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Summary

Neural stem cells (NSCs) in the adult mammalian brain serve as a reservoir for the generation of 

new neurons, oligodendrocytes, and astrocytes. Here we use single cell RNA-sequencing to 

characterize adult NSC populations and examine the molecular identities and heterogeneity of in 
vivo NSC populations. We find that cells in the NSC lineage exist on a continuum through the 

processes of activation and differentiation. Interestingly, rare intermediate states with distinct 

molecular profiles can be identified and experimentally validated, and our analysis identifies 

putative surface markers and key intracellular regulators for these subpopulations of NSCs. 

Finally, using the power of single cell profiling, we conduct a meta-analysis to compare in vivo 
NSCs and in vitro cultures, distinct fluorescent-activated cell sorting strategies, and different 

neurogenic niches. These data provide a resource for the field and contribute to an integrative 

understanding of the adult NSC lineage.
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Dulken et al. perform single cell transcriptomics on neural stem cells (NSCs) from adult mice. 

They use machine learning to identify rare intermediate cells in the continuum of the NSC lineage 

and perform a meta-analysis with other single cell transcriptomic data from in vitro or in vivo 

NSCs.
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Introduction

Populations of neural stem cells (NSCs) in the adult brain represent a critical reservoir of 

regenerative cells with the potential to combat neuronal injury and neurodegeneration. The 

adult brain contains two NSC pools located in the sub-ventricular zone (SVZ) of the lateral 

ventricles and the dentate gyrus (DG) of the hippocampus (Zhao et al., 2008). Both NSC 

pools produce new neurons, which can integrate into functional circuits (Zhao et al., 2008). 

The NSCs of the SVZ have been identified as a subtype of sub-ependymal astrocyte 

(Doetsch et al., 1999; Garcia et al., 2004). The majority of NSCs are quiescent and express 

GFAP along with the marker CD133 (Prominin 1) (Codega et al., 2014; Fischer et al., 2011). 

These quiescent NSCs (qNSCs or type B1q cells) give rise to proliferative, activated neural 

stem cells (aNSCs or type B1a cells) that express epidermal growth factor receptor (EGFR) 

(Codega et al., 2014). Activated NSCs can in turn produce neural progenitor cells (NPCs or 

transient amplifying progenitor [TAPs] or type C cells), a proliferative cell population that 

expresses markers of early neuronal differentiation (Doetsch et al., 2002). Finally, the NPCs 

give rise to neuroblasts (type A cells), which migrate to the olfactory bulb where they 

become primarily interneurons (Garcia et al., 2004; Mirzadeh et al., 2008) (Figure 1A).
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The purification of NSCs from their in vivo niche has been made possible by Fluorescence-

Activated Cell Sorting (FACS) via the expression of transgenic markers and defined surface 

markers (Codega et al., 2014; Fischer et al., 2011; Garcia et al., 2004; Mich et al., 2014). 

Purification of cell populations, coupled to gene expression profiling, has begun to reveal the 

molecular identities of NSCs in the SVZ (Codega et al., 2014; Mich et al., 2014). However, 

population-based approaches have likely obscured underlying heterogeneity in the NSC 

lineage, thereby limiting the identification of new rare cell types or intermediates, and 

hindering the characterization of complex transcriptional dynamics. While recent single cell 

studies have started to reveal the complex composition of NSC populations in various 

neurogenic regions of the adult brain, the SVZ (Llorens-Bobadilla et al., 2015; Luo et al., 

2015) and the DG (Shin et al., 2015), a comprehensive molecular understanding of the 

heterogeneity of the neural stem cell lineage still remains elusive.

Here we perform single cell RNA-sequencing on 329 high quality single cells from four 

different populations – niche astrocytes, qNSCs, aNSCs, and NPCs – freshly isolated from 

young adult mouse SVZs. Using machine learning and pseudotemporal ordering, we reveal 

subpopulations of NSCs along the spectrum of activation and differentiation, which we 

experimentally validate, and suggest putative markers for these subpopulations. Using the 

power of single cell transcriptomics, we compare our single cell dataset to other single cell 

datasets, including in vitro cultured NSCs and other in vivo NSC datasets. Our findings not 

only serve as a great resource for the field, but also provide an integrative understanding of 

the neural stem cell lineage, which is an essential step toward identifying new ways to 

reactivate dormant NSCs in the context of stroke and aging.

Results

Single cell RNA-seq from four populations of cells directly isolated from the SVZ 
regenerative region in the adult mouse brain

To define the molecular heterogeneity of the SVZ regenerative region in the adult mouse 

brain, we performed single cell RNA-sequencing from four cell populations – niche 

astrocytes, quiescent and activated NSCs, and more committed NPCs. We implemented a 

well-accepted FACS protocol to freshly isolate adult populations from the SVZ (Codega et 

al., 2014) using a transgenic line in which green fluorescent protein (GFP) is under the 

control of the human GFAP promoter (GFAP-GFP mice) (Zhuo et al., 1997). Single cells 

were dissociated from microdissected SVZs from young adult (3 months old) GFAP-GFP 

male mice and stained with markers of NSC identity and activation, including CD133/

Prominin 1 [PROM1] and EGFR. This approach enabled us to isolate niche astrocytes 

(henceforth referred to as astrocytes) (GFAP-GFP+PROM1−EGFR−), qNSCs (GFAP-

GFP+PROM1+EGFR−), aNSCs (GFAP-GFP+PROM1+EGFR+), and NPCs (GFAP-

GFP−EGFR+), as described in (Codega et al., 2014) (Figure 1A, Figure S1A). Each of these 

enriched populations was used to prepare single cell RNA-sequencing libraries using the 

Fluidigm C1 Single-Cell Auto Prep microfluidic system (Wu et al., 2014). A total of 524 

single cell libraries were sequenced on Illumina MiSeq, and a subset was also sequenced on 

Illumina HiSeq 2000 (Tables S1, S2, S3, S4). The majority of unique genes in each library 

were detected by MiSeq (Figure S1B) and there was good correlation between gene 
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detection for libraries sequenced on MiSeq and HiSeq for all genes except those expressed at 

very low levels (Figure S1C), consistent with previous observations that high sequencing 

depth is not necessary to capture single cell library complexity (Pollen et al., 2014). We 

excluded low quality cells, based on a threshold for reads mapping to the transcriptome and 

number of genes detected (Figure S1D). On the remaining 329 cells, there was good 

correlation of gene expression between two representative single cells (Pearson correlation = 

0.602) or pseudopopulations (Pearson correlation = 0.932) (Figure S1E). Furthermore, 

aggregated single cell pseudo-populations for each cell type cluster with population RNA-

seq (Leeman et al.) for their associated cell type, and away from a cell type from an 

independent lineage (endothelial cells) (Figures S1F–G), underscoring the quality of the 

single cell RNA-seq libraries.

