations of the experimental treatment assumption Cole and Hernán 

(2008). The results of the dynamical models, especially Models 6 and 7, were more 

consistent between cohorts.
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Model 6 is interesting because it dissociates the effect of the treatment on CD4 count from 

its effects on viral load. In this model, the estimated treatment effect on CD4 count was 

small in both cohorts and was non-significant for the Aquitaine cohort. In contrast, the effect 

on viral load was highly significant in both cohorts. This is consistent with the mode of 

action of antiretroviral treatment: the increase in CD4 count is essentially mediated by the 

decrease in viral load; the latter is the direct effect of treatment. Such biological knowledge 

is incorporated in Model 7, where the treatment acts on the infectivity parameter. In view of 

the Z-statistics obtained by a Wald test of the hypothesis β = 0 in Equation 2.9, the statistical 

evidence obtained in Model 7 is very high (this is confirmed by a likelihood ratio test). 

Moreover, Model 7 gives an insight into the value of the biological birth and death rates of 

cells during the infection (see Web-Supplementary Material B3). Regarding these biological 

parameters, the estimates from the two data sets are rather consistent in the sense that they 

have the same order of magnitude, although a formal comparison would show that several 

parameters are different, potentially due to different characteristics of the patients in the two 

cohorts. Finally, a simple way to look at these results and to compare them, is to consider the 

mean evolution in CD4 over time. Figure 2 represents the predicted CD4 counts with 

Models 1 to 7 for treated patients starting at baseline with CD4 count of 365 and a viral load 

of 4.4 (which are approximately the mean values at treatment initiation in these cohorts). For 

Models 1-3, these curves are deterministic, which is not the case for Models 4-7 because 

these models have random effects. For these latter models, we computed the mean predicted 

curves depending on the value of the random effect, which have to be set to values 

compatible with the baseline values of the biomarkers. In order to set them, in both cases, 

we computed the equilibrium point of the system without treatment and solved the system of 

equations. Figure 2 shows that the naive Model 1 is not in agreement with medical 

knowledge. Models 1-3 are unstable, whereas Models 4-7 are more consistent between the 

two studies. Models 3, 4 and 5 lead to similar trajectories in the SHCS dataset but very 

different trajectories in the Aquitaine Cohort study. In the latter, because trajectories for 

Model 3 look unrealistic and too pessimistic, we believe LIM Models 4 or 5 is more 

realistic. This illustrates the instability of weighted approaches. Finally, Model 5, 6 and 7 

have an equilibrium point. Model 7 reaches a steady state in about 1 year which is in line 

with observed data and is similar in both cohorts.

5. Conclusion

In this paper we estimated the effect of HAART on CD4 count using four dynamic models 

and compared estimates with those from a naive regression model, a variant of a previously 

proposed MSM and a MSM based on linear increments. This is an empirical comparison 

rather than a theoretical comparison. We discussed assumptions and validity of the various 

approaches together with possible bias in estimates, statistical evidence and practicability of 

use. The naive regression model (Model 1) strongly underestimated the effect of the 

treatment. The MSMs (Models 2 and 3) corrected this misleading result but sometimes 

failed to reach significance or were unstable across cohorts. The discrete-time dynamic 

models (Models 4, 5 and 6) based on LIM gave rather good estimates and show higher 

statistical evidence, although they may sometimes be too rigid. All the discrete-time models 

are easily fit without specialist software. The continuous-time dynamic model based on 
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ODE-NLME (Model 7) gave good results. Models 6 and 7, which jointly model CD4 and 

viral load gave the most consistent results, with a richer interpretation since they explicitly 

model the effect of HAART on CD4 via a direct effect on viral load.

We have used a linear MSM with two slopes similar to that proposed by Cole et al. (2005). 

This model adequately represents the short term (few years) effect of treatment but not the 

long-term effect because the effect in subsequent years implies a biologically implausible 

indefinite increase over time. As pointed out by the Associate Editor, because MSM can 

specify any reasonable outcome regression model, ranging from a very simple model which 

posits that only the most recent exposures affect the outcome to something very complex - 

e.g. a spline-weighted sequence of exposures (Xiao et al., 2014), it would be possible to 

define an MSM in which the effect would be bounded. However, this would be at the cost of 

additional non-linear parametrization. Also, it would be possible to use more recent methods 

such as the history adjusted MSM (Petersen et al., 2007); these are most suited for dynamic 

treatment regimes whereas we assessed the effect of a static treatment regimes in this work. 

