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Abstract

The crustacean stomatogastric nervous system is a long-standing test bed for studies of circuit 

dynamics and neuromodulation. We give a brief update on the most recent work on this system, 

with an emphasis on the broader implications for understanding neural circuits. In particular, we 

focus on new findings underlining that different levels of dynamics taking place at different time 

scales all interact in multiple ways. Dynamics due to synaptic and intrinsic neuronal properties, 

neuromodulation, and long-term gene expression-dependent regulation are not independent, but 

influence each other. Extensive research on the stomatogastric system shows that these dynamic 

interactions convey robustness to circuit operation, while facilitating the flexibility of producing 

multiple circuit outputs.

Introduction

Studying neural circuits comes with a number of technical and conceptual challenges [1]. 

Any given circuit is not equally amenable to all technical approaches, which makes bridging 

levels of analysis difficult. In addition, numerical complexity, poorly defined cell types, and 

incomplete connectivity maps often make inferences from cellular to circuit function 

tentative at best. Furthermore, establishing functional boundaries for circuits embedded in 

larger brain areas can be difficult. Some of these problems are less severe in invertebrate 

preparations, which for this reason have been useful in unraveling evolutionarily conserved 

principles of circuit operation.

The stomatogastric nervous system (STNS) stands out for its utility in studying how 

neuronal and synaptic properties give rise to circuit activity and are shaped by 

neuromodulation and other regulatory processes [2]. The pattern-generating circuits of the 

STNS play an important role in feeding in all arthropods. However, the insect STNS has 

been studied mainly from a developmental and anatomical perspective [3], and although 
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some of the activity patterns and neuromodulators involved in regulating feeding have been 

studied [4–6], the neural circuits that underlie these activities are as yet unidentified. 

Consequently, we will focus on the crustacean STNS.

In lobsters and crabs, the STNS is a conveniently anatomically separated system of a few 

ganglia that controls rhythmic activity of the foregut and can easily be studied in vitro. The 

stomatogastric ganglion (STG) contains only ~30 neurons, comprising two overlapping 

central pattern generating circuits that produce the slow gastric mill rhythm and the faster 

pyloric rhythm (Fig. 1). The neurons are large and easily identifiable, and their connectivity 

has long been established. Considering the ongoing efforts in connectomics in many 

systems, it is humbling that such connectivity diagrams (Fig. 1B) provide little explanation 

of circuit activity and dynamics. This is due to the nonlinear dynamics of membranes and 

synapses, neuromodulation, and long-term regulation, all of which can influence circuit 

activity over multiple time scales [7]. Here we review recent work on several aspects of 

these different time scales of circuit dynamics in the STG, and in particular how processes at 

different time scales interact.

Dynamics arising from intrinsic and synaptic properties

The pyloric rhythm is based on intrinsic oscillatory properties of a pacemaker kernel, and 

follower neurons burst in rebound from inhibition by the pacemaker [8] (Fig. 1B&C). The 

gastric mill rhythm arises from synaptic connectivity of non-oscillatory neurons [9] (Fig. 

1B&D). The intrinsic neuronal and synaptic properties are well described in the STG, but it 

is not necessarily obvious how these components function within the context of circuit 

activity. Dynamics arising from the interactions of synaptic inputs and postsynaptic 

properties have recently been studied experimentally and theoretically in the context of how 

inhibitory feedback from follower neurons affects the pyloric pacemaker oscillation. At its 

usual timing with respect to the phase of oscillation, feedback inhibition has surprisingly 

little effect on the mean period of the rhythm, but reduces cycle-to-cycle variability and 

therefore stabilizes oscillations [10–12]. Similar stabilizing influences of synaptic input on 

irregularly firing neurons have also been theoretically demonstrated for network-based 

oscillations [13]. The effect of timing of synaptic input with respect to the phase of ongoing 

activity also allows analyzing the contributions of specific ionic conductances [14]. Another 

window into how neuronal and synaptic properties shape circuit activity is provided by the 

observation that pyloric neurons and synapses have preferred frequencies, i.e. show best 

responses at specific input frequencies. The distinct frequency preferences of different 

network components are correlated with the period of the rhythm and potentially the phasing 

of neurons, and are altered when neuromodulators change circuit activity [15*].

Neuromodulation

The STNS is perhaps best known for its role in uncovering principles of neuromodulation. 