To explore the molecular identities of individual single cells, we performed global principal 

component analysis (PCA) projection of all single cells profiled in this analysis. Most 

astrocytes, qNSCs, aNSCs, and NPCs clustered in a well-defined ‘band’, although a 

subpopulation of cells sorted as qNSCs and NPCs separated significantly from the majority 

of the single cells on the second principal component (PC) of the PCA (Figure 1B). Genes 

with the strongest contribution to this second PC were highly enriched for genes involved in 

myelination and oligodendrocyte function/identity (e.g. Mog, Plp1, and Mbp (Cahoy et al., 

2008)) (Figure S1H). Thus, a minority of oligodendrocytes appears to be present in the 

population of cells sorted as qNSCs and NPCs, which was also observed in another single 

cell study (Llorens-Bobadilla et al., 2015).

To focus our analysis on the NSC lineage, we excluded all cells exhibiting an 

oligodendrocyte expression signature as well as a small number of outlying cells that 

clustered away from the NSC lineage (Figure 1B). PCA on the remaining cells revealed 

clustering of the more quiescent cell types (astrocytes and qNSCs) away from the active, 

proliferative cell types (aNSCs and NPCs) (Figure 1C). While there was no significant 

difference between astrocytes and qNSCs, consistent with previous studies (Codega et al., 

2014), aNSCs separated from NPCs (Figure 1C). Interestingly, a range of aNSCs was 

observed between the quiescent and progenitor states (Figure 1C), raising the possibility that 

in vivo NSCs exist on a continuum of quiescence, activation, and differentiation.

Single cells from populations of qNSCs, aNSCs, and NPCs can be ordered through 
activation and differentiation, suggesting heterogeneity and intermediary states

To explore the intermediary states in the continuum of NSCs and progeny, we performed 

pseudotemporal ordering of the single cells using Monocle (Trapnell et al., 2014). Because 

astrocytes and qNSCs could not be distinguished by PCA (Figure S2A) or differential 

expression (Table S5), we omitted astrocytes from the Monocle-ordering analysis. Monocle 

ordering on qNSCs, aNSCs, and NPCs using all detected genes revealed gene expression 

dynamics that recapitulate previous understanding of the activation of NSCs (Figure 2A–B). 

Indeed, qNSCs that highly express previously reported markers of this population such as 

Id3 (Bonaguidi et al., 2008; Mira et al., 2010) are ordered first and are followed by aNSCs 

that have upregulated Egfr (Figure 2B). As cells transition from qNSCs to aNSCs, they first 

upregulate genes important for ribosomal biogenesis (e.g. Rpl32), before expressing markers 
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of the cell cycle (Figure 2B). This corroborates a recent study that described an early stage 

of biogenesis in aNSCs prior to cell cycle entry (Llorens-Bobadilla et al., 2015). To 

experimentally validate the existence of this population of “cell-cycle-low” aNSCs, we 

stained FACS-sorted populations of qNSCs, aNSCs, and NPCs with the cell cycle marker 

Ki67. Consistent with our single cell prediction, a fraction of aNSCs was negative for the 

Ki67 cell cycle marker (Figure 2C), and the proportion of Ki67-negative cells was 

significantly greater in the aNSC population than in NPCs (Figure 2D). These results 

indicate that a subpopulation of aNSCs is not cycling, but that these “cell-cycle-low” aNSCs 

are in fact already expressing the EGFR protein, based on the FACS approach we used, 

rather than merely expressing the Egfr transcript and preparing to enter an EGFR positive 

state.

Monocle ordering could not place NPCs after aNSCs, perhaps because genes highly 

expressed in both cell types (e.g. cell cycle, metabolism genes) masks more subtle 

transcriptomic changes. Therefore, to increase the sensitivity of Monocle ordering to the 

process of lineage commitment/differentiation, we built machine learning models to identify 

the genes most important for defining the trajectory of cells through four states (Figure 2E): 

qNSCs, “cell-cycle-low” aNSC, “cell-cycle-high” aNSCs, and NPCs. We implemented a 

four-way stochastic gradient-boosting classification model (Friedman, 2002), using a 

subsampled set of 20 cells from each of these four groups (‘training set’) (Figure 2E, code 

available at https://github.com/bdulken/SVZ_NSC_Dulken_2). We bootstrapped this process 

by building 100 independent models using independently-sampled subsets of single cells 

(Figure 2E). In predicting the identity of cells that were not used to build the model (‘testing 

set’), the accuracy of the models was approximately 80% (Figure S2B), indicating that the 

models perform drastically better than random assignment in predicting cell state. Machine 

learning also identifies the genes that are most important for the construction of the models 

(Table S6). Of these, we selected the genes found in the top 100 most important features in 

at least half of the models, producing a list of 34 genes, several of which were previously 

known to be dynamically regulated during NSC activation and differentiation (e.g. Clu, 

Ccnd2, Dlx2, Dcx) (Table S7A). When Monocle-based cell ordering was conducted using 

this subset of 34 “consensus-ordering” genes, it resulted in a strikingly accurate 

recapitulation of the current understanding of activation and commitment/differentiation of 

NSCs and their progeny (Figure 2G, Figure S2C) (Codega et al., 2014; Doetsch et al., 2002; 

Llorens-Bobadilla et al., 2015). Monocle ordering with the consensus-ordering genes not 

only orders qNSCs first, followed by aNSCs negative for cell cycle markers but also 

captures the dynamics of differentiation (Figure 2G). Indeed, a subset of aNSCs expressing 

cell cycle markers, also exhibits expression of Dlx2, a pro-neural transcription factor known 

to promote neural differentiation (Doetsch et al., 2002; Petryniak et al., 2007; Suh et al., 

