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Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is characterized by poor cognitive control/

attention and hypofunctioning of the dorsal anterior cingulate cortex (dACC). In the current

study, we investigated for the first time whether real-time fMRI neurofeedback (rt-fMRI) train-

ing targeted at increasing activation levels within dACC in adults with ADHD leads to a

reduction of clinical symptoms and improved cognitive functioning. An exploratory random-

ized controlled treatment study with blinding of the participants was conducted. Participants

with ADHD (n = 7 in the neurofeedback group, and n = 6 in the control group) attended four

weekly MRI training sessions (60-min training time/session), during which they performed a

mental calculation task at varying levels of difficulty, in order to learn how to up-regulate

dACC activation. Only neurofeedback participants received continuous feedback informa-

tion on actual brain activation levels within dACC. Before and after the training, ADHD symp-

toms and relevant cognitive functioning was assessed. Results showed that both groups

achieved a significant increase in dACC activation levels over sessions. While there was no

significant difference between the neurofeedback and control group in clinical outcome, neu-

rofeedback participants showed stronger improvement on cognitive functioning. The current

study demonstrates the general feasibility of the suggested rt-fMRI neurofeedback training

approach as a potential novel treatment option for ADHD patients. Due to the study’s small

sample size, potential clinical benefits need to be further investigated in future studies.

Trial Registration: ISRCTN12390961

PLOS ONE | DOI:10.1371/journal.pone.0170795 January 26, 2017 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Zilverstand A, Sorger B, Slaats-Willemse

D, Kan CC, Goebel R, Buitelaar JK (2017) fMRI

Neurofeedback Training for Increasing Anterior

Cingulate Cortex Activation in Adult Attention

Deficit Hyperactivity Disorder. An Exploratory

Randomized, Single-Blinded Study. PLoS ONE

12(1): e0170795. doi:10.1371/journal.

pone.0170795

Editor: Dewen Hu, National University of Defense

Technology College of Mechatronic Engineering

and Automation, CHINA

Received: July 14, 2016

Accepted: January 10, 2017

Published: January 26, 2017

Copyright: © 2017 Zilverstand et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data have been

uploaded as supplementary files.

Funding: The authors gratefully acknowledge the

support of Netherlands Organisation for Scientific

Research (Rubicon fellowship 446-14-015 to A.Z.;

http://www.nwo.nl/en) and the BrainGain Smart

Mix Program of The Netherlands Ministry of

Economic Affairs and The Netherlands Ministry of

http://www.isrctn.com/ISRCTN12390961
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170795&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170795&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170795&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170795&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170795&domain=pdf&date_stamp=2017-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0170795&domain=pdf&date_stamp=2017-01-26
http://creativecommons.org/licenses/by/4.0/
http://www.nwo.nl/en


Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a childhood-onset neuropsychiatric dis-

order characterized by a pervasive pattern of inattention, and/or hyperactivity and impulsivity

[1,2]. The disorder persists into adulthood in one third of the cases or more, with prevalence

in adults being 2–4% [3–5]. The first-line treatment is prescription of medication, mostly psy-

chostimulants. However, response rates in adults are only 20–50% [6], evidence for long-term

efficacy of medication is inconsistent [7] and there are concerns about potential side-effects of

long-term use of medication [8]. Consequently, novel non-pharmacological treatments are

currently being developed, among which electroencephalography (EEG) neurofeedback. Neu-

rofeedback training aims at the remediation of aberrant neuronal functioning, by allowing

participants to gain self-control over certain brain-signal aspects, such as theta/beta frequency

ratio in EEG neurofeedback training.

A systematic and comprehensive meta-analysis of non-pharmacological treatments for

ADHD documented significant treatment effects for EEG neurofeedback, but effects were sub-

stantially attenuated when the assessment of outcome was based on blinded raters [9]. A recent

double-blind randomized placebo-controlled EEG-neurofeedback study in children and ado-

lescents with ADHD was unable to establish positive treatment effects on clinical symptoms

and neurocognitive performance after frequency neurofeedback was compared to placebo-

neurofeedback [10,11]. Consequently, this has spurred interest into the development of alter-

native neurofeedback methods, as for example neurofeedback based on real-time functional

magnetic resonance imaging (rt-fMRI), which may be advantageous due to its higher spatial

resolution and full brain coverage when compared to EEG. Current state of the art real-time

processing techniques allow using fMRI signal for guided self-regulation of brain activation

aimed at normalization of deviant brain activation patterns [12]. Importantly, participants are

able to control specific aspects of their brain activation patterns, leading to specific changes in

behavior [12,13]. For example, up-regulation of activation levels in the motor network has

been shown to lead to shorter reaction times in a motor task [14], while up-regulation of the

speech network improved accuracy in a language task ([15], for review see [16]). Further,

exploratory investigations have indicated a benefit of rt-fMRI guided up- or down-regulation

in clinical populations with chronic pain, tinnitus, Parkinson’s disease, stroke, mood and anxi-

ety disorders [17–23]. However, the efficacy of rt-fMRI neurofeedback training in ADHD has

not been investigated so far.

The current study was designed to target impaired cognitive control and attention in adults

with ADHD by neurofeedback guided self-regulation of dorsal anterior cingulate cortex

(dACC). Impaired cognitive control and attention are the most consistently found abnormali-

ties in this clinical population, and are associated with deviant functioning of frontal, cingulate

and parietal cortical brain regions [24]. The dACC is the brain region that has been most often

linked to core ADHD symptoms [24]. Neuroimaging research using fMRI demonstrates hypo-

activation of dACC in patients with ADHD, compared to non-ADHD individuals, specifically

during tasks that require effortful control, e.g., interference tasks, continuous performance

tests, switch tasks, and response inhibition tasks [24–29]. Moreover, hypo-activation of the

dACC was found to normalize after successful treatment with ADHD medication [26], sug-

gesting that normalization of dACC activity is a crucial component of a successful treatment.

The aim of the current study was to train individuals with ADHD to voluntarily up-regulate

activation levels in the dACC through rt-fMRI neurofeedback training. We conducted an

exploratory randomized controlled treatment study with blinding of the participants to inves-

tigate first, if self-regulation of dACC activation level could be achieved, and second, if rt-fMRI

neurofeedback training would reduce ADHD symptoms and improve cognitive functioning.
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Participants attended four weekly rt-fMRI neurofeedback training sessions (60-min training

time/session). We assessed ADHD symptoms and cognitive functioning at baseline, a week

prior to the training, and a week after training. Participants in the control group underwent

the same procedure, but were not provided with neurofeedback information.

