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Abstract

Background

More than 90 percent of cattle in Tanzania belong to the indigenous Tanzania Short Horn

Zebu (TSZ) population which has been classified into 12 strains based on historical evi-

dence, morphological characteristics, and geographic distribution. However, specific

genetic information of each TSZ population has been lacking and has caused difficulties in

designing programs such as selection, crossbreeding, breed improvement or conservation.

This study was designed to evaluate the genetic structure, assess genetic relationships,

and to identify signatures of selection among cattle of Tanzania with the main goal of under-

standing genetic relationship, variation and uniqueness among them.

Methodology/Principal findings

The Illumina Bos indicus SNP 80K BeadChip was used to genotype genome wide SNPs in

168 DNA samples obtained from three strains of TSZ cattle namely Maasai, Tarime and

Sukuma as well as two comparative breeds; Boran and Friesian. Population structure and

signatures of selection were examined using principal component analysis (PCA), admix-

ture analysis, pairwise distances (FST), integrated haplotype score (iHS), identical by state

(IBS) and runs of homozygosity (ROH). There was a low level of inbreeding (F~0.01) in the

TSZ population compared to the Boran and Friesian breeds. The analyses of FST, IBS and

admixture identified no considerable differentiation between TSZ trains. Importantly, com-

mon ancestry in Boran and TSZ were revealed based on admixture and IBD, implying gene

flow between two populations. In addition, Friesian ancestry was found in Boran. A few
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common significant iHS were detected, which may reflect influence of recent selection in

each breed or strain.

Conclusions

Population admixture and selection signatures could be applied to develop conservation

plan of TSZ cattle as well as future breeding programs in East African cattle.

Introduction

The Tanzania Shorthorn Zebu (TSZ) is the major type of indigenous cattle in Tanzania and is

comprised of a number of strains including Maasai, Sukuma, Tarime, Iringa Red, Mkalama

Dun, Singida White, Mbulu, Gogo, Chagga, Pare, Fipa and Zanzibar. These strains of TSZ

have considerable differences in terms of morphological features such as body size, coat color,

horn size and orientation, adaptation to different ecological conditions (specific climatic, topo-

graphical and feed conditions) and they generally show some differences in the ability to with-

stand drought, heat stress as well as diseases and parasites [1, 2]. The TSZ forms 95% of the

25.8 million heads of cattle in Tanzania and represent a wide gene pool with a range of genetic

attributes which have not been fully exploited due to inadequate knowledge of their genetic

distinctiveness [3]. Generally, TSZ animals are characterized by slow growth rates, low mature

weight and low milk yield and generally low productivity [4]. All indigenous animals are con-

sidered dual purpose and supply 95% of beef and 70% of milk consumed in Tanzania. This

large contribution is mainly based on the significantly larger number of local cattle compared

to the improved breeds and not production per animal [5]. The low productivity of the TSZ

animals is a result of a combination of factors such as low genetic potential, poor nutrition as

well as diseases and parasites.

To improve productivity, the national development strategies for milk and beef production

have since the 1960s, placed emphasis on the use of European, US or Asian breeds such as Frie-

sian, Ayrshire, and Jersey (for milk production) and Simmental and Angus (for beef) among

others for crossbreeding and upgrading the local cattle. Among all breeds imported in Tanza-

nia, the Boran cattle which belongs to the Large East African Zebu (LEAZ) population, is the

recommended animal for upgrading the TSZ for meat production whereas Friesian is the most

preferred breed for milk production improvement. These animals are recommended because

of their superior performance (meat and milk production) of their F1 or F2 crossbreds [6, 7].

These animals have been promoted by the government and aid agencies since early 1980s and

are distributed in government farms and farming households in areas where programs of

crossbreeding or upgrading of the local cattle have been implemented. In terms of production

not much has been done and in some areas these programs have either been abandoned or are

not fully supported and it has been hard to obtain good and reliable records (personal commu-

nication with Dr George Kifaro, Department of Animal Science at Sokoine University of

Agriculture, 2015). Many farmers regard the introduced exotic animals as inferior to the indig-

enous breeds particularly in terms of ability to withstand drought, feed shortage, heat stress

and endemic diseases. Therefore, the cattle production sub-sector of Tanzania continues to be

dominated by the less productive TSZ animals, which in general are poorly performing

animals for improvement programs, and there has been slow adoption of high producing

cross-bred animals. It is therefore absolutely necessary to find methods by which genetic
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improvement can be optimally and sustainably implemented without losing the adaptive traits

of the TSZ animals valued by farmers.

Selection within a local population is a potential and sustainable strategy in developing

countries such as Tanzania [8, 9]. This is because improvement of local populations through

adequate selection can sustain local breeds and, therefore, secure conservation of farm animal

genetic resources. However, implementation of improvement and conservation strategies

should be aided by breed specific information. Breed characterization using molecular markers

such as genome-wide microsatellites and single nucleotide polymorphism (SNPs) enable

determination of genetic variation and relationships within and between populations and

make it possible to genetically examine differences and determine special genomic attributes

of indigenous livestock populations [10 – 12]. These analyses have been performed in the Afri-

can cattle populations and in their crossbreds with European breeds [11, 13, 14]. Previous

studies have attempted to genetically characterize the Tanzanian indigenous cattle; however

these were limited in number and utilized either microsatellite markers or random amplified

polymorphic DNA (RAPD) on small sample sizes [3, 15]. Studies to assess the level of varia-

tions using high density markers such as SNP in the indigenous cattle breeds of Tanzania are

lacking.

We designed this study to carry out the first comprehensive analysis of genetic variation

within and among three strains of TSZ cattle and two comparative breeds; Boran and Friesian.

To arrive at our conclusions, we first estimated the inbreeding levels using runs of homozygos-

ity (ROH) and the genomic inbreeding coefficients (F-geno). The ROH represents genomic

autozygosity occurring due to mating between selected and genomically related individuals.