2009). These cells are ordered later in pseudotime than other aNSCs, closely juxtaposed 

with NPCs (Figure 2G). Thus, a subpopulation of aNSCs may exhibit an early 

transcriptomic signature of neural differentiation. NPCs themselves are predominantly 

ordered last and express other important regulators and indicators of neurogenesis such as 

Dcx, Sp8, and Sp9 (Figure 2G, Figure S2C) (Hsieh, 2012; Long et al., 2009; Waclaw et al., 

2006). Other important regulators of neurogenesis such as Ascl1 and Pax6 are expressed 

throughout the aNSC and NPC populations (Figure S2C), consistent with evidence that 
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Ascl1 is both required for quiescent cells to enter the active state and for neuronal 

differentiation (Andersen et al., 2014). Together, the dynamic expression of key markers 

along this continuum of activation and differentiation suggest five distinct consecutive 

molecular states: qNSC-like (Egfr−), aNSC-early (Egfr+Cdk1−), aNSC-mid (Egfr
+Cdk1+Dlx2low), aNSC-late (Egfr+Cdk1+Dlx2high), and NPC-like (Dlx2+Dcx+) (Figure 

2G, Figure S2C, Figure S3B, Table S8).

Thus, machine learning identifies specific consensus-ordering genes that can order NSCs 

and progeny and suggests the existence of new intermediate states of activation and 

differentiation within the aNSC population.

Activated NSCs can be divided into specific subpopulations, defined by the expression of 
markers, along the spectrum of activation and differentiation

To independently corroborate the subpopulations identified by machine learning and 

Monocle ordering (qNSCs-like, aNSC-early, aNSC-mid, aNSC late, NPC-like), we used 

diffusion mapping, which has been recently developed to plot cells with respect to their 

molecular trajectories (Haghverdi et al., 2015). Diffusion mapping with the 2500 most 

variable genes (Figure 3A) or all detected genes (Figure S3A) clusters the cells in a similar 

manner as Monocle or PCA using the consensus-ordering genes (Figures 3B–D), confirming 

our machine learning approach.

To define the gene expression changes occurring between all five states (qNSC-like, aNSC-

early, aNSC-mid, aNSC-late, and NPC-like), we conducted differential expression analysis 

at each cell state transition using the single cell differential expression tool SCDE 

(Kharchenko et al., 2014) and assessed pathway enrichment using GSEA (Table S8). The 

transition from qNSC-like to aNSC-early is characterized by upregulation of genes 

belonging to ribosomal signatures (Figure 3D, E), confirming our earlier observations 

(Figure 2) and findings from another single cell study in the SVZ (Llorens-Bobadilla et al., 

2015). As expected, the transition from aNSC-early to aNSC-mid is characterized by 

upregulation of genes belonging to cell cycle signatures (Figure 3D, F). The transition 

between the aNSC-mid and aNSC-late cell states is defined partly by the upregulation of 

Dlx1 and Dlx2, two genes normally associated with neuronal differentiation (Petryniak et 

al., 2007) (Figure 3D). However, aNSC-late cells did not express the other genes that are 

characteristic of the NPC-like population such as Dcx, Nrxn3, Dlx6as1, Sp8, and Sp9 
(Figure 3D, Figure S3C), suggesting that aNSC late are distinct from NPCs. Interestingly, 

the transition from aNSC-mid to aNSC-late is characterized by downregulation of genes 

relating to astrocyte identity (Figure 3G), such as Atp1a2, Gja1, and Ntsr2 (Cahoy et al., 

2008) (Figure 3I). Astrocytic markers are further downregulated as cells transition into the 

NPC-like state (Figures 3H–I). Thus, aNSCs that highly express cell cycle genes can be 

further sub-divided into two groups, a group still expressing astrocyte markers (characteristic 

of earlier cells in the lineage), and a group in which early neurogenesis markers begin to be 

expressed. These two states could represent the division between a self-renewing NSC and a 

lineage-committed NSC, primed for differentiation.

This analysis also enables us to identify putative markers or regulators that may be specific 

to these earlier, potentially self-renewing NSCs. Indeed, while GLAST (Slc1a3) has been 
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previously used as a marker to detect NSCs (Llorens-Bobadilla et al., 2015; Mich et al., 

2014), it is actually expressed in aNSC-mid, aNSC-late, and NPCs (Figure 3I). In contrast, 

other markers appear to be more specific to the aNSC-mid subtype, including the cell 

surface genes Atp1a2, Gja1, and Ntsr2 (Figure 3I). While these genes are also expressed in 

other cell types in the brain, including cortical astrocytes, they could serve to isolate the 

aNSC-mid group in combination with other markers of NSCs. Furthermore, Jagged1 and 

Fgfr3, which have been implicated in NSC self-renewal (Maric et al., 2007; Nyfeler et al., 

2005), are among the genes elevated in the aNSC-mid cells (Figure S3D) and could also 

potentially serve as markers in combination with other NSC markers. Interestingly, genes 

that are enriched in the aNSC-mid population, including markers of astrocytes (Atp1a2, 

Ntsr2, Gja1) and mediators of self-renewal (Fgfr3, Jag1), are correlated with each other, and 

anti-correlated with genes associated with the aNSC-late population, Dlx1 and Dlx2, in the 

aNSC-mid and aNSC-late states (Figure 3J; Figure S3F). Collectively, these data support the 

notion that the division between the aNSC-mid and aNSC-late populations is associated with 

the loss of astrocytic gene signatures and the acquisition of a pro-neural gene expression 

signature.

Experimental validation of single cell data prediction by purifying aNSCs subpopulations 
using level of GFAP-GFP expression

We next experimentally validated the existence of specific aNSC subpopulations. The 

GFAP-GFP transgene is known to be downregulated as NSCs commit to the NPC state 

(Doetsch et al., 2002; Pastrana et al., 2009) (Figure 4A). Indeed, GFP transcript levels from 

the GFAP-GFP transgene positively correlate with markers of astrocytes and negatively 

correlate with early markers of neurogenesis in aNSCs (Figure 3J). We therefore used FACS 

to sort different populations of aNSCs based on their level of GFP fluorescence from the 

GFAP-GFP transgene. Because we did not know the levels of GFP fluorescence to which 

aNSC transitions would correspond, we sorted three subpopulations of aNSCs: GFAP-high 