Methods

Participants

Participants were recruited among referrals to the Department of Psychiatry of the Radboud

University Medical Center (Nijmegen, The Netherlands). Participants were included if: they

were diagnosed with ADHD according to the DSM-IV TR criteria (American Psychiatric

Association, 2000); were older than 18 years; psychotropic drug-naive or -free, or being on a

fixed dose of ADHD medication (psychostimulant, atomoxetine or bupropion) for the study

period; passed fMRI screening criteria; and had an IQ> 90 according to Block Design and

Vocabulary test of the Wechsler Adult Intelligence Scale (WAIS-IV-NL, [30,31]). The adminis-

tered short version (Vocabulary, Block design) was selected due to its high validity coefficient

(0.85) relative to the full intelligence test [32]. Participants were excluded if: they participated

in another clinical trial simultaneously; participated previously in neurofeedback training; had

another significant medical condition or regular use of medication other than ADHD medica-

tion; current diagnosis of one or more Axis-I diagnosis other than ADHD according to the

DSM-IV TR criteria (American Psychiatric Association, 2000) (e.g., depression, psychosis,

tics, autism, eating disorder); current alcohol or drug abuse according to the DSM-IV TR crite-

ria (American Psychiatric Association, 2000). The recruitment for our study started on May

1st, 2013 and the last follow-up was concluded on June 30th, 2014.

The presence of ADHD symptoms in childhood and (current) adulthood was assessed

using a Semi-Structured Interview for ADHD [33] (see http://www.divacenter.eu/). This inter-

view has been used in previous studies of adult ADHD and shown to be both reliable and valid

[4,33–35]. Confirmation of the developmental history and childhood occurrence of ADHD

symptoms was obtained from the parents or, when unavailable, an older sibling of the patient.

In addition, the Dutch version of the ADHD-DSM-IV Rating Scale [36] was completed by

patient, spouse, parent, and investigator to gather information on the exact DSM-IV criteria

for ADHD in childhood and adulthood. The following was required for assignment of a full

diagnosis of adult ADHD: (1) at least six of the nine DSM-IV criteria for inattention and/or

hyperactivity/impulsivity had to be met for diagnosis of childhood ADHD and at least five of

the nine criteria for diagnosis of adult ADHD; (2) a chronic course of persistent ADHD symp-

toms from childhood to adulthood had to be reported; and (3) a moderate to severe level of

impairment that can be attributed to the symptoms of ADHD had to be experienced. The cut-

off point of five out of the nine criteria for diagnosis of adult ADHD is based upon the litera-

ture and epidemiological data using the same DSM-IV ADHD Rating Scale [4,37] and consis-

tent with the DSM-5 algorithm for ADHD.

Eighteen participants volunteered and were screened for inclusion and exclusion criteria.

Five participants had to be excluded because they did not fulfill the IQ criterion (Fig 1, S1

File). Thirteen participants were enrolled in the study (Table 1). Participants were randomly

assigned to a group using a minimization procedure (sequential balancing) with the factors IQ

score, ADHD medication, and the DSM-IV rating scale scores for ADHD symptoms [4]. This

restricted randomization procedure has been shown to be efficient in balancing several factors

in studies with a small sample size [38,39]. The allocation was performed by implementing a

computerized minimization algorithm as described in Borm and colleagues (2005) [39]. Sam-

ple size calculations were performed based on the expected training effect using a repeated
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Fig 1. CONSORT Flow Diagram. Eighteen participants volunteered and were screened, thirteen participants

were included in the study and randomly assigned to a group.

doi:10.1371/journal.pone.0170795.g001

Table 1. Characteristics of study participants.

Variables (Mean +/- SD)

(score pre-testing)

Controls

(n = 6)

Neurofeedback

(n = 7)

Between-Group Test

Gender (male/female) 3 male/ 3 female 3 male/ 4 female p = 0.78

Age 39.8 (15.0) 34.0 (11.0) p = 0.44

IQ (WAIS VC/BD) 112 (14) 110 (9) p = 0.73

ADHD medication (yes/no) 3 yes/ 3 no 3 yes/ 4 no p = 0.73

ADHD attention (DSM-IV score) 6.3 (1.6) 7.0 (1.2) p = 0.41

ADHD impulsivity/hyperactivity (DSM-IV score) 6.2 (2.7) 6.4 (2.2) p = 0.85

Interference (MSIT, interference delay in ms) 360 (28) 365 (60) p = 0.86

Vigilance (SA-DOTS, z-score) 1.0 (2.2) 0.8 (1.4) p = 0.84

Response inhibition (SA-DOTS, z-score) 1.4 (1.4) 2.8 (3.5) p = 0.36

Response inhibition (SART, % error trials) 36% (24%) 31% (24%) p = 0.71

Visual WM accuracy (2-back, % accuracy) 64% (17%) 67% (19%) p = 0.74

Verbal WM (WAIS DS, IQ score) 104 (17) 96 (9) p = 0.31

Verbal WM (WAIS LNS, IQ score) 109 (11) 99 (7) p = 0.07

During the study period, all participants were either on a stable dose or free of medication for ADHD symptoms (control group: one participant: 100 mg/daily of

atomoxetine hydrochloride (Strattera), one participant: 72 mg methylfenidaathydrochloride (Concerta), one participant: 18 mg methylfenidaathydrochloride

(Concerta); neurofeedback group: one participant: 30 mg/daily dexamfetamine, one participant: 15 mg/daily dexamfetamine, one participant: 72 mg/daily

methylfenidaathydrochloride (Concerta)). WAIS = Wechsler Adult Intelligence Scale, ADHD = Attention Deficit Hyperactivity Disorder, VC = Vocabulary,

BD = Block Design, MSIT = Multi Source Interference task, SA-DOTS = Sustained Attention DOTS task, SART = Sustained Attention to Response Task,

WM = Working memory, DS = Digit Span, LNS = Letter Number Sequencing.

doi:10.1371/journal.pone.0170795.t001
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measures design. All participants received a small financial compensation (8 €/hour), and gave
their written informed consent prior to the presented study, which was conducted in conformity
with the Declaration of Helsinki and approved by the localMedical Ethics Committee ‘Commis-
sie Mensgebonden Onderzoek Regio Arnhem-Nijmegen’ on September 27th, 2012 (S2 File).
The study was registered at the ISRCTN registry (http://www.isrctn.com/ISRCTN12390961).
This registrationwas completed after enrolment of participants started, with this delay being due
to oversight. The authors confirm that all ongoing and related trials are registered.

