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Regional synchrony in full-scale activated sludge
bioreactors due to deterministic microbial
community assembly

James S Griffin1 and George F Wells2
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2Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA

Seasonal community structure and regionally synchronous population dynamics have been
observed in natural microbial ecosystems, but have not been well documented in wastewater
treatment bioreactors. Few studies of community dynamics in full-scale activated sludge systems
facing similar meteorological conditions have been done to compare the importance of deterministic
and neutral community assembly mechanisms. We subjected weekly activated sludge samples from
six regional full-scale bioreactors at four wastewater treatment plants obtained over 1 year to Illumina
sequencing of 16S ribosomal RNA genes, resulting in a library of over 17 million sequences. All
samples derived from reactors treating primarily municipal wastewater. Despite variation in
operational characteristics and location, communities displayed temporal synchrony at the individual
operational taxonomic unit (OTU), broad phylogenetic affiliation and community-wide scale.
Bioreactor communities were dominated by 134 abundant and highly regionally synchronized OTU
populations that accounted for over 50% of the total reads. Non-core OTUs displayed abundance-
dependent population synchrony. Alpha diversity varied by reactor, but showed a highly reproducible
and synchronous seasonal fluctuation. Community similarity was dominated by seasonal changes,
but individual reactors maintained minor stable differences after 1 year. Finally, the impacts of mass
migration driven by direct biomass transfers between reactors was investigated, but had no
significant effect on community similarity or diversity in the sink community. Our results show that
population dynamics in activated sludge bioreactors are consistent with niche-driven assembly
guided by seasonal temperature fluctuations.
The ISME Journal (2017) 11, 500–511; doi:10.1038/ismej.2016.121; published online 20 December 2016

Introduction

Mixed-culture activated sludge systems are the most
important form of modern wastewater treatment
(Seviour et al., 2010). Consistent system performance
relies on a complex microbial community to remove
organic carbon and nutrients in the face of dynamic
environmental conditions. In addition to their
importance for protecting environmental and public
health, engineered environments such as activated
sludge have been shown to be valuable environ-
ments to study fundamental microbial ecology
phenomena (Daims et al., 2006), in part due to their
physical partitioning into ecological ‘islands’ with
well-defined and monitored ecosystem functions.
Wastewater microbiology has informed our under-
standing of community assembly mechanisms
(Ofiteru et al., 2010; Wells et al., 2011; Kim et al.,

2012), resilience and stability (Werner et al., 2011;
Vuono et al., 2014), and identified novel microbes
and metabolic pathways (Strous et al., 1999; van
Kessel et al., 2015). Translating this knowledge into
effective strategies for ‘microbial resource manage-
ment’ (Verstraete et al., 2007) remains a challenge
due to the high diversity and dynamics in activated
sludge bioreactors, even during times of functional
stability.

In both natural and engineered microbial ecosys-
tems, the extent to which stochastic versus determi-
nistic processes influence microbial community
assembly is still debated. Traditional niche commu-
nity assembly theory predicts that deterministic
processes such as regional meteorological conditions
and operational differences control assembly,
whereas neutral theory predicts that trophically
similar community members are ecologically similar
and that stochastic processes such as immigration,
birth and death lead to community differences
(Hubbell, 2001; Woodcock et al., 2007). Community
assembly theories such as the metacommunity frame-
work incorporate both niche processes, such as
species sorting and dispersal limitations, as well as
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neutral processes (Leibold et al., 2004). Previous
studies have shown that deterministic factors
explain much of the variation in activated sludge
community structure within the same bioreactor, but
neutral models can explain some aspects of commu-
nity assembly, such as rare taxa dynamics (Ofiteru
et al., 2010). However, the factors controlling the
relative contributions of different community assem-
bly mechanisms are still poorly understood.

Longitudinal studies of full-scale bioreactors have
found that microbial communities appear to display
continuous rather than cyclical succession patterns
in activated sludge systems (Wells et al., 2011;
Ju et al., 2013). Many of these studies focused on
single reactors, making it challenging to identify
whether observed associations were repeatable and
generalizable. In contrast, seasonal population
dynamics have been shown in a variety of marine
and freshwater environments (Crump and Hobbie
2005; Gilbert et al., 2009). The apparent differences
between community assembly in natural and engi-
neered environments (Shade et al., 2013) have been
ascribed to more highly controlled environments in
engineered systems studied to date; however,
seasonal differences in ecosystem function (perfor-
mance), including nutrient removal are common
(Ju et al., 2013).

Spatially correlated population fluctuations or
‘regional synchrony’ (Eiler et al., 2011) and synchro-
nized shifts in community structure or ‘temporal
concordance’ (Kent et al., 2007) are hallmarks of
deterministic community assembly mechanisms.
Concordance and synchrony dictate how broadly
we can generalize from community studies. Regional
population synchrony (Bjørnstad et al., 1999) is
explained by similar regional weather patterns,
known as the ‘Moran Effect’, immigration between
communities and historical factors (Liebhold et al.,
2004). Synchrony has been demonstrated during the
startup of lab-scale reactors (Vanwonterghem et al.,
2014), but whether the same processes control
dynamics in full-scale reactors is an open question.
Regional population synchrony would provide
further evidence for deterministic control of waste-
water treatment plant (WWTP) microbial community
dynamics. To date, limited replication from full-
scale bioreactors undergoing similar environmental
conditions have made it difficult to identify syn-
chrony in engineered systems.