(GFAP-GFP(high)PROM1+EGFR+), GFAP-mid (GFAP-GFP(mid)PROM1+EGFR+), and 

GFAP-low (GFAP-GFP(low)PROM1+EGFR+), as well as NPCs (GFAP-GFP(neg)EGFR+). As 

predicted by the single cell data, FACS-sorted aNSCs with higher levels of GFP 

fluorescence expressed markers of astrocytes and self-renewal, such as Atp1a2 and Ntsr2 
(Figures 4B–C). Consistent with single cell data, aNSCs with the lowest levels of GFP 

fluorescence had significantly higher expression of Dlx2 and Dlx1 (markers of early 

neurogenesis) (Figure 4D, Figure S4B) but did not yet express other later makers that were 

more exclusively expressed in NPCs such as Nrxn3 and Dcx (Figure 4E, Figure S4C). The 

populations expressed equal amounts of genes detected equally in all aNSCs subpopulations 

such as Egfr (Figure S4D). The subdivision of the aNSC population by GFP levels generally 

recapitulated the gene correlation module observed in Figure 3J, specifically the positive 

correlation between markers of astrocytes and mediators of self-renewal and anti-correlation 

between these genes and early mediators of neurogenesis (Dlx1, Dlx2) (Figure 4F, Figure 

S4I). In contrast, this sorting scheme could not distinguish the aNSC-early and aNSC-mid 

populations, which differed in their expression of cell cycle markers (Figure S4E–G), 

probably because these two populations express GFP at similar levels. Thus, the molecular 

states along the spectrum of activation and differentiation predicted by single cell analysis 

can be experimentally validated.
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In the spectrum of NSC activation and differentiation, in vitro cultured NSCs resemble in 
vivo aNSCs but exhibit a signature of inflammation

Cultures of primary NSCs as neurospheres have been used to study NSCs in vitro (Conti and 

Cattaneo, 2010; Hitoshi et al., 2002; Ma et al., 2014), though it is debated whether these 

cells are good models for in vivo NSCs (Conti and Cattaneo, 2010; Parker et al., 2005). To 

understand how cultured NSCs compare to their in vivo counterparts, we performed single 

cell RNA-sequencing of passage 3 neurospheres (NS) cultured from FACS-sorted aNSCs 

(Figure 5A). Single cells were filtered for quality in the same manner as for in vivo cells 

(Figure S5A), resulting in 62 high-quality single cell RNA-seq datasets. To determine where 

cultured NS single cells fall on the spectrum of activation and differentiation of in vivo 

neural progenitors, we performed PCA using the consensus-ordering genes (Table S7A) on 

all of our in vivo single qNSCs, aNSCs, and NPCs and projected the single NS cells onto 

this PCA space (Figure 5B). This analysis revealed that single NS cells most closely 

resemble the aNSC-mid population (proliferative aNSCs that have not yet begun to express 

neuronal differentiation markers) with respect to the expression of key genes that define the 

activation and differentiation of NSCs. However, when PCA was performed using all in vivo 

cells and in vitro neurosphere single cells, the neurospheres cluster separately from the in 

vivo lineage (Figure S5C), suggesting that there are also significant differences between the 

in vivo and in vitro states. Differential expression using SCDE between the cultured NS 

single cells and in vivo aNSCs or NPCs revealed that many of the genes significantly 

enriched in the in vivo populations are markers of neuronal differentiation such as Dlx2, 

Dcx, Nrxn3, and Dlx6as1 (Figure 5D, Figure S5B, Table S9). This is consistent with the 

notion that cultured neurospheres do not express markers of neuronal differentiation but 

express markers of astrocytes (Figure 5D, Figure S5B), likely representing an 

undifferentiated, self-renewing state.

To identify global pathways that are different between cultured NS cells and in vivo NSCs, 

we performed GSEA on genes differentially expressed between the in vivo and in vitro 

states (Table S9). Strikingly, pathways associated with inflammation and cytokine signaling 

were among those upregulated in the cultured NS cells (Figure 5C). Furthermore, genes 

associated with inflammatory signaling, such as Fas and Ifitm3, were highly expressed in 

many in vitro single cells but were not consistently detected in vivo (Figure 5E, Figure S5B). 

Thus, while cultured NSCs resemble aNSC-mid cells on the spectrum of NSC activation and 

differentiation, there are important differences between cultured neurospheres and in vivo 

NSCs, such as the expression of markers of inflammation. Understanding these differences 

could help better model NSCs in vitro.

Meta-analysis of single cells isolated by different FACS methods using the power of single 
cell transcriptomics

A single cell characterization of NSCs in the SVZ was recently published (Llorens-

Bobadilla et al., 2015) using a different dissociation method (trypsin instead of papain) and a 

distinct FACS strategy (Llorens-Bobadilla et al., 2015) (Figure 6A). This provides a unique 

opportunity to address questions regarding the identity of cells isolated by different 

approaches. The Llorens-Bobadilla study isolated two populations by FACS from wild-type 

mice: GLAST+PROM1+ (NSCs) and GLAST−PROM1−EGFR+ (transient amplifying 
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progenitors [TAPs]) (Figure 6A) whereas we isolated 4 populations by FACS from GFAP-

GFP transgenic mice: GFAP-GFP+PROM1−EGFR− (niche astrocytes), GFAP-

GFP+PROM1+EGFR− (qNSCs), GFAP-GFP+PROM1+EGFR+ (aNSCs), and GFAP-

GFP−EGFR+ (NPCs/TAPs). One main difference is that the Llorens-Bobadilla study used 

the surface protein GLAST to purify NSCs from wild-type mice (Llorens-Bobadilla et al., 

2015), while we isolated them using GFP from GFAP-GFP transgenic mice. Another main 

difference is that the Llorens-Bobadilla study did not differentiate between qNSCs and 

aNSCs (Llorens-Bobadilla et al., 2015), whereas we used the marker EGFR to distinguish 

aNSCs from qNSCs (Figure 6A). The method of cell dissociation and marker choices for 

FACS have been areas of active debate in the field of NSC biology (Codega et al., 2014; Luo 

et al., 2015; Mich et al., 2014). To compare these single cell datasets, we independently 

mapped the raw sequencing data from the Llorens-Bobadilla study using our pipeline. When 

we conducted global PCA using all cells from both studies, the primary axis of variation is 

defined by the study, likely due to differences in library preparation and sequencing depth 

(Figure S6A). However, when we projected cells from the Llorens-Bobadilla study onto a 