General procedure

After enrollment, participants attended six weekly sessions. A week prior to the training, base-

line ADHD symptoms and cognitive functioning were assessed (pre-test). Then the four

weekly training sessions commenced, and a week after the last training session, the behavioral

post-assessment was done (post-test) (Fig 2). All thirteen included participants were able to

complete all pre- and post-assessments. One participant in the neurofeedback group and one

participant in the control group only participated in three instead of four weekly training ses-

sions, due to technical problems with the MRI scanner. During the 90-min pre-test, partici-

pants first completed the ADHD DSM-IV rating scale [4], then several neuropsychological

tasks to assess cognitive functioning (see description below), and the (short version of the)

intelligence test [31]. During the 90-min post-test, participants completed the same tasks in the

same order, except for the intelligence test. During the first MRI session, all participants,

including the control group, were informed that the goal of the study was to investigate if up-

regulation of dACC activation levels through performing a mental task would have a positive

impact on ADHD symptoms and cognitive functioning. Immediately before the training in

Fig 2. Study design. After enrollment, participants attended six weekly sessions. A week prior to the training,

baseline ADHD symptoms and cognitive functioning were assessed (pre-test). Then the four weekly training

sessions commenced (60-min training time/session). A week after, the last training session, the behavioral

post-assessment, was done (post-test). ADHD = Attention Deficit Hyperactivity Disorder, fMRI = functional

magnetic resonance imaging, NP-test = Neuropsychological tests, MSIT = Multi Source Interference task,

SA-DOTS = Sustained Attention DOTS task, SART = Sustained Attention to Response Task, 2-back

WM = 2-back Working memory task, WAIS = Wechsler Adult Intelligence Scale, DS = Digit Span, LNS =

Letter Number Sequencing, VC = Vocabulary, BD = Block Design, QCM = Questionnaire of Current

Motivation, MCT = Mental Calculation Task.

doi:10.1371/journal.pone.0170795.g002
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the MRI scanner and after the instruction, participants were asked to complete a Question-

naire of Current Motivation to assess their motivational state (QCM, [40]). The QCM mea-

sures individual differences in current motivation and expectation of success using four

different scales: perceived challenge, level of interest, mastery confidence and incompetence fear.

The following rt-fMRI neurofeedback training session consisted of a 7-min anatomical scan,

two 9-min localization runs, used to functionally define the target regions, three 8-min training
runs performed by both groups, providing feedback for neurofeedback participants only, and

an 8-min transfer run, during which both groups did not receive feedback.

Localization of dACC target regions

During the first localization run for detecting individual dACC activation, participants per-

formed the multi-source interference task (MSIT, [41]), which was specifically designed to func-

tionally localize the dACC as the critical node in prefrontal cognitive control/attention circuits

impaired in ADHD [41,42]. This task combines three different tasks to maximally increase

cognitive interference: the Eriksen Flanker task, the Counting Stroop, and the Simon effect

task [42]. Trials were presented blocked as in the original article, using the same trial parame-

ters [41], but inserting an intermittent rest period of 18–24 s between blocks (total duration: 9

min). The dACC target region was defined functionally during online fMRI analysis for each

participant/training session by contrasting activation during interference blocks (interference)

with intermittent rest periods of rt-fMRI data.

In a second dACC localization run, participants were instructed to perform a mental calcu-
lation task (MCT), similar to the mental task they performed during later training runs. This

task has been shown to activate dACC across different task variants [43,44]. During mental cal-
culation blocks, participants were asked to start with the number 100 and keep subtracting a

single digit number, which was selected individually such that the task was of medium diffi-

culty. During the control condition, participants were asked to mentally rehearse a self-

selected song (mental singing task), which was easy and well-known to them. This localization

run included five 26-s blocks of each condition with intermittent 26-s resting periods (total

duration: 9 min). The second dACC localization task was employed to ensure the definition of

the target regions on an individual level in all sessions, to verify functional overlap between the

MSIT and mental calculation task post-hoc, and as warm-up task prior to the neurofeedback

training.

Training procedure

Prior to scanning, all participants were told that the rationale of the mental training was to

train their attention. They were instructed how to vary the difficulty of the mental calculation
task by systematically changing three different task aspects: 1) tempo, 2) magnitude of the

numbers, and 3) variations in the operation rule and asked to practice the task out aloud

under supervision of the experimenter. All instructions for all tasks used in this study were

standardized, supported by computerized visual instructions, given by the same experimenter

and repeated during each scanning session. The specific instructions for the training were

developed based on fMRI studies on activation levels during different arithmetic operations

[43,44], and participants were reminded of these instructions in the scanner at the beginning

of each training run. Participants of both groups were told that the specific task would be cued

by a red box in a visual thermometer display, indicating either: rest (no cue), medium task diffi-
culty (cue at medium height) or high task difficulty (cue at top, S1 Fig). Both groups were asked

to adapt the task throughout the experiment as necessary, in order to maintain an individual

medium and high difficulty level. Participants in the control group were asked to adapt the
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task difficulty levels based on insight, the visual display only served as a cue in this group, as

they were not aware of participating in a neurofeedback study. In the neurofeedback group,

the thermometer display showed the actual activation level of the dACC target region (S1 Fig).

Participants in the neurofeedback group were instructed to adapt the mental calculation per-

formance/difficulty level of the task in order to reach the indicated brain activation level

(medium and high) based on the provided neurofeedback information. Finally, neurofeedback

group participants were demonstrated the common noise level of the fMRI signal and the

delay of the blood-oxygen-level dependent (BOLD) response through a 10-min simulation

program. Both groups were instructed to minimize motion in the scanner and informed that

we would be watching their brain activation levels during the training through rt-fMRI data

analysis.

Each training run consisted of eight 30-s task blocks (four medium/four high level) in

pseudo-randomized order, with intermittent 20-s rest periods (total duration: 8 min). All par-

ticipants performed three training runs per session, followed by an 8-min transfer run during

which no feedback was provided in either group, in order to test knowledge transfer.

MRI imaging parameters

The MRI images were acquired at the Donders Centre for Cognitive Neuroimaging, Radboud

University Nijmegen, on a 3T scanner (Tim Trio, Siemens Healthcare, Germany), equipped

with a 32-channel head coil. Functional images were acquired with a repeated single-shot

echo-planar imaging (EPI) sequence with TE = 30ms, TR = 2000ms, FA = 80˚, FOV =

192x192mm2, matrix = 64x64, voxel size 3x3x3 mm3, bandwidth = 1628Hz/Px, 35 slices per

volume with whole-brain coverage. Anatomical images were collected with a 3D MPRAGE

sequence: TR = 2300 ms, TE = 3.92 ms, FOV = 256x256mm2, voxel size 1x1x1 mm3, 192 slices.