Metabotropic actions of neuromodulators are at the root of the ability of circuits to produce 

different activity patterns [16–18]. The pyloric rhythm is continuously active and its 

stereotypical triphasic activity (Fig. 1C) can be configured by neuromodulators in vitro into 

different temporal patterns. The gastric mill rhythm is often not spontaneously active, but 
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can be activated by modulatory projection neurons to generate distinct patterns (Fig. 1D). In 
vivo studies show that pyloric activity is indeed changed after feeding, and that distinct 

gastric mill rhythms exist in the intact animal [19*,20]. This flexibility stems from the fact 

that the STG is affected by a large number of neuromodulators, including classic 

neurotransmitters, biogenic amines, and many neuropeptides, which are either released from 

descending projection neurons, or present in the hemolymph. Even considering substantial 

flexibility, the sheer number of neuropeptides (>100) is puzzling. However, some isoforms 

of the same family may activate promiscuous receptors and not have distinct actions[21,22]. 

Great strides have been made identifying neuropeptides with mass spectrometry, and it is 

now possible to quantitatively map them to specific tissue regions in individual animals 

[23*, 24], or detect abundance changes in hemolymph after feeding [25].

The circuit-wide actions of biogenic amines and a few neuropeptides have been studied 

thoroughly, and show fairly distinct organizing principles (Fig. 2). Amines have divergent 

cellular and synaptic actions, i.e. modulator and cell type-specific effects on different subsets 

of multiple ion channel types across all neurons [16] (Fig. 2A&B). Different amines may all 

affect every single neuron and synapse, but the sum of effects on their multiple subcellular 

targets is different. Such divergent actions extend even to differential effects on synaptic 

dynamics [26]. Neuropeptides, on the other hand, have mostly convergent actions on a 

limited set of intracellular targets. In particular, they all activate the same modulator-

activated inward current (IMI) [27] (Fig. 2C) which shows unusual voltage-dependence in 

that it is regulated by both intra- and extracellular calcium [28]. This single current 

represents a powerful way to activate the pyloric circuit [29], and recent experimental and 

theoretical work shows that just the negative slope conductance of its IV curve is sufficient 

to elicit oscillatory activity [30,31]. The specificity of effects of different neuropeptides 

stems from the fact that each activates IMI in a different subset of neurons [32] (Fig. 2D). In 

addition, specific effects can arise from differences in the temporal structure of release [33], 

and from cell type-specific differences in receptor expression levels and associated 

differences in the magnitude of IMI responses [34**]. On the flip side, different modulatory 

inputs can also result in very similar circuit activity, as the same gastric mill rhythm can 

arise from distinct rhythm-generating mechanisms configured by different neuropeptides 

[35**]. Many neuropeptides exist as co-transmitters in projection neurons, which in effect 

modify their actions. The spatial pattern of release may also matter, as co-transmitters can be 

released differentially into different target areas [36,37].

Neuromodulation does not just affect neural circuits, but also their inputs and outputs. Input 

from modulatory projection neurons can be shaped by feedback from the CPG, which in turn 

alters CPG activity [38*]. Such bidirectional interactions themselves are modifiable, because 

the feedback synapses from CPG to projections neurons can also be modulated [39]. At the 

output level, neuromodulation does not just affect how activity is generated, but potentially 

also how it is propagated, as axonal spike conduction can be altered by modulators [40].

Variability and regulation of stable circuit activity

All STG neurons have qualitatively similar complements of ionic currents, but differences in 

their relative magnitude convey distinct intrinsic properties. In consequence, the contribution 

Daur et al. Page 3

Curr Opin Neurobiol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of a given ionic current can differ across neurons within one circuit, or between pyloric and 

gastric mill neurons [41]. The characteristic intrinsic properties of each cell type, manifest in 

stereotyped voltage trajectories and consistent responses to input, is surprisingly not due to 

tightly controlled expression levels of individual ionic currents. Current densities and mRNA 

expression for channel genes in a cell type can be hugely variable across individuals, even 

when the cell type includes only a single neuron, which raises the question how cell 

identities and physiological phenotypes are maintained. Stable output in the face of 

component variability is thought to stem from homeostatic regulatory mechanisms that allow 

individual animals to reach one of many permissive parameter combinations, and research 

using the STNS has been on the forefront of exploring this issue [42].