Both ROH and F-geno can be a good measure of breeding depression and reduced fitness or

measures the probability that two genes at any locus in an individual are identical by descent

(IBD) from the common ancestors [16]. Secondly, we analyzed the genetic variation and SNP

information using principal component analysis (PCA) and thirdly, we identified the signa-

tures of selection in each animal group. PCA and admixture were used to examine population

structure [17]. Signatures of selection are regions in the genome that have been preferentially

increased in frequency and fixed in a population because of natural or artificial selection and

because of their functional importance in specific processes [18]. Moreover, for the purpose of

designing improvement or conservation programs within domestic cattle it is necessary to

consider the history or origin, lineage, ancestry or pedigree information relevant to the popula-

tion under study. For example, it may be important to consider that the local cattle populations

in Tanzania possibly have the same origin as cattle in other African countries. The current

classification of indigenous breeds based on historical evidence and morphological character-

istics in one country may therefore not be satisfactory for the purpose of designing breed

improvement and conservation programs.

Results

Relatedness and diversity among Tanzanian cattle: Inbreeding

coefficients

The ROH based inbreeding coefficient (F-ROH) and F-geno were calculated to estimate the

level of inbreeding. The F-ROH ranged from 0.005 to 0.023 in TSZ strains, and was 0.012 and

0.018 in Boran and Friesian breeds respectively “Table 1”. The mean length of ROH was less

than 10Mb in the Boran and greatest in the Maasai strain (>17 Mb). Individuals lacking ROH

(animals with no ROH) were present in each breed (highest in Sukuma and lowest in Boran

breed). The F-geno values ranged from 0.01 to 0.025 in the TSZ animals, and showed a similar

trend as the F-ROH. In all animal groups, the correlation coefficient (r) between F-ROH and
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F-geno was above 0.5. In addition, heterozygosity was computed to assess genetic variability in

our cattle populations. There was a considerably greater difference in the measures of expected

heterozygosity (He) and observed heterozygosity (Ho) in the Friesian breeds whereas the dif-

ference was smaller in TSZ strains and Boran breed “Table 1”. The effective population

sizes (Ne) of the TSZ strains were greater than the values in Friesians. Nevertheless, Ne has

decreased consistently during the last 1000 generations “S1 Fig”. Particularly, Ne was greater

than 1,000 in most indigenous breeds 300 generations ago and the number was reduced to 100

or less in the contemporary Tanzanian cattle populations “Table 1”.

Relatedness and differentiation between Tanzanian cattle: Pairwise

distances (FST) and identical by state (IBS)

The genetic variability among our animal populations and breeds was evaluated by estimation

of FST and IBS “Table 2”. There was low genetic variation as reflected in the low values of FST

which ranged from 0.011 to 0.013 among the TSZ strains. We also saw differences between the

TSZ strains and the Boran breed (FST values ranging from 0.019 to 0.021 which were slightly

larger than those obtained among the TSZ strains). When comparing TSZ strains with each

other, FST was not higher than 0.4 at any loci and this result represented little difference

between the strains “S2 Fig”. Between the TSZ strains and the Friesian breed FST values of

approximately 0.2 were obtained, suggesting a greater differentiation. Genetic relatedness

Table 1. Inbreeding coefficients and effective population size in Tanzanian cattle breeds.

Breed Sukuma Tarime Maasai Boran Friesian

F-ROH (±SD) 0.005±0.01 0.009±0.03 0.023±0.05 0.012±0.01 0.018±0.03

Mean length of ROH (±SD, Mb) 10.65±11.40 13.12±13.63 17.46±14.79 9.48±6.56 9.68±7.73

Total number of ROH 36 56 103 99 155

Individuals lacking ROH (%) 64.7 32.4 51.5 12.5 26.5

F-geno (±SD) 0.010±0.03* 0.013±0.04* 0.025±0.05* -0.005±0.04* 0.188±0.12**

r (F-ROH—F-geno) 0.61* 0.75* 0.90* 0.56* 0.54**

Expected heterozygosity (He) 0.401* 0.401* 0.401* 0.400* 0.321**

Observed heterozygosity (Ho) 0.396* 0.395* 0.390* 0.403* 0.228**

Ne (10) 67 119 96 115 36

Ne (350) 990 1249 1166 1210 795

SD: Standard deviation; Mb: Megabase; r = Correlation coefficient (approximate correlation) between ROH based inbreeding (F-ROH) and genomic based

inbreeding (F-geno), calculated when no pedigree or accuracy of F-ROH or F-geno could not be obtained, values >0.7 indicate similarity; Ne = Effective

population size (generation ago);

*Estimated in Bos indicus;

**Estimated in all breeds

doi:10.1371/journal.pone.0171088.t001

Table 2. Differentiation (FST) between Tanzanian cattle breeds/strains.

Breed/Strain Tarime Maasai Boran Friesian

Sukuma 0.011 (0.03) 0.013 (0.03) 0.020 (0.43) 0.202 (0.20)

Tarime 0.011 (0.03) 0.021 (0.43) 0.204 (0.20)

Maasai 0.019 (0.04) 0.208 (0.20)

Boran 0.186 (0.18)

Mean FST (standard deviation) between breeds/strains are shown

doi:10.1371/journal.pone.0171088.t002
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between individuals (IBS) was shown to summarize similarity between breeds “Fig 1”. The

mean IBS within a TSZ strain or Boran did not exceed 0.06 “S1 Table” whereas all Friesians

were related to each other (IBS > 0.25, Mean IBS = 0.41). Relatedness was observed between

most individuals in different strains of TSZ. Gene flow between the Boran breed and TSZ

strains was examined by IBS “Fig 1” and values were low. The analysis of the frequency of the

common haplotypes showed higher correlation between TSZ strains and Boran than with Frie-

sian “S2 Table”. Friesian was more correlated to Boran (~0.05) compared to the values between

TSZ and Friesians.