Real-time MRI data analysis

Pre-processing. Anatomical images were processed using BrainVoyager QX (Version 2.7,

Brain Innovation, Maastricht, The Netherlands), and loaded into Turbo-BrainVoyager (Ver-

sion 3.2, Brain Innovation, Maastricht, The Netherlands) for rt-MRI data analysis. After dis-

carding the first four volumes of each functional run, functional and anatomical data were

automatically aligned. Functional data was pre-processed in real-time using intra-session 3D

rigid-body motion correction and linear drift confound predictors. An online voxel-wise gen-

eral linear model (GLM) was computed, convolving the task predictors with a standard two-

gamma hemodynamic response function. The data from the localization runs was additionally

high-pass filtered with a GLM Fourier basis set (3 cycles/run), and thresholded at t = 3 prior to

the definition of the dACC target regions, with an additional cluster threshold of four signifi-

cant voxels.

Localization of dACC target regions. The individual dACC target regions were defined

based on the first localization task (MSIT), contrasting the interference with the rest condition,

as pilot measurements had shown that this contrast was more robust than contrasting interfer-
ence versus no interference, while localizing the same network. If no significant cluster within

dACC could be ascertained using the first localization task’s data (ca. 10% sessions), the dACC

target regions were defined based on the data of the second localization task (MCT), contrast-

ing mental calculation with rest. Generally, the most anterior dACC cluster was selected, as the

anterior dACC showed the strongest under-activation in ADHD patients [26].

Generation of neurofeedback information. For the neurofeedback, the percent signal

change (PSC) in the dACC target region was computed relative to a 14-s baseline from the pre-

vious rest period, being updated after each acquired imaging volume (every two seconds). The
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maximum PSC of the thermometer display was adjusted individually per session to be 150% of

the mean activation level in the dACC target region during the mental calculation condition (if

<0.3% PSC, the activation level during the interference condition of the MSIT was used as a

reference). The maximal PSC displayed in the neurofeedback group increased slightly over ses-

sions (session 1: 0.81%, session 2: 0.86%, session 3: 0.90%, session 4: 0.95%).

Post-hoc analysis of fMRI data

Preprocessing. For post-hoc fMRI data analysis, the same preprocessing parameters as

during real-time data analysis were applied. Additionally, data was spatially normalized to

Talairach space [45] and functional runs during which participants moved more than 5 mm/

degree in any direction/rotation were excluded (one neurofeedback participant: fourth session

training runs 2 and 3, transfer run; one control participant: second session training runs 1 and

2, third session training run 3, fourth session training run 2). FMRI data quality was evaluated

by computing mean displacement (average motion from volume to volume) and temporal sig-
nal-to-noise ratio (tSNR), averaged across voxels within individual dACC target regions after

removal of task activation by regression [46].

Evaluation of dACC localization procedure. To verify the online selection of the dACC

target regions, we conducted a whole-brain random-effects GLM analysis, thresholding maps

using an initial voxel-threshold of α = 0.05 [47] and correcting for multiple comparisons using

cluster-size thresholding with a cluster-level false positive rate of α = 0.05 [47,48]. The con-

trasts of interest were interference vs. no interference and mental calculation vs. mental singing.

To further evaluate task performance across groups, a region-of-interest analysis of the BOLD

response in the dACC target regions was performed. The estimated beta weights of the average

BOLD response were extracted, and analyzed in SPSS Statistics (IBM SPSS Statistics 21; IBM

Corporation, Armonk, NY, USA). They were submitted to statistical analysis using repeated

measures GLM with linear contrasts, modeling the factors task (interference, no interference;
mental calculation, mental singing) and time (session). Effect sizes were estimated using partial

eta squared (ηp), which describes the proportion of the total variability in the dependent vari-

able attributable to an effect [49].

Evaluation of training performance. To evaluate self-regulation performance during

training and transfer runs, the estimated beta weights of the dACC target regions for these runs

were extracted and submitted to a repeated measures GLM with linear contrasts, modeling the

factors task (50% difficulty, 100% difficulty), time (run, session) and group (neurofeedback, no
feedback). To further evaluate the nature of learning effects, additional planned comparisons

were conducted to evaluate at which point of the training activation levels increased (compari-

sons: session one vs. two, session two vs. three and session three vs. four). Bonferroni correc-

tion was applied to correct for multiple comparisons. Finally, questionnaire data (QCM) was

analyzed using the factors time (session) and group (neurofeedback, no feedback).
Exploration of performance-predicting factors. To explore which factors may predict

successful performance in neurofeedback training, an exploratory analysis was conducted

investigating if baseline cognitive functioning would predict performance during self-regula-

tion. Three performance indices were calculated based on the extracted beta weights from the

dACC target regions. First, an index of general task performance (mean activation level across

all sessions and activation-level conditions), second, an index of improvement over sessions
(increase in activation level over sessions) and third, an index of improvement in differential
modulation (increase in differential activation between 50% vs. 100% difficulty over consecutive

sessions, S2 Fig). Correlations between performance indices and cognitive performance during

pre-test neuropsychological were computed.
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Pre-post behavioral assessment

Individuals with ADHD are found to exhibit significant impairments with medium effect

sizes on a range of executive functioning tasks. The strongest and most consistent perfor-

mance deviations are found for sustained attention tasks requiring response inhibition or

vigilance, as well as working memory tasks, particularly when spatial working memory is

required [50,51]. We employed several tasks shown to be sensitive measures of neuropsycho-

logical functioning in ADHD patients. All computerized tasks used were programmed and

presented using Presentation software package (Version 16, Neurobehavioral Systems Inc.,

Albany, CA, USA).

The first continuous performance tasks employed was the Sustained Attention Dots task

(SA-DOTS, [52]). The SA-DOTS is a computerized visual sustained attention task, during

which 50 series of twelve dot patterns are presented randomly, a total of 600 dot patterns (15

min). Participants are required to press “yes” when a four-dot patterns are presented (target,

1/3 of trials), and “no” for three/five-dot patterns (non-targets, 2/3 of trials). Missed targets are

considered an index of failed response inhibition, while false alarms are assumed to reflect vigi-

lance [53,54]. The SA-DOTS has an excellent test-retest reliability (0.90–0.94), and provides

performance z-scores in reference to a normed age sample [55]. It has also been shown to dis-

criminate ADHD patients from healthy controls [53,54].