Ionic currents do not vary independently, but cell type-specific groups of ion channel types 

often covary, which is thought to have compensatory function for the variability [43,44]. 

Such co-variation of ionic conductances can keep features of pyloric neuron activity 

invariant and robust to perturbations [45], and are maintained by activity-dependent 

feedback [46**]. These experimental findings have inspired a series of theoretical studies 

that show that co-variation can support maintenance of firing phase across neurons [47], and 

that simple homeostatic tuning rules can easily incorporate conductance correlations [48] 

and may in fact depend on these correlations to give rise to stable circuit activity [49**]. 

Regulation of synaptic strength and dynamics may also be involved in compensating for 

variable circuit architectures and neuronal properties [50,51], but it is not clear to which 

degree they may covary with other parameters.

Neuromodulation and long-term regulation of circuit properties

Given that circuit components are both variable across individuals and malleable to many 

neuromodulators, it is surprising that circuit activity is robust and neuromodulators cause 

consistent activity changes across individuals [16,52,53]. However, at least in the long term, 

neuromodulation does not seem to be the cause of variability, but can reduce it. When 

neuromodulatory inputs are removed from the STG, rhythmic activity can slow or cease. 

Over the course of tens of hours, circuit properties are then reconfigured. Such 

reconfiguration can be sufficient to recover pyloric activity [54,55], but more recent work 

shows that short of recovery, long-term removal of neuromodulators and subsequent changes 

in circuit components increases variability of both pyloric and gastric mill activity [56,57]. 

Removal of neuromodulation also causes changes severe enough to prevent functional 

activity when inputs are restored [58].

It is challenging to pry apart the roles that activity-dependent or neuromodulator-dependent 

mechanisms play in these changes, but two lines of recent studies show that 

neuromodulators contribute substantially. The first set of studies shows that 

neuromodulatory input plays an important role in the long-term maintenance of the cell 

type-specific co-variation of many ionic currents, because this co-variation can be lost or 

changed after removal of neuromodulators [54,55,59]. These effects depend on cell identity, 

as they differ across cell types [55]. The second line explores the prolonged effects of tonic 

nanomolar levels of dopamine (DA) on network activity. In pyloric follower neurons like the 

lateral pyloric (LP) neuron, the balance between the transient potassium current IA and the 
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hyperpolarization-activated current Ih plays an important role in determining the onset phase 

of activity. DA tone, over hours, maintains the levels of IA, thereby stabilizing phase, and 

counteracting reduction of IA in response to acute micromolar application of DA [60]. 

Interestingly, acute reduction of IA and other network influences of μM DA change the 

bursting activity of the LP neuron in a manner that results in an activity and DA tone-

dependent decrease in Ih, thereby homeostatically recovering control levels of LP activity 

[61]. The second messenger pathway as well as components of the transcriptional and 

translational regulation underlying these effects have recently been identified [62,63, 64*].

Robustness to temperature changes

Challenges to the need for stable circuit activity can also come from changing physical 

parameters such as temperature. Lobsters and crabs are poikilothermic and experience 

substantial temperature changes. Similar network activity is achieved with variable sets of 

synaptic and intrinsic properties across individuals, and temperature differentially affects 

biological processes with a wide range of Q10 values. Therefore, temperature change could 

have highly variable consequences. Nevertheless, the pyloric pattern frequency consistently 

tracks temperature linearly over a wide range, with stable phase relationships between 

neurons, only revealing individual differences at high temperatures when the rhythm 

crashes. This is true for the full circuit in vitro [65] and in vivo [66], as well as the isolated 

pacemaker kernel [67]. Pacemaker models can produce similar activity with many possible 

combinations conductance magnitudes and Q10 values, robust over a range of temperatures 

[68]. Neuromodulation may play an important part in conferring robustness to the circuits. 

Activity levels of modulatory neurons increase with temperature, and the resulting 

enhancement of peptide-evoked IMI can rescue activity of the gastric mill circuit by 

counteracting temperature-induced increase in leak currents [69*]. Mass spectrometry-based 

approaches show that the neuropeptide complement changes with increasing temperature 

[70].