Clusters, structure and admixture in Tanzanian cattle populations and

breeds

To further illustrate the relationship among the animals analyzed, a principle component anal-

ysis (PCA) was carried out. Animals analyzed in this study were clearly distinguishable by

three clusters. Using the first principal component (PC1), the first cluster was composed of the

three strains of TSZ while the second and the third clusters were composed of the Boran and

Friesian breeds, respectively “Fig 2”. Regarding population/breed relationships on the second

Fig 1. IBS between all individuals. IBS is shown with four different colours based on the range of the value.

dark blue: IBS>0.5, light blue: IBS 0.25–0.5, yellow: IBS 0.0625–0.25, grey: IBS 0.025–0.0625.

doi:10.1371/journal.pone.0171088.g001
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principal component (PC2) the Boran breed was shown to be genetically close to the TSZ,

while the Friesian breed was slightly different from the TSZ and Boran breeds. This observa-

tion coincides with the topology of the resulting phylogenetic tree summarized in “S3 Fig”

which also showed a close relationship between the TSZ populations and the Boran breed but

less between the TSZ strains and the Friesian breed. Furthermore, the structure of the Tanza-

nian cattle analyzed in this study can be shown using a clustering assignment “Fig 3”. The TSZ

animals were assumed independent strains, but no clear differentiation was identified among

them. The TSZ population shared some common ancestry with Boran “Fig 3” whereas Frie-

sians were almost unrelated to TSZ. The admixture suggested that TSZ strains could be clus-

tered into a major and two or three minor clusters at K = 3 or K = 5. Based on the IBS, 10–15

animals in Boran appeared to be related to individuals in TSZ “Fig 1”, supporting the evidence

of common ancestry among the breeds or strains. It is also noted that Boran appear to be

affected by Tanzanian Friesians when considering common clusters at K = 3 or 5 “Fig 3”. The

results from AMOVA supported the evidence that each of the TSZ strains were not signifi-

cantly different from Boran (p>0.1) or each other (p>0.5).

Signatures of selection in animal populations in the present study

Some genomic regions may be fixed in individuals within a population as a result of artificial

or natural selection for reasons such as adaptability or productivity. In the present study, evi-

dence for positive selection was determined by calculating the values of iHS which measured

the relative decay of extended haplotype homozygosity (EHH) of the ancestral and derived

core allele. Consequently eight regions (signatures of selection) have been under recent natural

or artificial selection on chromosomes 4, 5, 6, 7, 10, 11 and 20 in the Maasai strain. Three sig-

natures of selection were detected on chromosomes 1, 5 and 14 in the Boran breed. No geno-

mic region appeared to be involved in recent selection in the Sukuma and Tarime strains. In

Fig 2. Principal components analysis between individuals of Tanzanian cattle. Sukuma (red), Tarime

(yellow), Maasai (green), Boran (blue) and Friesian (purple) are indicated in different colors.

doi:10.1371/journal.pone.0171088.g002
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the Friesian breed, nine genomic regions were identified on chromosomes 1, 3, 14, 16, 19, 20,

22 and 27. A considerable number of genes were identified from the signatures of selection

observed in this study. This included 20 genes in the Maasai strain, three in Boran and 19 in

Friesian. Among the genes identified were the MyoD family inhibitor domain—containing

gene (MDFIC), Stabilin 2 (STAB2), 5’-Nucleotidase Domain Containing 3 (NT5DC3), Heat

shock protein 90kDa beta family member 1 (HSP90B1), Bovine dopamine receptor D5

(DRD5), Adipocyte determination and differentiation-dependent factor 1 (ADD1), Major

facilitator superfamily domain-containing protein 10 (MFSD10), Small nuclear RNA activating

complex polypeptide 1 (SNAPC1) and hypoxia inducible factor 1 alpha subunit (HIF1A)

among others in the Maasai strain. In the Boran breed genes identified were Fibronectin type

III domain containing 3B (FNDC3B), Solute carrier family 6 member 15 (SLC6A15) and Tetra-

spanin 19 (TSPAN19) genes. Whereas Gamma-aminobutyric acid type A receptor rho3 sub-

unit (GABRR3), MYC induced nuclear antigen (MINA), cell division cycle 7 (CDC7), zinc

finger protein 644 (ZFP644) and the Exostosin family 1 (EXT1) were among the 19 genes

annotated in the Friesian breed. The signatures of selection detected among the animals in this

study are presented in “Table 3” and illustrated in “Fig 4”. The genes annoted in each of the

identified region are also presented in “Table 3”.

Discussion

This study presents the first comprehensive analysis of the genetic structure of the native cattle

of Tanzania using genome-wide SNP markers. The analyses of admixture, PCA and the phylo-

genic tree revealed that the TSZ strains are closely related. This was supported by lower

Fig 3. Genetic structure map in percentage probability and clustering assignment of Tanzanian cattle

involved in this study. K = 3 (upper) and K = 5 (bottom) are plotted.

doi:10.1371/journal.pone.0171088.g003
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F-ROH values in the TSZ population and in Boran breed compared to the Friesian breed, low

level of genetic differentiation indicated by low pairwise FST values and lack of clear clustering

as well as admixture patterns in the structure map. Based on these results, it can be concluded

that most of the animals in the TSZ population are closely related and might be of similar line-

age and share ancestry [19, 20]. The low level of genetic differentiation among the TSZ strains

may be a result of recent separation from a common ancestral population, interbreeding

among them, and absence of strong artificial selection. The clustering of the TSZ into one

group and the differences with other Tanzanian breeds have been shown using the RAPD

markers [3] as well as the low density microsatellite markers [15]. Therefore, the characteriza-

tion of TSZ animals based on geographical locations, ecological zones or external morphologi-

cal characteristics (phenotypes) as done at present is not satisfactory and groups the TSZ with

high levels of admixture. TSZ strains are named after tribes keeping them such as Maasai and

Sukuma or location where they are predominantly found such as Tarime. The assumption

that the different names of the TSZ strains reflect distinct identity may be misleading based on

our results. High levels of admixture and levels of expected heterozygosity such as the ones

reported in indigenous zebu populations of Tanzania in the present study have been reported

in African zebu cattle elsewhere [14, 21]. Earlier reports in Tanzania have shown that the

majority of indigenous cattle genetic resources are facing genetic erosion due to various factors

including lack of a controlled breeding system, continuous movements of the agro-pastoralists

in search of pastures and water, breeding for disease tolerance under farmers management,

Table 3. Signatures of selection in Tanzanian shorthorn Zebu cattle and Boran breed.