The second continuous performance task administered was the computerized Sustained

Attention to Response Task (SART, [56]). During 216 trials, one single digit numbers (1–9)

is presented each trial (6 min). Participants are instructed to press a button after each digit,

withholding their response only when a ‘3’ is presented (non-target, 11% of trials). Due to the

high number of targets (89% of trials), a strong response bias towards pressing the button is

induced, making this task sensitive for detecting impairments of response disinhibition,

which are indexed by the number of false alarms. The task has been shown to be sensitive to

discriminating ADHD patients from healthy controls [57,58].

To assess visual working memory, a computerized 2-back visuospatial task was employed

(2-back WM, [59]). During each trial, a white square light up at one of nine possible locations

on the computer screen. Participants are asked to press a button when the square appears at

the same location as two trials ago (25% of trials). In total 10 sequences of 15 trials are pre-

sented (9 min). The main outcome measure for indexing working memory performance is the

proportion of correct trials, which is calculated by subtracting the proportion of misses and

false alarms from the total number of trials. This task has shown to be sensitive to working

memory impairments in ADHD patients [59].

For assessment of verbal working memory, two subtests from the standardized WAI-

S-IV-NL, the Digit Span and Letter-Number Sequencing task, were used. Both were adminis-

tered verbally, following standard procedures [31]. For both subtests age-referenced norm

scores were calculated. The Digit Span has shown to be discriminative in detecting working

memory impairments in ADHD [50], has a very good internal consistency (>0.85), and an

adequate test-retest reliability (>0.75) [60].

To monitor changes due to repeated training of the first dACC localization task, the MSIT,

this task was also performed during pre- and post-testing. We analyzed interference delay, the

slow-down in reaction time during interference trials relative to no interference trials, as a mea-

sure of capacity to deal with cognitive interference [42].

The MSIT interference delay, pre- and post-scores on the ADHD attention and impulsivity

scale and all behavioral pre- and post-test scores were analyzed in SPSS Statistics, using change
(pre-test, post-test) and group (neurofeedback, no feedback) as a factor.
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Results

Participants

At baseline, participants reported on average of seven out of nine ADHD attention symptoms

and six out of nine ADHD hyperactivity/impulsivity symptoms, and slightly above average IQ

(Table 1). Three participants in the control group and three participants in the neurofeedback

group were on a stable doses of medication (Table 1). During pre-test, participants performed

below standards of healthy control groups. They responded 17% slower on the cognitive inter-

ference task (MSIT [42]), performed 0.9 SD below the norm on vigilance and 2.1 SD below the

norm on response inhibition (SA-DOTS [52]), demonstrated a marked increase of false alarms

(34% vs. 12% in healthy) during the second response inhibition task (SART [58]), and marked

decrease in accuracy (66% vs. 78% in healthy) in the visual working memory task (WM 2-

back, [59]) (Table 1).

Localization of dACC target regions

The post-hoc analysis of the two localization tasks showed that both localizer tasks, the MSIT

and the MCT, activated the dACC (Fig 3A and 3B). Both localizers had a similar activation

focus, activating overlapping voxels within the dACC (Fig 3A and 3B). The individual dACC

target regions defined online coincided well with the region activated during the localization

tasks (Fig 3A–3C). The coordinates of the dACC target regions were similar across groups

and sessions (S1 Table), and the coordinates were similar as shown by previous studies with

ADHD patients [26].

The region-of-interest analysis evaluating performance during localization runs revealed

that across groups participants showed significantly higher activation in the dACC target

regions during the interference vs. no interference condition (F(1,11) = 19.6, p < 0.001,

ηp
2 = 0.64, Fig 4) and the mental calculation vs. mental singing condition (F(1,11) = 9.2,

p < 0.01, ηp
2 = 0.45, Fig 4). Further, there were no significant changes in activation levels

across sessions (linear change over sessions: MSIT: F(1,11) = 0.24, p = 0.63; MCT: F(1,11) =

Fig 3. Localization of dACC target regions. Activation during the localization tasks is depicted for the interference task (MSIT,

panel A, peak activation x = 8, y = 10, z = 45, Talairach space) and the mental calculation task (MCT, panel B, peak activation x =

-8, y = 10, z = 48, Talairach space). To verify if the targeted dACC region was localized/defined within the online procedure, a

whole-brain random effects GLM analysis (p<0.05, corrected at cluster level) was performed for the contrast interference vs. no

interference (MSIT, panel A), and the contrast mental calculation vs. mental singing (MCT, panel B). Panel C depicts the location of

the online defined individual dACC target regions around their average location (x = 2, y = 15, z = 39, Talairach space,

neurofeedback group = blue tints, control group = green tints). The slightly more anterior location of the dACC target regions

respective to the peak of activation may have resulted from a preference for the most anterior clusters during the localization

procedure, which have been shown to be hypo-activated in ADHD patients [26].

doi:10.1371/journal.pone.0170795.g003
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Fig 4. Activation levels within dACC target regions during localization tasks. Participants across groups

showed significantly increased activation levels in the dACC target region during the interference condition of

the MSIT (panel A, marked with an asterisk), and the mental calculation condition of the MCT (panel B). There

were no changes in performance over time, confirming that both groups consistently performed the task as

instructed.

doi:10.1371/journal.pone.0170795.g004
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1.6, p = 0.23, Fig 4) and no significant group differences during performance of either task

used during the localization procedure (MSIT: F(1,11) = 0.02, p = 0.90; MCT: F(1,11) =

0.005, p = 0.94). In summary, both groups consistently performed the two localization tasks
as instructed without any indication of a change in performance over time.

Training data

The analysis of self-regulation performance during the training runs revealed learning effects

in both groups. While there was no significant group difference (F(1,11) = 0.8, p = 0.38), both

groups showed a marked and significant increase in activation level between the second and

the third session, with activation levels remaining high until the end of the training (F(1,11) =

8.4, p< 0.05, ηp
2 = 0.43, Fig 5A, S3 File), demonstrating that both groups were able to sustain

this increase in activation levels until the end of training. In the neurofeedback group, the

observed increase of activation levels from the first to the last session was slightly stronger than

in the control group. Further, participants of both groups were not able to differentially up-

regulate dACC activation to different target levels (medium and high activation level) during

the 50% and 100% difficulty condition (F(1,11) = 0.1, p = 0.81). A similar pattern was observed

for the transfer runs, during which neither group received feedback. There was no significant

group difference between neurofeedback and control participants (F(1,11) = 0.3, p = 0.61), but

a trend indicated that both groups learned to increase their dACC activation levels from the

third training session onwards (F(1,11) = 7.4, p-corrected = 0.06, ηp
2 = 0.40, Fig 5B). Again,

both groups were not able to differentially up-regulate dACC activation to different target lev-

els (medium and high activation level) (F(1,11) = 0.9, p = 0.36). In summary, both the data

from the training runs, as well as from the transfer runs support the conclusion that learning

took place in both groups and that participants were able to maintain upregulation effects

until the end of training. The results demonstrate that all participants achieved the expected

up-regulation of dACC target region activation levels with training and achieved the same

increase during transfer runs, when no feedback was provided.