In contrast most dynamical models (although not Model 4) have an equilibrium point. We 

showed that a MSM could be fitted for the increment  rather than for . Thus, the MSM 

approach could complement the dynamic approach in the sense that less stringent 

assumptions would be needed for causal inference. However, the dynamic models already do 

a good job and the need to correct them (at the price of more complex procedure and loss of 

statistical evidence) is not obvious. In this paper we assumed MCAR observations for GEE, 

which is appropriate because most patients were administratively censored. MAR 

observations can be treated by using inverse probability of censorship weights (see Web-

Supplementary Material Section B4). One advantage of likelihood-based dynamic models is 

that they are still valid given MAR observations.

The mechanistic Model 7 directly incorporates biological knowledge. This leads to a more 

significant test for the parameter of interest. The simulated data in the paper are obtained 

with a dynamic model, so one might think that this favors dynamic models; however the true 

generation process comes itself from a complex dynamic system. Thus, the simulated model 

is much more complex than Models 4-7 which are highly misspecified. Of course, 

misspecification is not only a binary feature but can be quantified, in principle, for instance 

by the Kullback-Leibler risk between the generating distribution and the best distribution in 

the model (Commenges, 2015). Both simulated and real data are more complex than the 

models used to analyse that data: in both cases, we know that the model is misspecified but 

we hope that the structure of the model captures essential features of the dynamics of the 

system. The comparison between dynamic and MSM approach remains empirical: we 

compare estimates from plausible MSM and dynamic models. Finally, mechanistic models, 

once estimated, open the possibility of designing optimal control of the therapy, as has been 

proposed on simulations by Adams et al. (2004); Ernst et al. (2006), and also Prague et al. 

(2012). The issue of “optimal treatment regime” has also been tackled outside of the context 

of mechanistic models (Petersen et al., 2007; Orellana et al., 2010; Saarela et al., 2015). The 

drawback of the continuous-time approach is that it is numerically challenging and requires 

special software running on cluster computers.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: Correspondence between parameters of Model 2, 3 and 4

The question of how parameters from a MSM and a dynamical model relate is difficult for 

two reasons: the models are constructed differently; the philosophical approach to causality 

is different. We will make this exercise for comparing the MSM Model 2 and the LIM 

Model 4. One can reconcile the two philosophical approaches by saying that the “causal” 

interpretation (in a interventional point of view) is that for a given treatment trajectory , 

we expect under the MSM: 

. Model 4 is 

formulated in terms of the increments: , which by 

summation gives , where 

 is a martingale. This is the Doob decomposition of the process Y. With the 

assumption of a “perfect” system or a NUC system (see Commenges and Gégout-Petit 

(2015) and Chapter 9 of Commenges and Jacqmin-Gadda (2015)), if we apply treatment 

trajectory , this define a new probability P a under which the Doob decomposition, which 

is: , from which we deduce: 

. Thus, Model 4 yields the same 

expectation under an intervention imposing treatment trajectory  as Models 2 if β4 = 1, 

and the parameters giving the effects of  and  correspond. The same 

correspondence holds for Model 3, which is equivalent to Model 2 if the observations are 

equally spaced. Whereas Models 2 and 3 make the assumption that all confounders between 

A and Z are included in the computation of the inverse probability of treatment, Model 4 

assumes that there is no confounder between A and Z. For instance the viral load Vt−1 might 

be a confounder which is taken into account in inverse probability of treatment in Models 2 

and 3; in the dynamic approach one must use more complex models describing the dynamics 

of the viral load (such as Models 5 and 6). For Models 5, 6 and 7, marginal effects can still 

be computed (analytically or by simulation), but this may lead to complex forms, while 

generally MSM assume simple mathematical structures.
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Figure 1. 
Mechanistic models for HIV dynamics. Type of cells of interest are viruses (V), effector 

cells E and CD4 cells which may be quiescent (Q), target cells (T, T1, T2) or infected (T*,

, ). Parameters are defined in Table 1.
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Figure 2. 
Mean evolution in CD4 predicted by Model 1 (plain line, simple regression), Model 2 

(dashed line, MSM on ), Model 3 (dotted line, MSM on ), Model 4 (dotted line, simple 

LIM), Model 5 (dotted line, autoregressive LIM), Model 6 (dashed-dotted line, LIM 

system), and Model 7 (long-dashed line, mechanistic model) for treated patients starting 

with 365 CD4 cells/mL and a viral load of 4.4 log10 copies/mm3: (left) estimates from the 

SHCS data (right) estimates from the Aquitaine cohort. This figure appears in color in the 

electronic version of this article.
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Table 1

Meaning of parameters in the dynamical models presented in Figure 1. The upper part gives prior means and 

standard deviations for normal a priori distributions used for estimation of mechanistic parameters in Model 7 

for the ‘Target cell model’. The lower part gives parameter values used for data simulation from the Adams et 

al. (2005) model.