PCA with either the consensus-ordering genes (Table S7A) or the most variable genes from 

our study, we observed an alignment of the cell types profiled in each study (Figure 6B, 

Figure S6B). Furthermore, Monocle ordering with the consensus-ordering genes on the 

NSCs and TAPs from (Llorens-Bobadilla et al., 2015) revealed that the dynamic expression 

of key genes with respect to pseudotime is very similar between the two datasets (Figures 

6C–D; Figures S6C–D). In both datasets, quiescent NSCs high in Id3 and Clu are ordered 

earliest, and activation is accompanied by an upregulation of genes important for ribosome 

biogenesis followed by the upregulation of cell cycle genes (Figures 6C–D). Interestingly, a 

subset of aNSCs from the Llorens-Bobadilla study expresses high levels of cell cycle 

markers (Cdk1) as well as Dlx2 transcript (Figure 6D). This state is reminiscent of the 

aNSC-late cells described in Figure 3. Moreover, the transition from aNSCs to NPCs 

(TAPs), characterized by expression of neuronal associated genes such as Dcx and Dlx6as1, 

is also highly conserved in both datasets (Figures 6C–D; Figures S6C–D). Importantly, 

though NPCs (TAPs) express some markers usually associated with type A neuroblasts (e.g. 

Dcx), they also express cell cycle markers (Figure S6E, F) unlike neuroblasts which do not 

express cell cycle markers (Figure 6E) (Llorens-Bobadilla et al., 2015). Thus, the 

transcriptional dynamics of NSC regulators captured in these divergent FACS-sorting 

approaches are very similar with respect to the expression of key genes dynamically 

regulated along the processes of activation and differentiation.

Meta-analysis of global gene expression in different single cell studies, including SVZ and 
DG

We next performed a global assessment of the similarities between NSC lineages in our 

study and the Llorens-Bobadilla study using all genes. We first ranked all detected genes in 

our dataset by their Average Pseudotime of Expression (APE) (Figure 7A). APE represents 

the average pseudotime of all cells expressing a given gene for all qNSCs, aNSCs, and NPCs 

ordered by Monocle using the consensus-ordering genes (Table S7A). Pseudotime 

expression heatmaps (see supplemental experimental procedures) for the qNSCs, aNSCs, 

and NPCs in our study and for the NSCs and TAPs from (Llorens-Bobadilla et al., 2015) 

revealed that most detected genes show high similarity in their expression profile (Figure 
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7B). Furthermore, the genes exclusively expressed in NPCs (or TAPs) are highly conserved 

between the two datasets (Figure 7C). The correlation between the APE rankings, when 

genes are independently ranked by APE using the two datasets, was excellent between our 

dataset and the Llorens-Bobadilla dataset (Figure 7D, Spearman’s rho = 0.63). The 

agreement between the global expression profiles of these cells is striking, considering the 

different FACS isolation protocols and the different depths to which the cells were 

sequenced. The correlation between the independent APE gene rankings for the cells from 

our study and the differentiating myoblasts from (Trapnell et al., 2014) was still positive but 

much lower (Figure 7E, Spearman’s rho = 0.17). Thus, the correlation between the SVZ 

NSC datasets cannot be solely attributed to cell cycle entry. Similar results were obtained 

when we performed Monocle ordering using the consensus-ordering genes with the 

normalized expression values provided in (Llorens-Bobadilla et al., 2015) and (Trapnell et 

al., 2014) (Figures S7B–C, S7F–G). The concordance between our study and that of 

Llorens-Bobadilla suggests global similarities between the lineages isolated in these two 

studies. Because our RNA-seq libraries were sequenced at much lower depth than those 

from the Llorens-Bobadilla study, these results also suggest that low-throughput sequencing 

is sufficient to capture complex transcriptional dynamics in single cells.

We next extended this type of analysis to other NSC single cell datasets. Shin and colleagues 

generated 142 single cell RNA-seq datasets from the hippocampal NSCs (Shin et al., 2015). 

The overall gene expression pattern in single NSCs from the hippocampus was similar to 

that of the SVZ (Figure S7D), and there was positive correlation in independent gene 

rankings by APE for our study and hippocampal NSCs profiled in (Shin et al., 2015) (Figure 

7F, Spearman’s rho = 0.38). This correlation was higher than the gene ranking correlation 

between SVZ NSCs and differentiating myoblasts, suggesting similarities between 

neurogenic niches beyond general processes of cell proliferation. Similar results were 

observed using the consensus-ordering genes (Figures S7E, S7H). Thus, the primary gene 

signatures of quiescence and activation may be conserved in the neurogenic niches in the 

adult brain.

This meta-analysis indicates that the NSC lineages identified by divergent FACS sorting 

schemes resulted in the isolation of very similar cells and suggests similarities between the 

gene signatures of quiescence and activation in the two different adult neurogenic niches.

Discussion

Our single cell RNA-sequencing on cells from four purified populations from the adult 

mouse SVZ – niche astrocytes, qNSCs, aNSCs, and NPCs – reveals heterogeneity and 

transcriptional dynamics in the adult neural stem cell lineage. Our data revealed that FACS-

sorted aNSCs can be divided into three groups along the process of activation and 

differentiation ‘aNSC-early’, ‘aNSC-mid’, and ‘aNSC-late’. The ‘aNSC-late’ subpopulation 

can be enriched by sorting aNSCs with low levels of GFAP-GFP. In the future, excluding the 

population of cells expressing GFAP-GFP at low levels may allow for the enrichment of the 

earliest, putatively self-renewing stem cells using FACS.
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The power of single cell profiling also allowed us to perform global comparison with other 

single cell studies. The high correlation between the identities of the single cells profiled in 

the Llorens-Bobadilla study and our study is highly instructive for FACS-sorting protocols 

for in vivo NSCs. In our protocol (based on (Codega et al., 2014)), we used the enzyme 

papain to digest the SVZ for FACS sorting, and we have found that papain cleaves GLAST 

(B.D., D.E.L., and A.B., unpublished data), the marker that was used in the Llorens-

Bobadilla study (Llorens-Bobadilla et al., 2015). Thus, an enzyme other than papain should 

be used when sorting by GLAST (and indeed Llorens-Bobadilla and colleagues used trypsin 

(Llorens-Bobadilla et al., 2015)). Our meta-analysis of single cell data is encouraging for the 

field of NSC biology as it suggests that divergent methods for isolating or identifying the 

SVZ NSCs that use either GFAP-GFP (Beckervordersandforth et al., 2010; Codega et al., 

2014; Fischer et al., 2011) or GLAST (Calzolari et al., 2015; Llorens-Bobadilla et al., 2015; 

Mich et al., 2014) isolate very similar cell types from the SVZ. Furthermore, the similarities 

of the pseudotime-related expression profiles of quiescent and active NSCs from the 

hippocampus (Shin, et al., 2015) and SVZ (Llorens-Bobadilla, et al., 2015 and our study) 

suggests that the molecular phenotypes of quiescence and activation in these cell types are at 

least partially conserved.