Breed Chr Region (Mb)1 -log10(p)>32 iHS (position)3 Genes4

Maasai 4 53.4–60.2 5 5.80 (53.4 Mb) MDFIC, U4

5 64.8–67.8 7 6.38 (67.8 Mb) STAB2, NT5DC3, HSP90B1

6 95.8–108.4 20 6.73 (107.7 Mb) DRD5, ADD1, MFSD10

7 81.2–90.3 18 10.59 (81.2 Mb) -

10 72.7–77.5 8 7.27 (74.2 Mb) SNAPC1, HIF1A, SYT16

11 27.1–33.5 20 13.78 (27.5 Mb) SIX2, SIX3, SRBD1

11 41.8–45.9 22 10.86 (43.3 Mb) REL, PAPOLG, PUS10

20 34.5–40.5 10 7.26 (38.4 Mb) CAPSL, IL7R, SPEF2

Boran 1 5.8–9.8 12 7.31 (9.6 Mb) FNDC3B

5 14.7–17.3 5 6.09 (14.7 Mb) SLC6A15, TSPAN19

14 48.3–49.4 7 6.19 (49.0 Mb) -

Friesian 1 34.8–43.6 19 9.05 (41.7 Mb) GABRR3, MINA, CYBG3

3 52.1–59.1 7 5.32 (52.3 Mb) CDC7, HFM1, ZNF644

14 42.9–49.3 26 6.01 (48.8 Mb) EXT1, MED30, AARD, RAD21

16 27.5–35.9 18 6.67 (28.5 Mb) CNIH3,

19 11.9–20.1 23 8.54 (16.3 Mb) CCL1,2,9,11

19 23.3–26.5 7 7.97 (26.5 Mb) WSCD1, NLRP1, MIS12, DERL2

20 65.0–71.7 25 7.99 (68.9 Mb) -

22 20.5–28.5 46 5.72 (24.5 Mb) -

27 39.6–41.0 8 7.97 (40.8 Mb) -

Chr: Chromosome number;
1-log10 (p-value) of iHS>3, at least 5 significant values in interval are shown;
2Number of significant iHS in the region;
3Maximum -log10 (p-value) of iHS in the region;
4Genes located within 300 kb from the maximum iHS

doi:10.1371/journal.pone.0171088.t003
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communal grazing systems, lack of breed development programs and introduction of exotic

breeds among other factors [1, 22]. Although there has been government emphasis to improve

the local animals using superior breeds [4], neither planned breeding nor formal livestock

record keeping programs exist in Tanzania making it difficult to obtain information regarding

pedigrees or ancestral relationships among animals.

In addition, results of admixture, IBS, Fst, and AMOVA have shown traces of TSZ popula-

tions in the Boran and Friesian breeds and vice versa. This is probably because of the sharing

of recent common ancestors due to migration or closer ancient lineages as previously observed

[20]. Both TSZ and Boran belong to the East African zebu (EAZ) group which includes the

short horned zebu of eastern and southern Africa. The EAZ is divided into two major sub-

groups comprised of the Small East African zebu (SEAZ) and the LEAZ. The TSZ belongs to

the SEAZ while the Boran belongs to the LEAZ. Regarding the relationship between the Frie-

sian and TSZ, there has been relatively low or no intermixing among these breeds. Both phe-

nomena (intermixing or lack of intermixing) have been explained previously [10]. The

aurochsen strains (Bos primigenius) could be the origins of both the African and the European

Fig 4. Signatures of selection (iHS) in the Tanzanian TSZ cattle population and two breeds. A: Sukuma

B. Tarime C. Maasai D. Boran E. Friesian.

doi:10.1371/journal.pone.0171088.g004
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cattle populations [20]. Probably, the major variation in them is an indication of population

expansion during the domestication process [19]. The movements and domestication of cattle

on the African continent has been traced [19, 20]. The mitochondrial genomes of taurine (Bos
taurus) and input of Asian zebu genes were discovered in characteristically and morphologi-

cally distinct African breeds that were regarded as zebu [20]. In our study the influence of Frie-

sians was almost negligible in TSZ but the introgression of Friesian alleles into Boran were

identified by admixture and haplotype sharing analysis, which should be considered for the

future conservation plan of Boran.

Moreover the differentiation between TSZ and Friesian animals further demonstrates that

most agro-pastoralists and pastoralists in rural areas do not crossbreed their indigenous breeds

with dairy breeds such as Friesian. This is probably due to the fact that in agro-pastoral and

pastoral communities the TSZ breed is preferred to exotic breeds or TSZ x Friesian crosses

because of the adaptive characteristics of the TSZ breed to tolerate drought, feed shortages,

poor quality forages and endemic diseases. Therefore, crossbreeding with exotic breeds is not

a better option for achieving the long term existence of different strains of TSZ and increased

productivity, but rather selection and interbreeding among the indigenous strains as different

human ethnic groups intermingle.

Finally, the signatures of selection are worth mentioning and create a desire for future eval-

uation in terms of animal adaptation to local environments and for implementing of popula-

tion breeding improvement schemes. Based on the iHS, the function of candidate genes

playing important roles in cattle and other livestock species were summarized. For example

the MDFIC gene which has been associated with modulatory roles in immune cells or immune

system capabilities [23] as well as growth and development in livestock [24]. The HSP90B1
gene is involved in a function related to lactation [25] while the DRD5 gene has been impli-

cated in the regulation of feeding behavior and energy homeostasis [26, 27]. In cattle HIF1A is

one of the factors promoting vascular endothelial growth factor-induced angiogenesis during

luteal development and contributes to establishing of luteal vascularization [28]. The FNDC3B
and ADD1 genes were associated with economically important traits in beef cattle. The gene

FNDC3B was associated with fat deposition [29], and insertion/deletion variants of the ADD1/

SREBP-1c gene have been associated with fatty acid composition [30]. The TSPAN19 gene was

identified as one of the candidate genes affecting mastitis in dairy cattle [31]. The glycosyl-

transferases of EXT1 and other exostosin family genes including EXT2, EXTL1, EXTL2, and

EXTL3 mediate the synthesis of the backbone of Heparan sulfate proteoglycans (the ubiquitous

components of the extracellular matrix) which play important roles in tissue homeostasis [32].

These genes were more likely to be involved in the recent natural selection in a breed when

considering the characteristics of iHS. In contrast to Maasai and Boran, signatures of recent

selection were not identified in other TSZ strains (Sukuma, Tarime) which are being bred in

different geographical regions. Thus, detailed records of contagious diseases or severe changes

in climate or nutrition sources for each breed will be useful information for the further under-

standing of the selection.