Normal priors used for analysis*
on the log value of the parameter

Name Description mean sd.

λ Natural production rate
cells

μL . day 2.55 1.90

μ T* Natural death rate of T* cells
1

day −0.05 0.68

μ Q Natural death rate of Q cells
1

day −9.00 1.00

α Transition rates between Q and T cells
1

day −4.00 2.00

ρ Transition rates between T and Q cells
1

day −4.34 1.38

μ T Virions natural death rate
1

day −2.59 0.34

γ Infectivity parameter
μL
day −5.76 4.02

π Rate of production of virions by infected cells
1

day 4.04 2.66

μ V Natural death rate of T* cells
1

day 2.83 0.68

Parameter Value used for simulations
for each population (X)†

Name Description Units Type 1 Type 2 Effectors Virus

λ X Natural production rate
cells

mL . day 5000 31.98 1.0 -

(1-ϵX) Treatment efficacy no unit 50% 83% - -

dX Natural death rate
1

day 0.01 0.01 0.25 -

δ X Infection-induced death rate
1

day 0.7 0.7 0.1 -

ρ X Number of virions infecting a cell
virions
cells 1 1 - -

mX Immune-induced clearance rate
mL

cells.day 1 × 10−5 1 × 10−5 - -

kX Infection rate
mL

virions.day 8 × 10−7 1 × 10−4 - -

c Virions natural death rate
1

day - - - 13

NT Virions production per infected cells
virions
cells - - - 100
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Parameter Value used for simulations
for each population (X)†

Name Description Units Type 1 Type 2 Effectors Virus

Kb Saturation constant cells birth
cells
mL - - 100 -

Kd Saturation constant cells death
cells
mL - - 500 -

bE Infection-induced birth rate for E cells
1

day - - 0.3 -

*
Reference and explanation for these choices can be found in Prague et al. (2012).

†
For each simulated patient, every parameter got a random effect leading to 50% coefficient of variation
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Table 2

Estimated treatment effect on CD4 counts from simulated data: Model 1: Naive regression; Model 2: MSM on 

; Model 3: MSM on ; Model 4: Simple LIM; Model 5: autoregressive LIM; Model 6: LIM system; Model 

7: mechanistic model.

Simulated Dataset with Adams et al. (2005) model

n=200 n=1500

Model β treatment‡ Effect Sd. Z-stat† Effect Sd. Z-stat†

Model 1 < 1 yr 136 29 4.68 172 11 16.34

> 1 yr −11 6 −1.99 −12 2 −5.07

∞ − ∞ - - − ∞ - -

Model 2 < 1 yr 327 31 10.64 325 11 28.81

> 1 yr −14 10 −1.45 −7 4 −1.56

∞ − ∞ - - − ∞ - -

Model 3 < 1 yr 371 24 15.47 364 10 35.49

> 1 yr 8 3 2.45 4 1 3.2

∞ +∞ - - +∞ - -

Model 4 < 1 yr 362 17 21.60 378 6 61.35

> 1 yr 8 12 0.7 7 4 1.61

∞ +∞ - - +∞ - -

Model 5 < 1 yr 133 * * 136 * *

> 1 yr 84 * * 86 * *

∞ 359 * * 370 * *

β 1 149 5 31.24 154 2 89.36

Model 6 < 1 yr 325 * * 334 * *

> 1 yr 31 * * 34 * *

∞ CD4 360 * * 371 * *

∞ VL −1.9 * * −2 * *

β 1 600 21 28.42 630 8 82.22

α 1 −6.6 0.16 −40.86 −6.9 0.06 −120.51

Model 7 < 1 yr 312 * * 304 * *

> 1 yr 2 * * 4 * *

∞ CD4 308 * * 306 * *

∞ VL −5.6 * * −4.98 * *

β −1.12 0.014 −79.3 −1.03 0.003 −295.6

†
Estimates for treatment effect (β) are significant at level 10% if the absolute value of Z-stat is greater than 1.64 and significant at level 5% if the 

absolute value of Z-stat is greater than 1.96.

‡
To be compared with mean treatment effect in treated for (< 1 year; > 1 year; ∞): benchmarks values are (350;12;370) for these simulations.