The primary objectives of this work were to test
whether deterministic factors such as seasonal
variability drove microbial community assembly
and whether assembly mechanisms affected rare
and abundant operational taxonomic units (OTUs)
differently in regional activated sludge bioreactors.
We analyzed local communities within a plant that
shared an immigration (influent) source, as well as
geographically distinct communities within a region
to determine the relative importance of extrinsic
environmental factors and immigration. Temporal
population synchrony was quantified as a means of

identifying repeatable deterministic responses of
individual OTUs to regional environmental
dynamics. We examined synchrony at multiple
scales, from whole-community metrics of alpha and
beta diversity, to dynamics of individual OTU
populations between reactors. We hypothesized that,
similar to natural aquatic environments, seasonal
variation would be a major determinant of commu-
nity composition and diversity in activated sludge,
and would outweigh stable differences between
plants. Further, we hypothesized that abundant and
rare OTUs would exhibit different dynamics, with
abundant OTUs tending to exhibit synchronized
seasonal blooms in different reactors due to seasonal
factors and rare or transient OTUs displaying
significantly less synchrony.

Materials and methods

Plants, sampling and sequencing
Activated sludge biomass samples were collected
between October 2014 and September 2015. Six
activated sludge bioreactors at four full-scale waste-
water treatment plants (Hanover Park, Egan, Kirie
and O’Brien Water Reclamation Plants) were
sampled weekly for 1 year, except during plant
shutdowns. All but one of the reactors operated as
fully aerated activated sludge systems performing
biochemical oxygen demand (BOD) removal and
nitrification. The Hanover 1 reactor operated with a
Modified Ludzack–Ettinger process with an anoxic
zone for denitrification, followed by an aerobic zone
for nitrification. Two independent reactors each at
Hanover Park and Egan with separate return acti-
vated sludge systems and single reactors at Kirie and
O’Brien were sampled, yielding a total of six
independent activated sludge reactors sampled.
Operational and environmental parameters were
monitored according to standard methods (Eaton
et al., 1998; Table 1). Plants were located in the USA
in Chicago, Illinois, USA suburbs with Hanover Park
in Hanover Park, Egan in Schaumburg, Kirie in Des
Plaines, and O’Brien in Skokie, IL, USA.

For each weekly sample, 50ml mixed liquor grab
samples were collected from near the inlet and outlet
of the reactor, and combined as a single time point.
Samples were transported on ice, centrifuged at
10 000g for 5min and decanted, and the resulting
biomass pellets were stored at − 80 °C until DNA
extraction. Genomic DNA was extracted from 1.5 ml
of activated sludge using the FastDNA Spin Kit for
Soil (MP Bio, Santa Ana, CA, USA). 16S ribosomal
RNA (rRNA) V4 gene sequences were amplified,
following the MiDAS Field Guide to Activated
Sludge (McIlroy et al., 2015) protocol originally
published by the Earth Microbiome Project using the
515f and 806r primer set (Caporaso et al., 2012). Two
20 μl independent PCR reactions were performed per
DNA extract using 100 ng of genomic DNA in a
Biorad T100 thermal cycler (Bio-Rad, Hercules, CA,
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USA) at 95 °C for 5min followed by 28 cycles of:
95 °C (30 s), 55 °C (45 s) and 68 °C (30 s), and a final
elongation step at 68 °C for 7min. (For details, see
Supplementary Methods.) DNA sequencing was
performed using a Miseq V2 sequencer (Illumina,
San Diego, CA, USA) at the University of Illinois
Chicago DNA Services Facility. Sequences can be
accessed on Genbank (PRJNA317773).