To evaluate which factors may have predicted dACC self-regulation performance, addi-

tional analyses regarding MRI data quality, effects of motivation and neuropsychological pre-

dictors of performance indices were performed. The exploratory analysis of motion during the

training runs showed that participants in the neurofeedback group moved significantly less

during the training (mean displacement: F(1,10) = 4.8, p = 0.05, ηp
2 = 0.33, S3A Fig), even

though both groups received the same instruction not to move in the scanner. While fMRI

data quality in the neurofeedback group was high (average tSNR = 145), it was significantly

reduced in the control group (average tSNR = 98) (F(1,10) = 5.5, p< 0.05, ηp
2 = 0.36, S3B Fig).

This decrease in fMRI data quality in the control group was linked to individual motion, the

two measures were highly correlated within both groups (neurofeedback group: r = -0.77,

p<0.001; control group: r = -0.61, p<0.001, S3C Fig). Importantly, neither ability to refrain

from motion, nor fMRI data quality changed over time (linear change over sessions: motion

F(1,10) = 0.45, p = 0.52; tSNR F(1,10) = 0.89, p = 0.37). However, individual ability to refrain

from movement did predict better general task performance in the neurofeedback group (r =

-0.79, p<0.05, S2 Table).

In contrast to motion parameters, motivation, as measured by the QCM, did change

over time. At the end of training, participants perceived the training to be less challenging

after (F(1,11) = 12.1, p < 0.01, ηp
2 = 0.52) and showed slightly decreased level of interest

(F(1,11) = 11.5, p < 0.01, ηp
2 = 0.51). Contrary to this, mastery confidence increased with a

greater number of sessions (F(1,11) = 5.0, p< 0.05, ηp
2 = 0.31). Overall, general motivation

scores were high and comparable to levels measured in previous neurofeedback training
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Fig 5. Activation levels within dACC target regions during MRI training and transfer runs. The results

demonstrate that all participants achieved the expected up-regulation of activation levels within the dACC

target regions with training. Both groups showed a marked and significant increase in dACC activation level

from the third session onwards, which was evident during training runs (panel A, marked with an asterisk), and

marginally significant during transfer runs (panel B). Importantly, participants were able to sustain increased

activation levels until the end of training. There were no significant group differences and neither group

demonstrated ability to differently up-regulate the dACC activation levels during the medium and high difficulty

condition.

doi:10.1371/journal.pone.0170795.g005
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studies [22]. Importantly, no group differences in motivation emerged over time, with neu-

rofeedback participants perceiving the training as generally more challenging (F(1,11) =

8.5, p < 0.05, ηp
2 = 0.44, S4 Fig). Further, individual motivation levels during training did

not predict performance during dACC self-regulation (S2 Table).

The exploratory analysis of neuropsychological predictors of the self-regulation perfor-

mance during dACC revealed that neither IQ, nor ADHD attention or impulsivity score

were predictive of performance (S2 Table). However, both better ability to inhibit responses

and higher accuracy on working memory tasks predicted larger improvement over sessions in

the neurofeedback group only (response inhibition false alarms: r = -0.88, p<0.05; WM accu-

racy r = 0.86, p<0.01, S2 Table). Similarly, better individual scores on response inhibition

and working memory predicted larger improvement in differential modulation in the neuro-

feedback group only (response inhibition % missed: r = -0.91, p<0.01; WM accuracy r =

0.80, p<0.05). On individual level, higher capacity for inhibitory control during self-regula-

tion and better working memory thus lead to improved performance in the neurofeedback

group only.

Pre-post behavioral assessment

Behavioral assessment after four weeks of training revealed that the neurofeedback group

improved slightly, but not significantly, on both the ADHD attention and impulsivity score,

while the control group improved slightly, but not significantly, regarding impulsivity

(Table 2, S4 File). Both groups showed a significant improvement during post-test relative to

baseline on the cognitive interference task, which was administered both during pre- and post-

testing as well as during the dACC localization procedure of each MRI session (MSIT interfer-

ence delay: F(1,11) = 31.2, p< 0.001, ηp
2 = 0.75, see Table 2 for pre-post behavioral assess-

ment). Finally, while differences between groups during post-test neuropsychological testing

did not reach statistical significance, participants of the neurofeedback group only showed sig-

nificant improvement on cognitive functioning. During post-test, the neurofeedback group,

but not control participants, performed significantly better on the sustained visual attention

task (SA-DOTS response inhibition: F(1,6) = 5.9, p = 0.05, ηp
2 = 0.50, Table 2), improving

their performance by 1.7 SD relative to the norm. Second, neurofeedback participants only

showed significantly improved accuracy during the visual working memory task at the

Table 2. Pre-post behavioral assessment (within group).

Variables assessed during pre-/post-testing Controls (n = 6)

Pre-testing/post-testing, p-value (partial eta2)

Neurofeedback (n = 7)

Pre-testing/post-testing, p-value (partial eta2)

ADHD attention (DSM-IV score) pre: 6.3 post: 6.7, p = 0.73 (0.03) pre: 7.0 post: 6.0, p = 0.23 (0.23)

ADHD impulsivity/hyperactivity (DSM-IV score) pre: 6.2 post: 5.0, p = 0.16 (0.36) pre: 6.4 post: 5.7, p = 0.31 (0.17)

Interference (MSIT, interference delay ms) pre: 360 post: 274, p = 0.01 (0.82) * Pre: 365 post: 290, p = 0.01 (0.68) *

Vigilance (SA-DOTS, false alarms) pre: 1.0 post: 1.1, p = 0.88 (0.01) pre: 0.8–0.1, p = 0.10 (0.39)

Response inhibition (SA-DOTS, % missed) pre: 1.4 post 1.2, p = 0.85 (0.01) pre: 2.8 post: 1.1, p = 0.05 (0.49) *