Conclusions

The STNS continues to be a valuable model for uncovering fundamental principles 

underlying circuit dynamics. The recent work in this system discussed here highlights the 

need to consider how mechanisms that span different time scales interact (Fig. 3). The 

dynamics of intrinsic neuron properties and synapses are constantly shaped by 

neuromodulation, and are continuously tuned by long-term regulatory mechanisms that 

maintain stable circuit function. To produce proper circuit output, these regulatory 

mechanisms do not rely on fixed parameter combinations, but use correlative rules which 

can result in many different solutions. Yet those solutions must incorporate consistent 

responses to neuromodulators which, themselves, can be involved in long-term regulatory 

mechanisms. Such findings are likely generalizable to any circuit and have been greatly 

aided by, or indeed only been possible because of the numerical simplicity of the STG 

circuits. However, both the dynamics and the many different possible parameter 

combinations demonstrate that even such small circuits are anything but simple, which 

should inform any attempts at functionally dissecting larger circuits.
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Highlights

• Analysis of small circuits reveals interacting dynamics at different time 

scales.

• Synaptic and intrinsic properties, neuromodulation, and long-term regulation 

interact.

• Neuromodulation ties together short-term flexibility and long-term stability.

• Circuit parameters are variable, but correlated to ensure stable function.
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Figure 1. 
The pyloric and gastric mill central pattern generating circuits of the stomatogastric 

ganglion. A: Schematic of the isolated STNS. The STG contains the pyloric and gastric mill 

circuits. The commissural ganglia (CoG) contain the cell bodies of projection neurons like 

the modulatory commisural neuron 1 (MCN1), which project to the neuropil of the STG. B: 
The core pyloric and gastric mill circuit diagrams. Not all cells types and synapses are 

shown. Inhibitory chemical synapses are shown as circles, electrical coupling as resistor 

symbols, and excitatory inputs from MCN1 as triangles. Rhythm generation is based on 

intrinsic oscillatory properties of the pacemaker kernel in the pyloric circuit, and on 

reciprocal inhibitory connections between non-oscillatory neurons (half-center) in the gastric 

mill circuit. Note that both circuits are interconnected by direct synapses and through 
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feedback to the terminals of projection neurons. C: The typical tri-phasic pyloric pattern. In 

each cycle, a pacemaker burst is followed by neurons burst in two different phases, in 

rebound from pacemaker inhibition. D: The bi-phasic gastric mill rhythm is often not 

spontaneously active, but can be activated by stimulating modulatory projection neurons like 

MCN1. Note that the interconnection between both circuits leads to substantial pyloric 

modulation of the much slower gastric mill neuron bursting. The pyloric pacemaker neuron 

AB is shown as a reference for pyloric timing. A, B, & D are modified from reference [9]; C 
is modified from reference [8].
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Figure 2. 
Different organizing principles underlying circuit modulation by biogenic amines and 

neuropeptides. A: In different cell types, activation of dopamine receptors (DAR) can affect 

the gating properties of different subsets of ion channels, and the effects can have a different 

sign. Ion channels giving rise to inward currents are shown in yellow, and those giving rise 

to outward currents in blue. B: The sum effects of the diverse cellular loci of dopamine 

actions are functional enhancements (green) or recuctions (red) of excitability in all pyloric 

neurons and strength of all pyloric synapses. C: Neuropeptide modulation affects a limited 

number of intracellular targets. Different neuropeptides all converge on the same voltage-

gated inward current (IMI), but different cell types respond to a different subset of 

neuropeptides. RPCH: red pigment concentrating hormone; CabTRP: Cancer borealis 
tachykinin-related peptide; CCAP: crustacean cardioactive peptide; proc: proctolin. D: 
Despite the convergence of neuropeptide effects on the same subcellular target, the different 

subsets of circuit neurons affected by each neuropetide give rise to divergent effects on 

circuit activity. A & B are modified from reference [16], C & D are modified from 

references [27] and [32].
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Figure 3. 
Schematic of interactions of different regulatory mechanisms that affect circuit operation at 

different time scales. At the fast time scale, neuronal and synaptic properties give rise to 

circuit activity. At the intermediate time scale, neuromodulators convey flexibility, as 

different neuromodulators can tune neuronal and synaptic properties to generate different 

circuit outputs. Circuit activity itself can shape input patterns from modulatory neurons 

through feedback connections. At the slow time scale, long-term regulatory mechanisms 

dependent on neuronal activity and the presence of neuromodulators convey stability of 

circuit output and prevent circuit crashes.
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