Amplicon sequence processing and quality control
Paired-end Illumina V4 16S rRNA sequences were
processed using Vsearch 1.9.1 (Rognes 2015). After
merging paired-end reads, sequences with more than
one expected error, longer than 300 bp, or with any
unknown nucleotides were discarded. Singletons
and likely chimeras were also discarded using
default settings in Vsearch. Samples with fewer than
5000 reads (o0.5% of mean) were discarded because
of low coverage. Representative sequences from each
OTU were aligned using the Greengenes imputed
core reference align and PyNast implemented in
Quantitative Insights Into Microbial Ecology (QIIME
1.9.0-20140227; DeSantis et al., 2006; Caporaso
et al., 2010a, b). After filtering the alignment to
remove gaps and hypervariable regions, a phyloge-
netic tree was built using FastTree (Price et al.,
2010). Samples were rarefied to the minimum
sequencing depth 10 times, and relative abundances
were averaged between rarefactions before diversity
metrics were calculated. Of the 271 samples col-
lected over 49 weeks, 22 551 652 unique sequences
passed quality filtering, and were dereplicated and
clustered into 19 171 OTUs at 97% similarity. After
chimera filtering, 17 666 983 of the initial sequences
(78%) were mapped back to OTUs. Alpha and beta
diversity metrics were calculated in QIIME using an
OTU table rarefied to the lowest sequencing depth
(11 542 sequences per sample). A phylogenetic alpha
diversity metric, Faith’s Phylogenetic Diversity (PD)
that weights changes in observed taxa by their
phylogenetic distance to the nearest neighbor, and
Shannon diversity, 1D, which measures community
evenness as well as richness, were used to quantify
ecosystem diversity over time in all six reactors.
Weighted unifrac was used to calculate beta diversity
between samples (Lozupone and Knight, 2005).
Taxonomy was assigned to OTU representative
sequences using uclust and the Greengenes sequence
database (Edgar, 2010).

Statistical analysis
All statistical analyses were performed in Python
(2.7) (python.org) using the skbio package (0.4.0)
(scikit-bio.org) and R (3.2) using the vegan package
(3.2) (Dixon, 2003). Significance of observed alpha
diversity trends were assessed using analysis of
variance (ANOVA). Then, multiple linear regression
was used to identify factors that best explained
changes in alpha diversity. Measured environmentalT
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and operational variables were normalized to unit
variance. These were used alongside categorical
variables for each plant, as regressors to predict
alpha diversity. Because the regressors were not
independent of each other, relative importance was
calculated by averaging sequential sum-squared
error over all orderings of regressors (Lindeman
et al., 1980) in the R package, relaimpo (Grömping,
2006) resulting in estimates of the variation uniquely
explained by individual regressors.

Two distinct methods were used to evaluate the
effect of persistent reactor specific differences, as
well as seasonal and continual change on commu-
nity similarity (Beta diversity). Permutational
ANOVA (PERMANOVA) was used to evaluate the
significance of categorical groupings based on month
and season. Mantel tests were used to evaluate the
correlation between absolute temporal distance and
beta diversity, as well as seasonal temporal distance
and beta diversity. Ordination methods (Principal
Coordinate Analysis and Redundancy Analysis)
were used to visualize community similarity and
calculate the fraction of variation in community
structure explained by environmental gradients or
influent differences. The preceding statistical meth-
ods are described in more detail in the
Supplementary Methods.

Regional synchrony calculations
Regional OTU synchrony, defined as synchronous
changes in individual OTU population in separate
communities, was calculated using Pearson correla-
tion (Liebhold et al., 2004). For each OTU, N, the
Pearson correlation rNi;j of its abundance time series
in each reactor pair, (i, j), was calculated. Regional
synchrony values for each OTU were calculated by
averaging rNi;j across all reactor pairs. Owing to the
compositional effects (Aitchison, 1982), and the
autocorrelation of populations over time (Liebhold
et al., 2004) correlation coefficients will not neces-
sarily be zero for uncorrelated OTUs. To test whether
OTU populations in different reactors were more
synchronized with each other than expected for
independent OTUs, synchrony values were com-
pared with a bootstrap confidence interval (CI)
obtained from sampling 10 000 random pairs of
OTU time series.

Results
Ecosystem function and operating conditions
Operating data, environmental conditions and efflu-
ent quality for all six reactors are shown in Table 1.
Influent flow rate varied from 9 million gallons
per day (MGD) at Hanover to 219 MGD at O’Brien.
Influent composition, nutrient concentrations and
effluent quality were similar in all four plants;
however, average solids retention time (SRT) varied
from 6.4 days in Egan North to 17.5 days in Hanover

1. Average sludge volume index (SVI), a measure of
settleability and indicator for filamentous bulking
problems, varied from 76ml g−1 in Kirie to
206ml g− 1 in Hanover 1. Monthly summaries of
environmental and operating parameters are shown
in Supplementary Table 1. Water temperature varied
seasonally from a low of 13 °C in March 2015 to 20 °C
in October 2014. Influent total Kjeldahl nitrogen
varied seasonally with a peak concentration of
32.8mgN l−1 in November and a minimum concen-
tration of 25.9mgN l−1 in May, but nitrification
efficiency remained above 94% throughout the year.
Average SVI was highest in February, March and
June, when one or more plants experienced bulking
events.

Taxa showed consistent seasonal dynamics across
plants
Despite relatively stable performance throughout the
year, core OTU populations in different reactors
were highly dynamic and regionally synchronized.
OTU abundances were highly skewed, with a small
number of OTUs constituting most of the sequences
recovered (Supplementary Figure 1). A ‘core’ com-
munity of 134 OTUs was found in all reactors at all
time points. These core OTUs made up 51% of the
total reads. A total of 599 OTUs were constitutively
present in one or more plants but not all, suggesting
that individual plants harbored some stable differ-
ences in composition throughout the year.