Response inhibition (SART, % false alarms) pre: 36% post: 40%, p = 0.67 (0.04) pre: 31% post: 31%, p = 1.00 (0.00)

Visual WM accuracy (2-back, % accuracy) pre: 64% post: 68%, p = 0.46 (0.11) pre: 67% post: 76%, p = 0.03 (0.56) *

Verbal WM (WAIS DS, IQ score) pre: 104 post: 111, p = 0.29 (0.22) pre: 96 post: 101, p = 0.41 (0.12)

Verbal WM (WAIS LNS, IQ score) pre: 109 post: 104, p = 0.39 (0.15) pre: 99 post: 100, p = 0.79 (0.01)

Significant effects (p� 0.05) are printed bold and marked with an asterisk. MSIT = Multi Source Interference task, SA-DOTS = Sustained Attention DOTS

task, SART = Sustained Attention to Response Task, WM = Working memory, DS = Digit Span, LNS = Letter Number Sequencing.

doi:10.1371/journal.pone.0170795.t002
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neuropsychological post-test, improving their accuracy to levels seen in healthy control groups

(WM 2-back accuracy: F(1,6) = 7.7, p<0.05, ηp
2 = 0.56, Table 2).

Discussion

The goal of this study was to investigate if training individuals with ADHD to voluntarily up-

regulate activation levels in the dACC through rt-fMRI neurofeedback training would have

beneficial effects on ADHD symptoms and cognitive functioning. In summary, we found that

individuals with ADHD were able to up-regulate dACC activation levels through rt-fMRI neu-

rofeedback training and maintain these changes until the end of training in both the neuro-

feedback and control group. Second, while there was no significant difference between the

neurofeedback and control group in clinical outcome, neurofeedback participants showed

stronger improvement on neuropsychological functioning.

Feasibility of the approach

The neurofeedback and control group were well matched on demographic variables, such as

gender, age, IQ, and clinical variables, such as ADHD symptoms, medication status and base-

line neuropsychological functioning, indicating the usefulness of the selected randomization

procedure (minimization) for small sample sizes. Both groups were also representative of the

patient population, demonstrating high levels of impairment, both regarding ADHD symp-

toms and during neuropsychological testing [4,55,58,59,61]. Both groups were highly moti-

vated and demonstrated consistent performance during the localization procedure. The

consistent performance on the second localization task, which was similar to the training

task, suggests that participants in both groups were generally able to follow the training

instruction. Importantly, mastery confidence regarding training increased over sessions,

again indicating that participants were able to perform the training task as instructed. The

retention rate of the study was 100%, also indicating high general motivation in both groups.

The dACC target regions, from which the neurofeedback was derived, could be localized reli-

ably in all subjects and sessions and were located within the targeted network. The analysis

on MRI data quality demonstrated that in the neurofeedback group sufficiently high signal

quality was achieved for a rt-fMRI experiment [62], as providing continuous neurofeedback

during training seemed to attenuate motion during training in this group. Interestingly, per-

formance during neurofeedback training was neither predicted by general IQ, nor by severity

of ADHD attention symptom, which makes it feasible to implement training even in more

severe cases, as included in this study. Further, exploratory analyses showed that neurofeed-

back training performance was influenced by capacity for working memory and response

inhibition, suggesting that it may be beneficial to perform a cognitive training program prior

to neurofeedback or take these factors into consideration during recruitment. The results

confirm previous investigations showing that working memory capacity is a predictor of suc-

cess in EEG neurofeedback training [63,64]. Overall, the presented results demonstrate the

general feasibility of the approach as implemented in this study for a neurofeedback training

in this patient population.

Training effects

During self-regulation training, both groups demonstrated similar changes in activation

patterns over time. Both groups achieved the expected up-regulation of activation levels in

dACC target regions after the second session and were able to maintain this improved capac-

ity for self-regulation until the end of the training, with the neurofeedback group demon-

strating a slightly larger increase in activation levels from the beginning until the end of
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training. Overall, these results indicate that both groups achieved a similar degree of learning.

The presented results support that up-regulation of dACC target regions might be achieved

through cognitive training alone, as has been suggested in recent research on the influence of

working memory training on brain function [65]. However, it remains to be explored in a

larger study if there are differential effects of the two type of trainings (feedback, no feedback).

Stronger performance of the neurofeedback group during neuropsychological testing sug-

gests that subtle differences may exist between the groups, supporting that learning in the

neurofeedback group may have been more efficient. More generally, the results further con-

firm previous studies reporting that multiple sessions may be necessary when neurofeedback

training is implemented in clinical populations [19,66]. Importantly, from the third session

onwards, participants were able to maintain high activation levels even during transfer runs,

when no feedback was provided. This further suggests that some generalization of the learned

skills took place in the neurofeedback group, enabling them to transfer these skills into a dif-

ferent context. Finally, the presented results show that individuals with ADHD did not

achieve graded control of the brain activation level within the dACC as they were not able to

differentially modulate the signal to two different levels within four training sessions. This

result stands in contrast to previous results in healthy participants, demonstrating that

healthy individuals indeed are able to achieve modulation up to at least three brain activation

levels [67]. In general, this indicates that the implemented neurofeedback training may have

been particularly challenging for individuals with ADHD, and may need further adaptation

to the needs of this clinical population.

That the implemented neurofeedback training may have indeed been challenging for this

clinical group is further supported by the fact that participants in the neurofeedback group

indicated by self-report that they felt significantly more challenged throughout the training,

relative to the control group. This stands in contrast to previous neurofeedback trainings in

clinical groups, which reported that there was no difference in perceived challenge between

the neurofeedback and the non-neurofeedback control group in individuals with anxiety dis-

order [22]. However, one difference between the current and this previous study is that the

current study provided continuous neurofeedback during task performance, while the previ-

ous study provided intermittent neurofeedback in-between task blocks [22]. Research system-

atically comparing these two sorts of neurofeedback in healthy participants (in the motor

system), suggests that continuous neurofeedback may be indeed more challenging than inter-

mittent neurofeedback [68]. The reason for this may be that continuous neurofeedback

requires participants to monitor the neurofeedback signal while performing a task, which

poses a dual-task challenge. Indeed, the mentioned systematic study into different sorts of neu-

rofeedback demonstrated that in some participants activation levels in the neurofeedback

region were significantly reduced during continuous neurofeedback, while participants were

actually trying to up-regulate the signal [68]. This suggests that participants may actually have

to exert more mental effort when up-regulating activation levels guided by continuous neuro-

feedback as the control group. Moreover, this may be particularly relevant when the aim is to

up-regulate activation within the dACC, a region which is known for its involvement in task

monitoring [69], and therefore likely to be affected by dual-task demands. In conclusion, par-

ticipants in the neurofeedback group may thus indeed have had a more challenging task than

control participants, when being asked to up-regulate dACC activation levels during continu-

ous neurofeedback. Importantly, however, this did not seem to have an adverse but more likely

a beneficial effect on outcome in the neurofeedback group, as neuropsychological functioning

was significantly improved in this group only.
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Limitations