It is also worth noting that the present classification system of Tanzania has grouped the

TSZ animals into more than ten strains. Of these only three were available for this study. It is

therefore our recommendation that more strains be sampled and studied using genome-wide

association studies such as this. In addition, zebu cattle (Bos indicus) are widely spread in east-

ern, central and southern Africa [33, 34]. Therefore carrying out comparative evaluations with

animals from other countries may shed more light on the ancestry and structure of these ani-

mals. We were satisfied with the use of the Illumina Bos indicus chip to analyze SNPs in cattle

as it appears to solve the issues of possible biasness or errors in grouping the local animals

(TSZ and Boran) into the respective groups [35]. Although this may not be the case for the
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Friesian breed which is classified as Bos taurus we presumed that both Bos indicus and Bos tau-
rus have ancestry in Bos primigenius [20].

To conclude, we have reported here the genetic relatedness or diversity, structure, admix-

ture and overall relationships among cattle of Tanzania including three strains of the local TSZ

population, Boran and Friesian breeds. Our results have shown that there were low levels of

genetic differentiation between TSZ strains. The Boran breed was differentiated from TSZ

while gene flow between them has occurred, which was supported by the analyses of IBS,

admixture, and haplotype sharing. The levels of inbreeding were relatively low in TSZ com-

pared with Western dairy cattle [36, 37] and effective population size (Ne) of TSZ was larger

than Tanzanian Friesians. Nonetheless Ne has considerably decreased not only in Friesians but

in TSZ strains, representing a narrow genetic pool in contemporary EAZ. Besides, the mean

length of ROH in the Maasai strain was 17 Mb which is greater than the values in Western

dairy breeds [36, 37] and Friesians in Tanzania. This may reflect the mating between close rela-

tives sharing the recent common ancestors, suggesting the necessity of controlling the levels of

inbreeding in the Maasai strain and TSZ populations. Inbreeding coefficients were calculated

using F-geno and were negative values in some animals, which may reflect random sampling

error [38]. In Friesians, strongly negative F-geno (-0.15) was obtained when estimated within

the breed, although F-geno was 0.19 in all animals and F-ROH was 0.02. This may be caused

by sample contamination [38], but may be due to the set of SNPs optimized for Bos indicus. In

the analysis of clearly distinguished groups F-ROH appear to represent a reliable estimate of

inbreeding, which is less dependent on the frequencies of allele and genotypes. Implementa-

tion of selection, breeding and population improvement schemes within the local population

for adaptation or productivity enhancement under local environments as opposed to cross-

breeding would prevent interbreeding which poses a risk of disappearance of the uniqueness

of the indigenous breeds. Therefore, the genomic information identified in our study will pro-

vide an insight for the future breeding and conservation programs of cattle in Tanzania.

Materials and Methods

Animals and DNA purification

Three strains of TSZ, namely Maasai, Tarime and Sukuma as well as two other breeds (Boran

and Friesian) of cattle were involved in this study. Animals from the Maasai, Tarime and

Sukuma TSZ strains were sampled from pastoralist and agro-pastoralist herds in Manyara,

Mara, and Simiyu regions respectively. From each strain 40 unrelated animals were randomly

sampled from four distantly (approximately 15 to 20 km apart) local villages (the smallest unit)

in a region. In each village, we sampled a total of 10 animals from five herds (two animals per

herd/household). The owners were asked about the relationships of the animals in order to

avoid sampling of related animals. For the Boran and Friesian breeds 40 unrelated animals per

breed were sampled from the government farms at Sao Hill livestock multiplication unit

(LMU) and Kitulo dairy farm, respectively. In these farms, breeding records were used to

avoid sampling of related animals. From all animals (represented in photographs in “Fig 5”),

blood samples were obtained by jugular vein puncture using 10 ml EDTA vacutainer tubes

and were immediately placed in an ice packed cool box. All blood samples were specific for the

present study and were collected by experienced technicians (registered/licensed veterinari-

ans) from the Faculty of Veterinary Medicine (FVM) at Sokoine University of Agriculture

(SUA) and the methods were animal care approved. Samples were transported to the microbi-

ology laboratory at SUA for DNA extraction within 48 hours after sampling. Blood samples

were centrifuged at 2000 rpm for 20 minutes after which the plasma was discarded and buffy-
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coat containing peripheral blood lymphocytes was mixed with 1 ml of 8 M urea in a 2 ml

cryotube.

DNA extraction followed the standard phenol-chloroform procedure [39]. Briefly, 500 μl of

urea lysate was mixed with 200 μl of phenol—chloroform amyl alcohol in 1.5 ml Eppendorf

tubes. The mixture was gently shaken for 2 minutes and spun at 13200 rpm for 15 minutes. To

the supernatant 200 μl of 3M Sodium Acetate was added and mixed thoroughly. This mixture

was spun for 15 minutes after which the resulting supernatant was utilized in the precipitation

of DNA using 500 μl of ethanol. The precipitated DNA was reconstituted in 100 μl of double

distilled water. Finally, agarose gel electrophoresis and optical density (OD) were performed to

confirm quality of the DNA after adjusting its concentration to 50 ng/μl. All DNA samples

were stored at 4˚C.

Single nucleotide polymorphism genotyping and quality control

All samples were genotyped using the GeneSeek Genomic Profiler Indicine HD Beadchip, an

Illumina Infinium array consisting of 80K SNPs that were selected for the analysis of Bos indi-
cus (GeneSeek, Lincoln, NE, USA). The PLINK software [38] was employed to filter out SNPs

with minor allele frequency (MAF) below 0.01 and those with genotyping rate below 0.80.

Also individuals (animals/samples) with more than 10% missing genotypes were excluded

from further analyses. In addition, using the current bovine genome assembly of the Univer-

sity of Maryland (UMD) 3.1 [40], unmapped SNPs and those which were not in conformity

with the Hardy-Weinberg equilibrium (P<0.0001) in each strain or breed were also excluded.

In addition, only markers located on the autosomal chromosomes were selected for the diver-

sity analysis. Therefore, out of 74,157 SNPs genotyped in 192 animals, 69,019 on autosomal

chromosomes only 168 individuals (34 Sukuma zebu, 35 Tarime zebu, 32 Maasai zebu, 32

Boran and 35 Friesian) remained for further analyses.