As a technology for sequencing hundreds and even thousands of single cells emerge 

(Cadwell et al., 2016; Fan et al., 2015; Habib et al., 2016; Klein et al., 2015; Macosko et al., 

2015), it is likely that the single cell characterization of the adult NSC lineage will continue 

to improve. These developments will complement other methods for characterizing in vivo 

cell heterogeneity, such as lineage tracing, to provide more complete definitions of adult 

stem cell lineages (Goodell et al., 2015; Merkle et al., 2014). The knowledge of 

transcriptional dynamics and cell fate decisions as NSCs activate and commit to 

differentiation should provide key targets for recruiting NSCs or directing their 

differentiation. The improved definition of the NSC lineage at the single cell level should 

also facilitate the study of NSCs in the context of aging and disease.

Summary of Experimental Procedures

NSC isolation from adult mouse brains

For single cell RNA-seq library generation of in vivo cells, four 3-month old male GFAP-

GFP mice (Jax cat #003257) were euthanized, and brains were immediately harvested. As 

described in (Codega et al., 2014), the SVZ from each hemisphere was micro-dissected. The 

SVZ was dissociated with enzymatic digestion with papain for 10 min at a concentration of 

14U/mL. The dissociated SVZ was then titrated in a solution containing 0.7mg/mL 

ovomucoid, and 0.5 mg/mL DNAseI in DMEM/F12. The dissociated SVZ was then 

centrifuged through 22% Percoll in PBS to remove myelin debris. Following centrifugation 

through Percoll solution, cells were washed with FACS buffer (HBSS, 1% BSA, 1% 

Glucose). Antibody staining was carried out in FACS buffer at the following dilutions: 

Prom1-Biotin (eBioscience Cat.#13-1331-80 [1:300]), EGF-AlexaFluor 647 (Life 

Technologies Cat. #E35351 [1:300]), CD24-PacBlue (eBioscience Cat.#48-0242-80 

[1:400]), CD31-PE (eBioscience Cat.#12-0311-81 [1:50]), CD45-BV605 (Biolegend 

Cat.#110737 [1:50]), Strep-PECy7 (eBioscience Cat.#25-4517-82 [1:500]). FACS sorting 
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was performed on a BD FACS Aria II sorter, using a 100μm nozzle at 13.1 PSI. Cell gates 

were defined as follows (Codega et al., 2014):

Astrocytes: (GFAP-GFP)+ PROM1−CD31−CD24−CD45−

qNSCs: (GFAP-GFP)+PROM1+EGFR−CD31−CD24−CD45−

aNSCs: (GFAP-GFP)+PROM1+EGFR+CD31−CD24−CD45−

NPCs: (GFAP-GFP)−EGFR+CD31−CD24−CD45−

Endothelial Cells: (GFAP-GFP)−CD31−

Cells were sorted into catching media: DMEM/F12 with B27 (1:50), B27 supplement 

(ThermoFisher, no Vitamin A, 1:50), N2 supplement (ThermoFisher, 1:100), 15mM HEPES 

buffer, 0.6% glucose, Penicillin-Streptomycin-Glutamine (Life Technologies, 1:100), and 

Insulin-Transferrin-Selenium (Life Technologies, 1:1000). Cells were then spun down at 

300×g at 4°C and resuspended in catching media at a concentration of 300 cells/μL.

Single cell RNA-seq library preparation

A 300 cell/μL cell solution was mixed at a 7:3 ratio with the Fluidigm C1 Suspension 

reagent and this solution was loaded onto a small size (5–10μm) Fluidigm C1 Single-Cell 

Auto Prep chip for all in vivo single cells studied and medium size (10–17μm) Fluidigm C1 

Single-Cell Auto Prep chip for in vitro cultured neurosphere derived single cells. Live/dead 

staining was performed using the Fluidigm Live/Dead Cell Staining Solution as described in 

the Fluidigm C1 mRNA seq protocol and imaged using a Leica DMI4000B microscope. 

Reverse transcription was performed directly on the chip using the SMARTer chemistry 

from Clontech, and PCR was also performed on the chip using the Advantage PCR kit 

(SMARTer Ultra Low RNA Kit for the Fluidigm C1, Clontech #634832). Resulting cDNA 

was transferred to a 96 well-plate and a subset of representative samples were analyzed by 

bioanalyzer. A quarter of the cDNA for each library was quantified using the Quant-iT 

PicoGreen dsDNA Assay Kit (ThermoFisher Cat.# P11496) and verified to be within a 

range of 0.1–0.5ng/μL (or diluted when necessary with the C1 DNA dilution buffer). 

Sequencing libraries were prepared directly in a 96-well plate using the Nextera XT Library 

Preparation Kit (Illumina Cat. # FC-131-1024). Each library was individually barcoded 

using the Nextera XT 96-Sample Index Kit (Illumina Cat. # FC-131-1002), and all 96 bar-

coded libraries from each chip were pooled into single multiplexed libraries. The DNA 

concentration of multiplexed libraries was measured using BioAnalyzer. These multiplexed 

libraries were sequenced using either the Illumina MiSeq (Illumina) or HiSeq2000 

(Illumina) at a concentration of 2 pM. Details can be found in Table S1.