The fact that we did not include an additional sham neurofeedback control group, which

receives non-valid continuous neurofeedback, may be seen as a limitation of this study. How-

ever, the same line of research investigating different sorts of neurofeedback, also demon-

strated that sham neurofeedback may be perceived as frustrating and can thus induce a

negative performance bias in the control group, limiting the performance of the control group

[62,68]. A non-neurofeedback control group with blinding of participants therefore seemed

the strictest design choice available. To ensure comparability between the neurofeedback and

control group, several measures were taken. First, both groups were instructed in the exact

same way, receiving the same information regarding the goal of the study. To both groups, we

pointed out that recent neuroscience reports suggested that up-regulation of activation within

their individual dACC region by mental effort may be beneficial, and we also stressed that we

would monitor their progress by looking at their brain activation levels. That this resulted in

high motivation in both groups is supported by the reported levels of interest and mastery con-

fidence, which were high and comparable to previous studies [22]. Second, both groups

received an active instruction on how to up-regulate activation levels in dACC region. Also,

they were explicitly instructed to keep adapting the task throughout the training, in order to

keep themselves challenged. By providing both groups with a very similar and active instruc-

tion, we may, unintentionally, have compared two different active interventions, instead of

comparing a neurofeedback with a true control training. The instructions given to the control

group may be conceptualized as a working memory training, which has been shown to have

beneficial effects in ADHD individuals [70,71]. Importantly, however, the present results pro-

vide preliminary evidence that the neurofeedback training may have had a stronger beneficial

effect than the provided control training, as neuropsychological functioning was improved in

the neurofeedback group only.

A second limitation of this study is its limited sample size. Due to the small sample size, any

conclusion regarding the potential clinical outcome needs to be drawn carefully. The presented

exploratory results confirm the general feasibility of the chosen approach, but cannot be used

to evaluate the clinical benefits of rt-fMRI neurofeedback training in adult ADHD individuals.

However, the overall positive effects of the neurofeedback training suggest that it is warranted

to further explore rt-fMRI neurofeedback training as a novel treatment option in ADHD.

Future recommendations

The first aim of this study was to establish the feasibility of the suggested approach. The results

suggest that the employed recruitment and randomization strategies, standardized task

instructions and technical procedures were successfully implemented, as demonstrated by the

different indicators for monitoring the study quality. Importantly, the analysis of performance

predictors indicated that the approach is suited for ADHD patients with average IQ, even

when ADHD symptoms are severe. However, this analysis also indicated that ADHD patients

with severe deficits in working memory and inhibitory control profited much less from the

training. For future trainings, it may therefore be beneficial to design step-wise trainings to

reach a larger group of patients. Rt-fMRI neurofeedback training may need to be comple-

mented with other training modules, aimed at ameliorating the cognitive capacities that were

predictive of success, such as working memory and response inhibition. A more elaborate

training on motion control prior to scanning may also be useful. Third, an initial training

module providing neurofeedback from brain regions that are more easily controllable (e.g.,

motor system), may be beneficial to accustom participants to the dual-task demands of moni-

toring continuous neurofeedback during training. Finally, the goal of achieving graded control
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over the signal may only be attainable with more additional training sessions. Overall, the pre-

sented results suggest that the benefits of rt-fMRI neurofeedback training effects may be maxi-

mized by additional instruction and practice modules prior to the neurofeedback training

itself, therefore supporting a multifaceted interventional approach.

Conclusions

In conclusion, the presented results suggest that rt-fMRI neurofeedback training may consti-

tute a potential novel treatment for adults with ADHD. This proof-of-principle study explor-

ing a rt-fMRI neurofeedback training for the first time in adult ADHD demonstrates both

that the methodology is generally feasible and that such a training targeting the dACC can

significantly improve cognitive functioning. Further, the results suggest that self-regulation

success can be predicted by working memory/inhibition capacities, therefore calling for

more elaborate multifaceted interventional approaches. Due to the limited sample size in the

current study, the clinical benefits of the novel approach need to be evaluated in future

studies.

Supporting Information

S1 Fig. Neurofeedback display. Participants in the neurofeedback group were instructed to

performed mental calculations at varying levels of difficulty to achieve up-regulation of their

activation level within dACC target regions. They were cued to either rest (A), reach a medium

(B), or high difficulty level (C) by adapting their mental-calculation task performance. Neuro-

feedback participants were able to monitor their dACC activation levels on the thermometer

(activation level represented by filled grey squares, (D) [shown here only for the high activa-

tion-level condition]), while control participants saw the same thermometer display without

feedback information.

(TIF)

S2 Fig. Indices of individual regulation success. To evaluate individual performance three

different performance indices were computed: an index of general task performance (mean

activation level across sessions (A)), an index of improvement over sessions (increase in activa-

tion level over sessions (B)), and an index of improvement in differential modulation (increase

in increase in differential activation between task conditions (C)).

(TIF)

S3 Fig. Motion and data quality during MRI training. Neurofeedback participants (blue

bars) showed significantly reduced motion (A), marked with an asterisk) and significantly

increased fMRI data quality as measured by tSNR (B), marked with an asterisk) in comparison

to control participants (green bars). In both groups worse motion control was linked to con-

siderably reduced tSNR (each dot represents an individual functional run (C)).

(TIF)

S4 Fig. Questionnaire of Current motivation. Across all participants, perceived challenge

decreased significantly over time (A), with level of interest decreasing significantly as well (B),

and mastery confidence increasing over time (C). Incompetence fear did not change over time

(D). There were no group differences that developed over time. The only difference between

groups was that neurofeedback participants perceived the training generally as posing a higher

challenge when compared to the control group ((A) marked with an asterisk).

(TIF)
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S1 File. CONSORT checklist. This list summarizes the information provided regarding how

this exploratory randomized, single-blinded study was designed, analyzed and interpreted.

(PDF)

S2 File. Ethics proposal. The ethics proposal approved by the local Medical Ethics Commit-
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