Estimation of genetic similarity and diversity

Two approaches were applied to calculate the inbreeding coefficient. First, the inbreeding coef-

ficient was calculated from the sum of ROH length divided by the total length of the autosomes

(genomic size) in an individual [41] and was detected using the default option (length = 1000

kb; SNPs = 100; density = 50 kb/SNP; gap = 1000 kb) of Plink homozyg command. The mean

length of ROH was calculated from the total length of ROH divided by the total number of

ROH in each breed. In addition, inbreeding levels were inferred based on the difference

between observed and expected genotype frequencies (F-geno). The F-geno was obtained

from the sum of single marker F using Plink het [38] within each breed. F-ROH is calculated

from the total size of ROH in an individual which depends on the long haplotype homozygos-

ity from the recent common ancestors and could be more sensitive to recent common ances-

tors compared to F-geno. To examine the changes of genetic diversity, effective population

Fig 5. Photographs of individuals representing the Tanzania cattle populations and breeds involved in the present study. A:

Sukuma B. Tarime C. Maasai D. Boran E. Friesian (Photo by ELKL).

doi:10.1371/journal.pone.0171088.g005
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size (Ne) was calculated based on linkage disequilibrium (LD) in each breed/strain using the

SNeP package [42]. To further uncover the degree of differences among the populations sam-

pled, the extent of genetic differentiation among the populations also called pairwise distances

(FST) was estimated [43]. The FST was estimated using the adegenet package [44] in R. The

genetic relatedness between animals was estimated based on the identical by state (IBS) of

SNPs. PLINK was used for the analyses of ROH, F-geno, expected (He) and observed heterozy-

gosity (Ho) and IBS. Haplotype was phased using Beagle [45]. Haplotype sharing between

breeds was assessed to examine common ancestry in Tanzanian cattle. The common haplo-

types were identified using 1 Mb sliding window across the genome. Then the Pearson correla-

tion of the frequencies of the three most common haplotypes was estimated between breeds.

Further analyses of genetic variability or diversity in Tanzania cattle by

principal components and structure analyses

To ascertain the patterns of genetic diversity among Tanzanian cattle populations principal

component analysis (PCA) was performed. The PCA was developed after condensation of a

large number of genotypes into a few synthetic variables or clusters using the adegenet package

in R [44]. The cross-validation option implemented by admixture [46] was used to estimate

the most likely number (K) of underlying ancestral populations constituting a present popula-

tion. The admixture analysis was performed without prior information of breed using unsu-

pervised option. Relationship was also examined using a dendrogram constructed from allele

sharing distances according to the procedure of Reynolds’ genetic distances [47] using ade-
genet [43]. For the statistical test of population structure, AMOVA was performed between

breeds using the pegas package in R [48, 49].

Detection of genomic regions with signatures of selection

Analyses of signatures of selection can reveal genomic regions of interest from previous selec-

tion and can be one of the powerful tools for designing a breeding program in cattle or other

livestock species. In this study, the integrated haplotype score (iHS) was estimated and used to

compare the EHH based on the ancestral and derived core alleles of each of the populations

[50], thus enabling the detection of signatures of selection. The standardized value of iHS was

computed across the genome using the rehh package [51]. This method requires evenly distrib-

uted SNPs across the genome, specifying derived allele for each SNP and phasing of the haplo-

types. Using 80K SNPs, the density of markers was relatively high in 15 genomic regions,

which may inflate the length of extended haplotype homozygosity. Considering these require-

ments and in order to minimize the potential of false positives, 59,390 markers were selected

out of a total of 80K SNPs and considering the distance between loci (>100 kb) in the region

with high density of markers (100 SNPs/1 Mb). Various regions identified as signatures of

selection were considered to contain genes (regions) of importance in cattle and thus were

retrieved from Biomart in Ensembl (EMBL-EBI) using Enrichr [52] or WikiPathways [53] and

finally were annotated for the biological functions of those genes or genomic regions.

Ethics and animal welfare

In Tanzania, research permits are provided by the Commission for Science and Technology

(COSTECH). Permit No. SUA/ADM/R. 1/8 was issued by the SUA Vice Chancellor on behalf

of COSTECH to undertake our survey and sampling in private farms in Manyara, Mara, and

Simiyu regions as well as Sao Hill LMU and Kitulo dairy farms in Iringa region. In addition,

permission was requested from all local authorities in the study areas whereas the verbal con-

sent was obtained from each project participants after explaining the purpose and importance
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of the study prior to commencement of sampling. The decision of using the verbal consent

was based on a previous experience of working with the Tanzanian farmers who understand

better using either explained or visual consent (Msalya et al., Report of the SUA/ILRI Cow

Killer Project, unpublished). Participation in the study was on a voluntary basis upon accep-

tance through the verbal consent which can be evidenced with their willingness to fill out

our questionnaire in another study [54]. All the information collected or laboratory results

obtained after the analysis of blood and DNA samples were kept under the custody of

researchers as confidential. Ethics in human research in Tanzania are evaluated and permits

are issued by the National Institute for Medical Research (NIMR). However, in the present

study, this was not needed because no samples were needed from humans. This clarification

was made by the institutional review board (IRB) of the directorate of research and postgradu-

ate studies (DRPGS) which approves all research projects at SUA. IRB of SUA is accredited by

NIMR. Specific information needed from the farmers such as identity (mainly name, gender,

age, position in the household as well as household location by GPS) were collected and

reported in our previous study [54]. Collection of this information was required by all 17 proj-

ects funded by The Norwegian Agency for International Development (NORAD) under the

programme for Enhancing Pro-poor Innovation in Natural Resources and Agricultural Value

Chains (EPINAV) and was supervised by the programme’s research and strategic intervention

(RSI) component also hosted at the DRPGS at SUA. Blood samples from animals used in this

study were collected humanely to safeguard well-being of animals and adhered to the Tanza-

nian Animal Welfare Act, 2008 (http://www.fao.org/fileadmin/user_upload/animalwelfare/

tanzania.pdf). Although, there is no committee responsible for animal ethics in Tanzania,

COSTECH research permits require researchers to adhere to the welfare of animals. Neither,

the Institutional Animal Care and Use Committee (IACUC) was consulted as the main part of

work was done in Tanzania. Laboratory analyses at GeneSeek were based on the protocols of

the company (http://www.illumina.com).