Figure 1a shows synchrony coefficients for core
OTUs compared with a bootstrap distribution of
randomly selected OTU populations. Core OTUs
were much more synchronized than randomly
compared taxa (Student’s t-test = 13.1, Po0.001),
consistent with niche-driven selection influenced
by regional environmental factors. Non-core OTUs
present in at least 20% of samples displayed
enriched synchrony as well (Student’s t-test = 31,
Po0.001). In addition, there was a significant
correlation between synchrony and OTU occurrence
frequency (Pearson R=0.55, Po0.001) and average
rank abundance (Spearman r=−0.61, Po0.001;
Figures 1b and c). Common OTUs displayed syn-
chronized changes in abundance between reactors,
whereas rare OTUs tended to be uncorrelated. The
apparent discrepancy between abundant and rare
OTU synchrony suggests that seasonal effects may
have a larger influence on shaping abundant OTU
dynamics, whereas operating conditions or neutral
factors may play a larger role in shaping the
rare microbiome of full-scale activated sludge
bioreactors.

We further examined whether populations linked
by plant specific factors (for example, nutrient load
and operational set points) were more synchronized
than those that shared regional environmental vari-
ables only (for example, water temperature and
precipitation). Mean synchrony coefficients for core
OTU populations in the two pairs of bioreactors
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sharing influent, Egan South and North and Hanover
1 and 7, were compared with average population
synchrony values across all 15 reactor pairs. Egan
populations were the most synchronized (average
ρ=0.62 for Egan compared with 0.44 across all
reactors). Hanover populations were less synchro-
nized (average ρ=0.42) than the average across all
regional reactors, likely owing to environmental
differences imposed by the anoxic selector present
in Hanover 1.

Next, we investigated whether synchronous OTU
dynamics gave rise to similar shifts in broader
phylogenetic groups. Class level abundances aver-
aged by season and plant are shown in Figure 2.
Classes with significantly different abundances in
winter (December–February) and summer (June–
August) are indicated by P-values in the legend.

Coefficients of variation of class abundances within
weeks are shown in Supplementary Table 2. Domi-
nant taxa were consistent between plants, and
within-week variation between reactors was low for
most classes. However, class abundances varied
throughout the year, in agreement with high rates
of temporal OTU synchrony. Betaproteobacteria
were the most abundant class throughout the year,
followed by Saprospirae, Delta-, Alpha- and Gam-
maproteobacteria. Betaproteobacteria were most
dominant during winter, making up on average
44% of the total reads, but were significantly less
abundant (Student’s t-test = 22.1, Po0.001) and
accounted for only 27% of total reads in summer.
Student’s t-tests comparing class abundances in
samples collected in summer and winter revealed
that 11 of the 15 most abundant classes were

Figure 1 Regional OTU synchrony in activated sludge communities. (a) Density plot of regional synchrony for ‘core’ OTUs (present in all
samples) vs a bootstrap sample of randomly selected OTU time-series pairs. Density plots of synchrony as a function of observed frequency
and average abundance are shown in b and c. Most OTUs were relatively rare and uncorrelated between plants, but a small number of
frequent OTUs were highly synchronized.

Figure 2 Average abundance of the top 15 most abundant bacterial classes at each time point. Sampling date is shown on the x axis.
Black lines represent cutoffs for different seasons starting from Fall 2014. Betaproteobacteria were the most dominant class at all time
points, but increased in relative abundance between winter and summer. P-values for classes with significantly different abundance in
winter and summer are shown in the legend.
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significantly more abundant during summer than
winter after Bonferroni Correction (Student’s t-test,
all Po0.0001). Among these, Nitrospira were on
average 84% more abundant in summer than winter
samples.

Alpha diversity is seasonally synchronized and
primarily influenced by temperature
Population synchrony and shifts in broad phyloge-
netic abundance were accompanied by repeatable
and putatively seasonal alpha diversity patterns.
Shannon Diversity and Faith's phylogenetic diversity
(PD) were used to quantify richness and evenness,
and PD throughout the sampling period (Figure 3).
One-way ANOVA revealed statistically significant
differences between seasons for both phylo-
genetic (RANOVA =93.23, Po0.001) and Shannon
(RANOVA =42.84, Po0.001) diversity. For both
metrics, diversity peaked in fall between September
and November, and reached a minimum in all
reactors in March or December. Diversity in all
plants gradually increased during spring and sum-
mer, such that there was no statistically significant
difference in Shannon Diversity (Student’s t-test =
0.98, P=0.33) between September 2015 and October
2014 samples. Pairwise Pearson correlation coeffi-
cients of alpha diversity between plants confirmed
synchronized changes in community diversity over
time based on both Faith’s PD (mean R=0.65 ±0.11,
all Po.001) and Shannon Diversity (mean
R=0.54 ± 0.16, all Po0.001). In addition to reprodu-
cible and synchronized seasonal variation in alpha
diversity, ANOVA revealed that individual reactors
harbored stable differences in diversity throughout
the year (RANOVA =11.4, Po0.001). Kirie was the
most diverse community in 29 time points (60%),
and Egan South and O’Brien were the least diverse in
31% and 39% of all samples, respectively.