*
Simulated delta-method can lead to estimation of these values, but is not implemented here. Indeed, for Model 5, 6 and 7 significance of the 

treatment effect has to be evaluated through the mechanistic parameters β1,α1 and β.
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Table 3

Data description for illustrations : Average viral load, CD4 counts and percentage of treatment assignment in 

the population are displayed for simulated data and real data from the Aquitaine cohort and the SHCS. 

Statistics displayed are mean [Q1;Q3].

Simulated
dataset

Aquitaine
Cohort SHCS

n 200 1500 1591 1726

Missing data

Administrative - - 81.6% 74.7%

Death - - 12.7% 6.4%

Lost of follow-up - - 5.7% 18.9%

CD4 count

Baseline 428 [ 266 ; 545 ] 420 [ 253 ; 530 ] 471 [ 298 ; 612 ] 536 [ 357 ; 670 ]

Follow-up untreated 594 [ 485 ; 675 ] 588 [ 478 ; 656 ] 625 [ 440 ; 762 ] 543 [ 363 ; 675 ]

Follow-up treated 627 [ 417 ; 837] 606 [ 405 ; 801 ] 492 [ 315 ; 638 ] 507 [ 300 ; 660 ]

Viral Load

Baseline 3.9 [ 3.3 ; 4.6 ] 4 [ 3.4 ; 4.7 ] 4.2 [ 3.6 ; 4.8 ] 4.0 [ 3.4 ; 4.6 ]

Follow-up untreated 3.5 [ 2.9 ; 4.2 ] 3.7 [ 3.1 ; 4.4 ] 3.3 [ 2.3 ; 4.2 ] 3.8 [ 3.1 ; 4.5 ]

Follow-up treated 2.6 [ 1.7 ; 3.2 ] 2.6 [ 1.7 ; 3.2 ] 2.7 [ 1.7 ; 3.6 ] 3.2 [ 2.4 ; 4.1 ]

% undetectable viral load
(baseline,untreated, treated)

(3%;4%;40%) (2%;3%;38%) (7%;22%;48%) (10%;15%;57%)

Treatment assignment

Time (day) 412 [ 1 ; 631 ] 377 [ 91 ; 451 ] 727 [ 1 ; 1281 ] 548 [ 183 ; 752 ]

% treated 69% 65% 64% 34%
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Table 4

Estimated treatment effect on CD4 counts from real data of the Aquitaine cohort and SHCS: Model 1: Naive 

regression; Model 2: MSM on ; Model 3: MSM on ; Model 4: Simple LIM; Model 5: autoregressive LIM; 

Model 6: LIM system; Model 7: mechanistic model.

Real Dataset observational studies

SHCS Aquitaine Cohort

Model β treatment Effect Sd. Z-stat† Effect Sd. Z-stat†

Model 1 < 1 yr 6 16 0.34 −94 12 −7.55

> 1 yr 30 6 5.42 30 3 9.75

∞ +∞ - - +∞ - -

Model 2 < 1 yr 208 18 11.31 36 19 1.87

> 1 yr 50 9 5.79 53 5 9.62

∞ +∞ - - +∞ - -

Model 3 < 1 yr 174 10 17.29 27 14 1.99

> 1 yr 61 5 12.37 34 5 6.3

∞ +∞ - - +∞ - -

Model 4 < 1 yr 189 11 17.33 109 9 12.03

> 1 yr 73 8 9.07 55 6 8.99

∞ +∞ - - +∞ - -

Model 5 < 1 yr 26 * * 45 * *

> 1 yr 14 * * 19 * *

∞ 55 * * 79 * *

β 1 60 4 16.04 14 3 4.12

Model 6 < 1 yr 73 * * 92 * *

> 1 yr 26 * * 16 * *

∞ CD4 104 * * 111 * *

∞ VL −2.0 * * −2.3 * *

β 1 80 16 5 28 18 1.53

α 1 −3.29 0.09 −38.4 −3.19 0.1 −30.55

Model 7 < 1 yr 104 * * 71 * *

> 1 yr 18 * * 9 * *

∞ CD4 127 * * 86 * *

∞ VL −4.09 * * −3.14 * *

β −1.73 0.05 −34.79 −0.89 0.01 −85.77

†
Estimates for treatment effect (β) are significant at level 10% if the Z-stat is greater than 1.64 and significant at level 5% if the Z-stat is greater 

than 1.96.

*
Simulated delta-method can lead to estimation of these values, but is not implemented here. Indeed, for Model 5, 6 and 7 significance of the 

treatment effect has to be evaluated through the mechanistic parameters β1,α1 and β.
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