Supporting Information

S1 Fig. The effective population sizes (Ne) of Tanzania cattle analyzed in the present study.

Ne of Sukuma (dark blue), Tarime (red), Maasai (green), Boran (Purple) and Friesian (light

blue) is plotted separately. X and Y axis represents generations and Ne respectively.

(TIF)

S2 Fig. Genetic comparison of Tanzania cattle in this study using pairwise distances (FST).

The values of FST are plotted against genomic position across the genome. Comparisons

between (A) Sukuma-Tarime, (B) Sukuma-Maasai, (C) Maasai-Tarime, (D) Boran-TSZ, (E)

Friesian-TSZ are shown.

(TIF)

S3 Fig. A Phylogenetic tree showing relationship among Tanzania cattle analyzed in this

study. The distance between strains or breeds was calculated based on Reynold’s method.

(TIF)

S1 Table. Genetic variation (FST±SD) among Tanzanian cattle.

(DOCX)

S2 Table. Selection signatures (iHS) in the Friesian breed. 1-log10 (p-value) of iHS>3, at

least 5 significant values in interval are shown; 2Number of significant iHS in the region;
3Maximum -log10 (p-value) of iHS in the region; 4Genes located within 300 kb from the

Genetic Structure of Tanzanian Indigenous Cattle

PLOS ONE | DOI:10.1371/journal.pone.0171088 January 27, 2017 14 / 18

http://www.fao.org/fileadmin/user_upload/animalwelfare/tanzania.pdf
http://www.fao.org/fileadmin/user_upload/animalwelfare/tanzania.pdf
http://www.illumina.com
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171088.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171088.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171088.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171088.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171088.s005


maximum his.

(DOCX)

Acknowledgments

We thank the farmers in Manyara, Mara, and Simiyu regions as well as Sao Hill LMU and

Kitulo dairy farms in Tanzania for soliciting animals for this study.

Declaration

We declare to the Editor of the PLOS ONE that this is our original work and has not been sub-

mitted for publication elsewhere. Animal welfare was not compromised anytime during this

study and all of our research protocols were cleared by the affiliated or responsible institutions

prior to embarking on the various activities reported here. We have no conflict of interest.

Author Contributions

Conceptualization: GM MJK EDK LMK SWC MFR.

Data curation: GM ESK MFR.

Formal analysis: GM ESK MFR.

Funding acquisition: GM ESK ELKL MJK EDK LMK SWC MFR.

Investigation: GM ESK ELKL.

Methodology: GM MJK EDK LMK SWC MFR.

Project administration: GM ESK MFR.

Resources: GM MJK EDK LMK SWC MFR.

Software: GM ESK MFR.

Supervision: EDK LMK SWC MFR.

Validation: GM ESK MFR.

Visualization: GM ESK MFR.

Writing – original draft: GM ESK ELKL MJK EDK LMK SWC MFR.

Writing – review & editing: GM ESK ELKL MJK EDK LMK SWC MFR.

References
1. Msanga YN, Mbaga SH, Msechu JK. Farm Animal Breeds and Strains of Tanzania. In: Kifaro GC, Kur-

wijila RL (ed), The Proceedings of SUA-MU ENRECA Project Workshop, Morogoro, Tanzania;

2001. pp 36–49.

2. Laisser ELK, Kipanyula MJ, Msalya G, Mdegela RH, Karimuribo ED, Mwilawa AJ, et al. Tick burden and

prevalence of Theileria parva infection in Tarime zebu cattle in the lake zone of Tanzania. Trop. Anim.

Health Prod. 2014; 46: 1391–1396. doi: 10.1007/s11250-014-0651-0 PMID: 25092591

3. Gwakisa PS, Kemp SJ, Teale AJ. Characterization of Zebu cattle breeds in Tanzania using random

amplified polymorphic DNA markers. Anim. Genet. 1994; 25: 89–94.

4. MLDF. Budget speech of the Ministry of Livestock and Fisheries Development. [http://www.

mifugouvuvi.go.tz/budget-speech-20122013/]. Accessed on 5th February 2015.

5. MLDF (2011) Livestock Sector Development Programme of the Ministry of Livestock and Fisheries

Development. 2014. pp 13.

Genetic Structure of Tanzanian Indigenous Cattle

PLOS ONE | DOI:10.1371/journal.pone.0171088 January 27, 2017 15 / 18

http://dx.doi.org/10.1007/s11250-014-0651-0
http://www.ncbi.nlm.nih.gov/pubmed/25092591
http://www.mifugouvuvi.go.tz/budget-speech-20122013/
http://www.mifugouvuvi.go.tz/budget-speech-20122013/


6. Mwatawala HW, Kifaro GC. Comparative growth of Tanzania Shorthorn Zebu, Boran and their crosses

in Tanzania 1. Body weights at different ages and genetic parameters. In: Farm Animal Genetic:

Resources in Tanzania. Proceedings of SUA-MU-ENRECA project. 2001. pp 102–121.

7. Mchau KW, Syrstad O, Kifaro GC. Performance of Boran and Crossbred Cattle for Beef Production

Under Ranch Conditions in Tanzania 1.Gestation Length and Growth to 36 Months. Tanzania J. Agric.

Sci. 2006; 7: 67–76.

8. Syrstad O. Dairy cattle crossbreeding in the tropics: Choice of crossbreeding strategy. Trop. Anim.

Health Prod. 1996; 28: 223–229. PMID: 8888529

9. Syrstad O, Ruane J. Prospects and strategies for genetic improvement of the dairy potential of tropical

cattle by selection. Trop. Anim. Health Prod. 1998; 30: 257–268. PMID: 9760718

10. Edea Z, Dadi H, Kim SW, Dessie T, Kim K. Comparison of SNP variation and distribution in indigenous

Ethiopian and Korean cattle (Hanwoo) populations. Genomics Inform. 2012; 10: 200–205. doi: 10.

5808/GI.2012.10.3.200 PMID: 23166531

11. Gorbach DM, Makgahlela ML, Reecy JM, Kemp SJ, Baltenweck I, Ouma R, et al. Use of SNP genotyp-

ing to determine pedigree and breed composition of dairy cattle in Kenya. J. Anim. Breed. Genet. 2010;

127: 348–351. doi: 10.1111/j.1439-0388.2010.00864.x PMID: 20831558

12. Lin BZ, Sasazaki S, Mannen H. Genetic diversity and structure in Bos taurus and Bos indicus popula-

tions analyzed by SNP markers. Anim. Sci. J. 2010; 81: 281–289. doi: 10.1111/j.1740-0929.2010.