Multiple linear regression was used to identify the
unique fraction of variation in Shannon Diversity
that could be linked to environmental and opera-
tional factors (Supplementary Table 3). Regressors
included regional environmental gradients (influent

water temperature, chloride concentration and
precipitation) that varied seasonally, local environ-
mental conditions (BOD, N and P influent concen-
tration) and plant location, operational parameters
(SVI, SRT and MLSS) and performance indicators
(effluent nitrite concentration, BOD, N and P
removal). The relative importance of each variable
was assessed by averaging sequential sum-squared
error over all orderings of regressors to account for
potential colinearity between regressors. Together,
these factors explained 49% of the variation in
Shannon Diversity.

Plant identity and temperature were the most
important predictors of Shannon Diversity, and
explained 25% and 12% of the variation, respec-
tively. One caveat of interpreting relative importance
of regressors is that predictors with higher variance
tend to have inflated effect sizes (Kruskal, 1987).
Despite this, temperature is an important driver of
community structure in many microbial ecosystems
and is likely to be important in nutrient- and oxygen-
rich environments like activated sludge. In addition,
increased SVI, which is typically associated with
enrichment of filamentous bacteria, was linked to
decreased Shannon Diversity. Operational para-
meters that could be most easily controlled, SRT
and suspended solids concentration, accounted for
o4% of total variation.

Community similarity was controlled by region-wide
seasonal factors and local plant differences
Principal coordinates analysis of weighted unifrac
community distance revealed seasonal clustering of
communities (Supplementary Figure 2). Mantel
correlograms (Figure 4) comparing weighted unifrac
distance and time lag between samples were created
to assess periodic changes in community structure,
as well as conserved differences between reactors.
Dissimilarity was plotted as a function of time for
three groups of samples: those originating from the
same reactor, those taken from separate reactors in
the same plant and those taken from different plants.
At low temporal lag, communities from the same
reactor were more autocorrelated than communities

Figure 3 Time series of (a) Shannon and (b) Faith’s PD alpha diversity for all six reactors. Data shown are average of all samples taken
during each month. Alpha diversity was highest in October and November, and lowest in December and March.
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from other reactors or plants. As time lag between
samples began to increase, average dissimilarity
increased for all groups of reactor pairs. However,
the beta diversity difference between intra- and inter-
reactor sample pairs diminished. Average dissim-
ilarity peaked at a lag of 28 weeks. The mean
dissimilarity between samples taken 6 and 51 weeks
apart was comparable, indicating that both continual
succession, as well as seasonal effects controlled
overall community dynamics. Samples taken from
different reactors within the same plant were on
average more similar to each other than those taken
from different plants at every time point, suggesting
that influent composition or plant-to-plant difference
in operating set points also influenced community
structure. Mantel tests were used to calculate the
correlation between weighted unifrac distance and
temporal distance. The total time between samples
and the day number lag between samples (182 days
for samples half a year apart and 0 for samples
exactly a year apart) were calculated for each pair of
samples. The day number lag was more correlated
with differences in community structure between all
communities (Rpearson = 0.47, Po0.001) than absolute
time difference (R=0.36, Po0.001).

To better visualize the seasonal community struc-
ture, weighted unifrac trajectories for each reactor
were plotted individually, with points colored by
season of origin and connected over time by lines
(Figure 5). In general, samples from the same season
grouped together, with communities tending to be
highly similar to one another in winter and summer,
and transition between these clusters in fall and
spring. The overall placement of the seasonal
clusters along the principal coordinates was similar
across reactors. In addition, a strong annual cycle

was observed for all of the reactors studied, and
samples taken in fall of 2015 closely resembled those
taken from the fall of 2014. PERMANOVA was used
to test the significance of bacterial community
groupings by reactor and season. Grouping by both
season (Pseudo-FPERMANOVA =49.15, Po0.001) and
reactor (Pseudo-FPERMANOVA = 11.61, Po0.001)
showed significantly different community structure.

Using partial redundancy analysis, the beta diver-
sity that could be uniquely explained by regional,
local, operation and performance regressors was
calculated (Supplementary Table 4). Weighted unifrac
distances were constrained by each set of explanatory
variables after partialing out the other sets of variables.
Variance that was explained by one or more set of
variables is listed as covariation. Together, 52% of
total variation was explained. Similar to alpha
diversity, temperature was the largest individual
driver of community dissimilarity and accounted for
above 10% of the total variation in beta diversity. Over
half of the total explained variance (28%) was
controlled by covariation between one more variables.
The largest portions of covariation were between
temperature, local and performance factors due to
seasonal fluctuations in influent nutrient load and
effluent quality (Supplementary Table 1). Taken
together with the PERMANOVA results, reactor
communities in the system were highly controlled
by deterministic factors.