Construction of machine learning model and determination of consensus-ordering genes

We carried out a four-way classification between the following groups that correspond to 

key states/subpopulations: qNSCs, ‘cell-cycle low’ aNSCs, ‘cell-cycle high’ aNSCs, and 

NPCs. Classification was carried out by implementing a stochastic gradient boosted 

classification model using the R CRAN package GBM v2.1.1. Briefly, 20 single cells from 

each group (training set) were randomly selected and subjected to GBM modeling as 

implemented by the Caret package v.6.0–58 in R. Accuracy of the model was tested on cells 
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that were not used for the training set. The GBM classification was bootstrapped by 

repeatedly sampling 20 cells from each group and building an independent model. In total, 

100 GBM models were built. Following construction of the models, the top 100 features 

from each of the 100 models were obtained. A consensus set of ordering genes was built 

using genes that were in the top 100 most important features of at least half of the 

classification models, or in the top 100 most important features of at least 25% of the models 

(Table S7).

Ordering cells with Monocle using consensus-ordering genes

Monocle ordering was conducted for all qNSC, aNSC, and NPC cells using the set of 

consensus-ordering genes (Table S7A) identified by machine learning. The expression of 

genes of interest was plotted with respect to pseudotime. The resulting pseudotime 

expression spectrum was divided according to the expression of genes of interest. The 

approach used to divide the pseudotime expression spectrum is enumerated below:

qNSC-like to aNSC-early – Earliest pseudotime at which Rpl4, Rpl32, and Egfr are 

predominantly expressed.

aNSC-early to aNSC-mid – Earliest pseudotime at which Ccna2, Cdk1, and Ccnb2 
are predominantly expressed.

aNSC-mid to aNSC-late– Earliest pseudotime at which Dlx1 and Dlx2 are 

predominantly expressed.

aNSC-late to NPC-like – Earliest pseudotime at which Nrxn3, Dlx6as1, and Dcx are 

predominantly expressed.

Differential expression between the putative groups was conducted using the R package 

SCDE v1.2.1 (Kharchenko et al., 2014) and genes were ranked by Z-score for differential 

expression between groups. Pathway enrichment was performed on ranked lists using 

GSEA, using GO Biological Process and lists related neuroepithelial cell identity (Lein et 

al., 2007) lists.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single cell RNA-seq to characterize adult neural stem cell populations

• Machine learning and pseudotemporal ordering shows a continuum in the 

lineage

• Validation of an intermediate state in the neural stem cell population

• Meta-analysis with other in vitro and in vivo single cell datasets
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Figure 1. Single cell RNA-seq of 329 cells from four populations of FACS-purified cells from the 
SVZs of adult mice
(A) FACS-sorting scheme for the enrichment of astrocytes, qNSCs, aNSCs, and NPCs from 

the SVZs of adult mice, and microfluidic-based single cell RNA-seq library generation and 

sequencing. Checkered bar in the FACS-sorting scheme indicates that the presence of 

Prominin 1 was not selected for. Note that while Prominin 1 enriches for NSCs, the astrocyte 

population could contain some qNSCs and the qNSC population could contain some 

astrocytes (Codega et al., 2014).

(B) Principal component analysis (PCA) on all 329 high-quality single cells.

(C) 3-dimensional PCA on all 288 cells excluding oligodendrocyte-like cells and seven 

outlying cells.
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Figure 2. Ordering of single cells from populations of qNSCs, aNSCs, and NPCs reveals 
transcriptional dynamics, and suggests intermediary states
(A) Minimum spanning tree generated for all qNSCs, aNSCs, and NPCs ordered by 

Monocle using all detected genes.

(B) Expression of key genes associated with quiescence (Id3), activation (Egfr and Rpl32) 

and cell cycle (Cdk1 and Ccna2) (FPKM) in each cell plotted with respect to pseudotime 

produced by Monocle in Figure 2A. Cells are color-coded by their FACS-sorting identity.

(C) Histogram of Ki67 fluorescence values measured by intracellular FACS in purified 

populations of qNSCs, aNSCs, and NPCs. Histogram values normalized to mode.
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(D) Percentage of Ki67-negative cells measured by intracellular FACS in purified 

populations of aNSCs and NPCs. Two-sided Wilcoxon signed-rank test. ** p≤0.005.

(E) Machine learning algorithm to obtain consensus-ordering genes. The list of consensus-

ordering genes is in Table S7.

(F) Minimum spanning tree generated for all qNSCs, aNSCs, and NPCs ordered by Monocle 

using FPKM of the consensus-ordering genes (Table S7A).

(G) Expression (FPKM) of key genes related to quiescence (Id3), activation (Egfr and 

Rpl32), cell cycle (Cdk4 and Cdk1), and neuronal differentiation (Dlx2, Dcx) (FPKM) in 

each cell is plotted with respect to pseudotime produced by Monocle when all qNSCs, 

aNSCs, and NPCs are ordered using the consensus-ordering genes. Cells are color-coded by 

their FACS-sorting identity (indicated on top). Bottom: name of the intermediary states 

(qNSC-like, aNSC-early, aNSC-mid, aNSC-late, and NPC-like).
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Figure 3. Activated NSCs can be divided into specific subpopulations, defined by the expression 
of defined genes, along the spectrum of activation and differentiation
(A) Diffusion map using the 2500 most variable genes in the dataset for all qNSCs, aNSCs, 

and NPCs. Cells are colored by the identity of the intermediate states defined in Figure 2G.

(B) PCA using the consensus-ordering genes (Table S7A) for all qNSCs, aNSCs, and NPCs. 

Cells are colored as in Figure 3A.

(C) Spanning tree produced by Monocle when all qNSCs, aNSCs, and NPCs are ordered 

using the consensus-ordering genes (Table S7A). Black line represents pseudotime “track” 

through the single cell lineage. Cells are colored as in Figure 3A.

(D) Expression (FPKM) of genes relevant to the transition between the indicated stages in 

each cell, plotted with respect to pseudotime produced by Monocle when all qNSCs, aNSCs, 
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and NPCs are ordered using the consensus-ordering genes (Table S7A). Cells are colored as 

in Figure 3A.

(E–H) Gene-set enrichments for genes ranked by Z-score for differential expression between 

cells in intermediate states defined in Figure 3A. Enrichments expressed as [−log10(FDR)] 

and directionality and color indicate the intermediate state in which the gene set is enriched. 

Gene sets presented are those for which FDR<0.2.

(I) Expression (FPKM) of markers of astrocytes (Atp1a2, Gja1, Ntsr2) and neurogenesis 

(Dlx1, Dlx2) in each cell plotted as a function of pseudotime. GLAST (Slc1a3), a marker of 

astrocytes that was previously used in FACS sorting studies is presented as a comparison on 

top. Cells are colored as in Figure 3A.