Finally, direct sludge transfers between plants
were used to quantify the impact of mass effects on
community similarity. During the sampling period,
waste activated sludge was transferred between
Kirie, Egan North and Egan South on six occasions
in an attempt to improve settling during SVI upsets.
We compared weighted unifrac distance between
source and sink communities collected the week
before and after transfers to find evidence for
colonization of the sink community by the source.
Transfer sludge source and sink reactor, mass, and
pre- and post-transfer weighted unifrac distance are
shown in Supplementary Table 5. No significant
change in similarity in source and sink communities
was evident before and after reseeding (Student’s
t-test = 0.39, P=0.71), suggesting that sink commu-
nities were resistant to colonization or invasion at
tested levels of immigration or effects were too
transient to see with our sampling strategy.

Seasonal changes in ecosystem function
Lastly, we examined whether synchronous popula-
tion shifts could explain seasonal differences in
nitrification performance and bulking event fre-
quency observed in these plants. Operating data
showed that several plants experienced seasonal
increases in effluent nitrite residual during winter
between 2010 and 2014 (Supplementary Figure 3).
Nitrification is traditionally thought to be a two-step
process, in which ammonia oxidizing bacteria such
as Nitrosomonas convert ammonia to nitrite and

Figure 4 Temporal correlograms of time lag between samples
versus dissimilarity (weighted unifrac distance) showing the mean
and standard deviation (shaded area) for each week. Colors
represent whether the compared samples originate from the same
reactor (red circles), different reactors at the same plant (blue
squares) or different plants (green triangles). The day of year lag
between samples correlated well with weighted unifrac distance
(Rpearson = 0.47, Po0.001). A full color version of this figure is
available at the ISME journal online.
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nitrite-oxidizing bacteria such as Nitrospira further
oxidize nitrite to nitrate (Wagner et al., 2002). We
found that Nitrospira abundance decreased by
nearly 70% from October to April (~2.3–0.75%;
Supplementary Figure 4A) before rebounding in the
summer. Hanover 1 was the only plant that did not
experience a decrease in Nitrospira, possibly due to
higher SRT preventing washout. In contrast, the
dominant genus of ammonia oxidizing bacteria in
each reactor, Nitrosomonas, showed little seasonal
variability (Supplementary Figure 4B).

During our time-series monitoring, several bulking
events lasting longer than a week were investigated.
Bulking sludge is a common process disturbance
caused by blooms of filamentous or bulking bacteria
such as Microthrix or foaming Actinomycetes
(Martins et al., 2004). During the startup phase of
modified ludzack-ettinger operation, Hanover 1 had
a 3-day average SVI4150 for a period of 8 months
from December 2014 to August 2015. Hanover 7 had
several instances of elevated SVI in November 2014,
and May, June and July 2015. Egan North had a
bulking event from February to mid March 2015 and
again from May to June 2015. On the basis of bulking
and filamentous bacteria (BFB) previously identified
using 16S rRNA amplicon-based sequencing
(Guo and Zhang 2012), we identified 11 genera
putatively linked to poor settling characteristics
with abundance 41% in at least one sample,
including Microthrix, Thiothrix, Caldilinea, Tricho-
coccus, Rhodococcus, Haliscomenobacter, Gordo-
nia, Kouleothrix, Mycobacterium, Tetrasphaera and
Isosphaera.

The most common taxa in terms of average
abundance were Thiothrix (2.2%), Kouleothrix
(1.3%), Caldilinea (1.2%) and Microthrix (0.8%);
however, the BFB were highly dynamic (Supple-
mentary Figure 5). Of the observed bulking bacteria,
Caldilinea, Mycobacterium, Haliscomenobacter and
Gordonia primarily displayed seasonal variation and
synchrony between plants, but did not correlate with
SVI. Elevated Microthrix abundance was linked to
increased SVI (Rpearson =0.44, Po0.001); however,
Microthrix (S5A) and Thiothrix (S5B) were inversely
correlated with one another (Rpearson =−0.37, Po0.001).
Microthrix tended to dominate in reactors with
elevated SVI, whereas Thiothrix were more abundant
in the three reactors that did not experience bulking
events. In general, bulking bacteria tended to be more
diverse in fall and dominated by a few taxa during the
winter and spring.

Discussion

Dominant taxa were regionally synchronized
In this study, community dynamics in regional
activated sludge bioreactors were monitored to
identify the relative contribution of different assem-
bly mechanisms. Our results show that OTU popula-
tions are highly regionally synchronized between
reactors (Figure 1) across several scales. Synchrony
in macroscopic ecological systems is explained by
deterministic assembly mechanisms, such as spa-
tially correlated environmental conditions (Moran,
1953) and trophic interactions, such as predation

Figure 5 Principal coordinate analysis of weighted unifrac distances between samples. Colors represent season of origin and lines
connect samples taken on consecutive sampling trips.
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(Ydenberg and Dill, 1986). In microbial commu-
nities, synchrony has been observed in rivers
(Crump and Hobbie, 2005) and dispersal-limited
lakes (Kent et al., 2007), but this effect has not
previously been observed in full-scale activated
sludge bioreactors.

The observation of synchrony in dispersal-limited
reactors combined with the strong effect of tempera-
ture on community structure (Supplementary Table 4)
supports regional temperature fluctuations as a
primary driver of community assembly. In addition
to temperature, seasonal nutrient variation is typi-
cally a driver of regional synchrony in aquatic
microbial ecosystems (Andersson et al., 2009; Eiler
et al., 2011), but we found that influent nutrient
concentrations in the studied WWTPs were stable
over the course of the year and contributed little to
observed variation. While all reactor pairs showed
significant synchrony, this effect was highest for
core OTU populations in the two Egan bioreactors
that shared the same influent as a potential immigra-
tion source. Interestingly, population dynamics
in the Hanover bioreactors that also shared the same
influent were less similar than between plants,
likely due to environmental differences caused by
the anoxic selector in Hanover 1. Previous
studies investigating the impact of immigration from
raw influent on activated sludge community struc-
ture have found highly variable estimates for the
fraction of OTUs shared between influent and
activated sludge, from 5-10% OTU overlap (Lee
et al., 2015) to 35% (Saunders et al., 2015).
Communities from linked processes within a single
WWTP also show evidence for within-plant immi-
gration (Wells et al., 2014) further suggesting that
both selection and mass effect mechanisms influence
community assembly. Although we did not find
strong evidence that local immigration affected
synchrony, it is possible that synchrony could be
explained in part by region-wide changes in influent
community structure, in addition to direct effects on
the activated sludge community.

Despite high PD and stable nutrient removal
performance, functionally redundant taxa did not
appear to randomly dominate different bioreactors.
Instead, individual taxa displayed synchronized
patterns across multiple plants. High rates of
synchrony have previously been observed in the
startup of replicate lab-scale anaerobic digesters
(Vanwonterghem et al., 2014), but it was unclear
whether similar assembly mechanisms would drive
dynamics in full-scale open-engineered environ-
ments. A high density of microbial interactions has
previously been reported in activated sludge
(Ju et al., 2014). In principle, these ecological
interactions may compound seasonal environmental
changes and increase synchrony.

Few studies have quantified differences in syn-
chrony between rare and abundant taxa in activated
sludge or other environments. Population synchrony
was strongest for core and highly abundant OTUs,

and was positively correlated with OTU frequency
(Figure 1). By analyzing synchrony along a contin-
uous gradient of average OTU abundance and
observed frequency, our results show that commu-
nity assembly mechanisms differ along a continuum
between ‘core’ and ‘rare’ taxa. Previously, rare taxa
have demonstrated higher variability and turnover
rates compared with general taxa within activated
sludge (Kim et al., 2012). In another study, 10% of
the total reads found in WWTPs came from OTUs
with negative growth rates in activated sludge that
are likely inactive or slow growing (Saunders et al.,
2015). Rare OTUs may be more impacted by
dispersal or immigration from influent sources rather
than environmental pressure within the reactors.

One limitation of our approach to quantify
synchrony and dynamics is the use of 16S rRNA
gene sequences, which do not directly inform
community functional capabilities. Further, 16S
rRNA amplicon and shotgun metagenomic studies
do not always yield similar estimates of community
diversity and dynamics (Poretsky et al., 2014).
However, amplicon sequencing enables higher tem-
poral coverage of communities due to its lower cost.
Phylogenetically related organisms tend to be func-
tionally similar (Zaneveld et al., 2010) and this has
been used to predict functional capabilities for
communities from phylogenetic studies (Langille
et al., 2013). A combined metagenomic and 16S
rRNA gene sequencing study of activated sludge
revealed that the community function was less
seasonally variable than phylogenetic abundance
(Ju et al., 2013).

Diversity and class abundance varied consistently with
temperature
Phylogenetic (Faith) and non-phylogenetic (Shan-
non) measures of alpha diversity were highly
synchronized between reactors (Figure 3). Notably,
in all six reactors surveyed, diversity followed a
cyclical trend, dropping sharply near the end of the
year and increasing again in the spring. Averaging
over orderings of regressors revealed that tempera-
ture was the single most important predictor of
diversity (Supplementary Table 3). Measured envir-
onmental and operational parameters explained
nearly twice as much variation as plant location.
Kim et al. (2012) demonstrated a similar decrease in
alpha diversity in a single activated sludge bioreactor
in winter, although the opposite effect was found in
marine systems (Gilbert et al., 2009).