(J) Markers of astrocytes (Atp1a2, Ntsr2, Gja1) and mediators of self-renewal (Jag1, Fgfr3) 

are correlated with each other and are anticorrelated with early markers of neuronal 

differentiation (Dlx1, Dlx2) in aNSC-mid and aNSC-late cells. Carpet plot showing 

correlation (Spearman’s rho) between individual genes in all aNSC-mid and aNSC-late cells.
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Figure 4. Experimental validation of the difference between aNSC-mid and aNSCs-late 
subpopulations by separating aNSCs based on level of GFAP-GFP expression by FACS
(A) Predicted GFP fluorescence states of aNSCs from a GFP-high state in which the GFAP-

GFP promoter is active to a GFP-low state in which the cells have committed to 

differentiation but retain some GFP, and finally to the NPC state which do not express GFP.

(B–E) (upper) Gene expression in single cells grouped by molecular subtype as defined in 

Figure 3. Gene expression expressed as log2(FPKM+1). (lower) Gene expression measured 

by RT-qPCR in subpopulations of aNSCs divided by their level of GFAP-GFP expression 

(GFAP-GFP high aNSC, GFAP-GFP mid aNSC, GFAP-GFP low aNSC) and NPCs. P-value 

from one-sided Wilcoxon signed-rank test. * p≤0.05.
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(F) Correlation between expression of key markers of NSCs and neurogenesis in aNSC 

populations divided by GFAP-GFP. Carpet plot showing correlation (Spearman’s rho) 

between individual genes in all aNSC-subpopulations divided by level of GFAP-GFP. Color 

of box indicates correlation (Spearman’s rho) between a given gene pair (scale on upper 

left).
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Figure 5. In the spectrum of NSC activation and differentiation in vivo, in vitro cultured NSCs 
resemble aNSCs but exhibit a signature of inflammation
(A) Preparation of single cell RNA-sequencing libraries from passage 3 neurospheres (NS) 

derived from FACS-sorted aNSCs.

(B) PCA with qNSCs, aNSCs, and NPCs using expression [log2(FPKM+1)] of the 

consensus-ordering genes from machine learning models (Table S7A). NS single cells are 

projected onto the resulting principal component space. Cells are colored by identity defined 

in Figure 2G and NS single cells are black.

(C) Gene-set enrichments for genes ranked by Z-score for differential expression between 

single NS cells and in vivo aNSCs and NPCs. Enrichments expressed as [−log10(FDR)] and 

directionality and color indicate the intermediate state in which the gene set is enriched 

(FDR<0.2).
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(D) Expression of genes associated with astrocyte identity, self-renewal, and neurogenesis in 

in vitro NS single cells and in vivo NSCs. Violin plots showing gene expression in the 

cellular states defined in Figure 2G as well as in NS single cells.

(E) Expression of genes associated with inflammatory signatures in single NS cells and in 
vivo NSCs. Data presented as in Figure 5D.
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Figure 6. Meta-analysis to compare single cell identities of SVZ NSCs isolated using divergent 
FACS-sorting strategies
(A) Comparison of FACS sorting schemes implemented in our study and in the Llorens-

Bobadilla study.

(B) PCA on all qNSCs, aNSCs, and NPCs from our study, using the expression [log2(FPKM

+1)] of the 2500 most variable genes in these cells. All NSCs and TAPs from the Llorens-

Bobadilla study are projected on to the resulting principal component space. Cells colored 

by FACS sorting identity indicated on the right.

(C–D) Regulators of activation and differentiation exhibit similar dynamics in NSCs and 

progeny isolated by divergent FACS sorting schemes. Expression (FPKM) of key markers of 
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activation and differentiation in each cell plotted as a function of pseudotime generated by 

Monocle ordering using the consensus-ordering genes identified by machine learning (Table 

S7A) for (C) all qNSCs, aNSCs, and NPCs from our study and (D) NSCs and TAPs 

analyzed in Llorens-Bobadilla, et al. 2015. Cells colored by FACS-sorting identity, indicated 

on top.
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Figure 7. Meta-analysis to compare global pseudotime-dependent gene expression in various 
single cell datasets
(A) Schematic outlining the approaches for generating pseudotime expression heatmaps and 

for correlating gene rankings by average pseudotime of expression (APE, see Supplemental 

Experimental Methods) for different single cell datasets.

(B) Heatmap representing the expression of all detected genes ranked by APE defined in our 

study. Expression plotted as a function of pseudotime. Left panel: expression from our study 

(qNSCs, aNSCs, and NPCs), pseudotime defined by Monocle ordering using consensus-

ordering genes identified by machine learning (Table S7A). Right panel: expression from the 

Llorens-Bobadilla study (NSCs and TAPs), pseudotime defined by Monocle ordering using 

consensus-ordering genes (Table S7A).
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(C) Heatmap representing expression of the 20 genes with highest values of APE (expressed 

most exclusively in NPCs) in our dataset. Left panel: expression from our study (qNSCs, 

aNSCs, and NPCs), pseudotime defined as in Figure 7B. Right panel: expression from the 

Llorens-Bobadilla study (NSCs and TAPs), pseudotime defined as in Figure 7B.

(D) Smooth scatter plot representing gene ranks by average pseudotime of expression (APE) 

in (x-axis) qNSCs, aNSCs, and NPCs from our study ordered by Monocle using the 

consensus-ordering genes identified by machine learning (Table S7A) and (y-axis) NSCs 

and TAPs from the Llorens-Bobadilla study ordered by Monocle using the consensus-

ordering genes identified by machine learning (Table S7A) (Spearman’s rho = 0.63, p < 

2.2e−16).

(E) Smooth scatter plot representing gene rankings by average pseudotime of expression 

(APE) in (x-axis) qNSCs, aNSCs, and NPCs from the current study ordered as in Figure 7D 

and (y-axis) differentiating myoblasts ordered by Monocle from (Trapnell et al., 2014) 

(Spearman’s rho = 0.17, p < 2.2e−16).

(F) Smooth scatter plot representing gene rankings by average pseudotime of expression 

(APE) in (x-axis) qNSCs, aNSCs, and NPCs from our study ordered as in Figure 7D and (y-
axis) hippocampal NSCs ordered by Waterfall in the study by Shin and colleagues (Shin et 

al., 2015) (Spearman’s rho = 0.38, p < 2.2e−16).
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