Diversity has been shown to be critical for
productivity, resilience to disturbance and func-
tional stability in so-called 'biodiversity ecosystem
function relationships' (Wittebolle et al., 2009). We
found that 9 of the top 15 classes reproducibly
decreased in abundance across all reactors surveyed,
although dominance by Betaproteobacteria
increased during winter (Figure 2). These broad-
scale shifts in diversity were accompanied by a
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decrease in nitrifier populations and an increase in
bulking and filamentous bacteria (BFB). Shannon
diversity index was positively correlated with
removal efficiency of BOD, nitrogen and phosphor-
ous, but negatively correlated with SVI, suggesting
that a positive biodiversity ecosystem function
relationship exists for treatment communities. Ele-
vated SVI is a process disturbance caused by blooms
of BFB such as Microthrix or foaming Actinomycetes
(Martins et al., 2004). Decreased alpha diversity is
symptomatic of bulking, as BFB accounted for
410% of all sequencing reads during some of the
bulking episodes. It may also indirectly lead to
susceptibility to bulking by opening niches for BFB,
which typically bloom under low-nutrient availabil-
ity, temperature and dissolved oxygen conditions
(De los Reyes 2010).

Nitrospira—a key nitrite-oxidizing bacteria—dis-
played much higher abundance in summer than in
winter in all activated sludge bioreactors. Seasonal
decline of Nitrospira may be related to increased
effluent nitrite observed across several previous winters
in the plants we surveyed (Supplementary Figure 3),
although effluent nitrite accumulation was not appar-
ent during the time series described here. Nitrifier
growth rates are strongly influenced by temperature
and higher nitrite residuals have been observed in
winter in nitrifying activated sludge bioreactors in
previous studies (Randall and Buth, 1984).

Community similarity was driven by temperature and
season
In addition to cyclical alpha diversity, community
similarity was temporally concordant. Mantel Corre-
lograms (Figure 4) revealed a cyclical trend in
weighted unifrac distance between samples. Strik-
ingly, beta diversity peaked just over half a year
apart, and communities sampled 1 year apart were as
similar as those sampled 6 weeks apart on average.
Differences between plants were evident at low
temporal distance, but disappeared in samples from
different seasons. These differences reemerged for
samples taken a year apart, and it is possible that
plant-wide idiosyncrasies such as influent composi-
tion or distinct operational conditions (for example,
SRT) lead to consistent year after year differences in
population structure. More longitudinal studies are
necessary to test this hypothesis. Constrained multi-
variate analyses revealed that, similar to alpha
diversity, temporal variation in community structure
was primarily driven by changes in temperature
(Supplementary Table 4).

Seasonal community succession appears to be a
general feature of aquatic microbial communities
(Shade et al., 2013). It has been shown across
multiple years in marine (Fuhrman et al., 2006)
and freshwater environments (Shade et al., 2007).
However, in the limited studies available continual
succession has been more frequently reported for
activated sludge systems (Ju and Zhang, 2014). The

authors speculated that due to the controlled nature
of WWTPs, intrinsic factors play a stronger role than
extrinsic factors in shaping communities. Contrary to
previous studies of activated sludge communities,
continual drift accounted for only a minor portion of
variation in community composition in our study. It
should be noted, however, that deconvoluting short-
term fluctuations and long-term seasonal variation is
not possible with a single year of data, and more
work is needed to identify whether synchronous
OTU patterns repeat in following years, similar to
multi-year patterns observed in other environments
(Fuhrman et al., 2015).

One mechanism that could explain observed
regional synchrony and seasonal variability in
WWTPs is large temperature fluctuations combined
with biomass wasting. Because solids are continu-
ously wasted during operation, bacteria must main-
tain a growth rate greater than the inverse of the SRT
to be maintained within the reactor. Lower tempera-
tures reduce prokaryotic growth rates and may
washout slow-growing microbes at low SRT. Cold
weather plants can operate at SRTs as high as 30 days
(Saunders et al., 2015) and it is possible that the
relatively short SRTs in our reactors (8.0–13.9 days
on average) contributed to the strong seasonal
taxonomic shifts.

Conclusion

Regionally synchronized patterns of biogeography
have been observed in a variety of microbial
ecosystems, but the importance of these processes
in highly managed ecosystems such as activated
sludge is not well known. Our primary objective in
this study was to quantify microbial population
synchrony as a means of clarifying the relative
importance of deterministic seasonal environmental
factors and stochastic processes on bacterial com-
munity succession in activated sludge. A clear
seasonal pattern of microbial community structure
was evident, from community-wide diversity metrics
to dynamics of dominant OTUs between plants, and
temperature was the primary driver of changes in
alpha and beta diversity. In contrast, neutral factors
such as immigration from continuous shared influ-
ent and intentional waste activated sludge reseeding
attempts did not significantly alter beta diversity
between communities. Core OTUs present in every
sample were highly abundant and strongly synchro-
nized between reactors, whereas less common OTUs
tended to fluctuate more randomly, suggesting they
were driven by local differences in operating condi-
tions or stochastic processes. Key functional groups
such as nitrite-oxidizing bacteria displayed repeata-
ble seasonal differences in fully aerated systems. Our
results demonstrate the importance of seasonal
variability on microbial consortia and the influence
of deterministic community assembly mechanisms
in wastewater treatment bioreactors.
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