00744.x PMID: 20597883

13. Kim ES, Rothschild MF. Genomic adaptation of admixed dairy cattle in East Africa. Front. Genet. 2014;

5: 443. doi: 10.3389/fgene.2014.00443 PMID: 25566325

14. Dadi H, Tibbo M, Takahashi Y, Nomura K, Hanada H, Amano T. Microsatellite analysis reveals high

genetic diversity but low genetic structure in Ethiopian indigenous cattle populations. Anim. Genet.

2008; 39: 425–431. doi: 10.1111/j.1365-2052.2008.01748.x PMID: 18565163

15. Mwambene PL, Katule AM, Chenyambuga SW, Plante Y, Mwakilembe PAA. Fipa cattle in the south-

western highlands of Tanzania: molecular characterization. Anim. Genet. Resour. 2012; 51: 31–43.

16. Sorensen AC, Sorensen MK, Berg P. Inbreeding in Danish dairy cattle breeds. J. Dairy Sci. 2005; 88:

1865–1872. doi: 10.3168/jds.S0022-0302(05)72861-7 PMID: 15829680

17. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analy-

sis corrects for stratification in genome-wide association studies. Nature Genet. 2006; 38: 904–909.

doi: 10.1038/ng1847 PMID: 16862161
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30. Öztabak KÖ, Akad IA, Gürsel FE, Ateş A, Yardibi H, Hostürk GT. Indel mutation of the ADD1/SREBP-

1c gene in the South Anatolian Red and East Anatolian Red cattle breeds. Turk. J. Vet. Anim. Sci. 2013;

37: 255–258.

31. Chen X, Cheng Z, Zhang S, Werling D, Wathes DC. Combining genome wide association studies and

differential gene expression data analyses identifies candidate genes affecting mastitis caused by two

different pathogens in the dairy cow. Open J. Anim. Sci. 2015; 5: 358–393.

32. Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of

integrin, proteoglycan and growth factor receptor. J. Endocrinol. 2011; 209: 139–151. doi: 10.1530/

JOE-10-0377 PMID: 21307119

33. Epstein H. The origin of the domestic animals of Africa. 1. Cattle. Africana Publishing Corporation,

New York, USA; 1971. pp. 573.

34. Hanotte O, Bradley DG, Ochieng JW, Verjee Y, Hill EW, Rege JE. African pastoralism: genetic imprints

of origins and migrations. Sci. 2002; 296: 336–339.

35. McTavish EJ, Hillis DM. How do SNP ascertainment schemes and population demographics affect

inferences about population history? BMC Genomics. 2015; 16: 266. doi: 10.1186/s12864-015-1469-5

PMID: 25887858

36. Zhang Q, Calus MP, Guldbrandtsen B, Lund MS, Sahana G. Estimation of inbreeding using pedigree,

50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genet. 2015; 16: 88. doi:

10.1186/s12863-015-0227-7 PMID: 26195126

37. Mastrangelo S, Tolone M, Di Gerlando R, Fontanesi L, Sardina MT, Portolano B. Genomic inbreeding

estimation in small populations: evaluation of runs of homozygosity in three local dairy cattle breeds.

Animal. 2016; 10: 746–754. doi: 10.1017/S1751731115002943 PMID: 27076405

38. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tool set for

whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007; 81:

559–575. doi: 10.1086/519795 PMID: 17701901

39. Sambrook J, Russell D. Molecular Cloning-A Laboratory Manual, 3rd edition. Cold Spring Harbor Labo-

ratory Press, Cold Spring Harbor, NY; 2001.

40. Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, et al. A whole-genome assembly of the

domesticated cow. Bos taurus. Genome Biol. 2009; 10: R42. doi: 10.1186/gb-2009-10-4-r42 PMID:

19393038

41. Keller MC, Visscher PM, Goddard ME. Quantification of inbreeding due to distant ancestors and its

detection using dense single nucleotide polymorphism data. Genet. 2011; 189: 237–249.

42. Barbato M, Orozco-terWenge P, Tapio M, Bruford MW. SNeP: a tool to estimate trends in recent effec-

tive population size trajectories using genome-wide SNP data. Front Genet. 2015; 6: 109. doi: 10.3389/

fgene.2015.00109 PMID: 25852748

43. Weir BS, Cockerham C. Estimating F-statistics for the analysis of population structure. Evol. 1984; 38:

1358–1370.

44. Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics.

2008; 24: 1403–1405. doi: 10.1093/bioinformatics/btn129 PMID: 18397895

45. Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for

whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 2011;

81: 1084–1097.

46. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals.

Genome Res. 2009; 19: 1655–1664. doi: 10.1101/gr.094052.109 PMID: 19648217

47. Reynolds J, Weir BS, Cockerham CC. Estimation of the co-ancestry coefficient: Basic for a short-term

genetic distance. Genet. 1983; 105: 767–779.

48. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances

among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;

131: 479–491. PMID: 1644282

49. Paradis E. pegas: an R package for population genetics with an integrated—modular approach. Bioin-

formatics. 2010; 26: 419–420. doi: 10.1093/bioinformatics/btp696 PMID: 20080509

50. Voight BF, Kudaravalli S, Wen X, Pritchard K. A map of recent positives selection in the human genome.

PLoS Biol. 2006; 4:e72. doi: 10.1371/journal.pbio.0040072 PMID: 16494531

Genetic Structure of Tanzanian Indigenous Cattle

PLOS ONE | DOI:10.1371/journal.pone.0171088 January 27, 2017 17 / 18

http://www.ncbi.nlm.nih.gov/pubmed/19727437
http://dx.doi.org/10.1530/JOE-10-0377
http://dx.doi.org/10.1530/JOE-10-0377
http://www.ncbi.nlm.nih.gov/pubmed/21307119
http://dx.doi.org/10.1186/s12864-015-1469-5
http://www.ncbi.nlm.nih.gov/pubmed/25887858
http://dx.doi.org/10.1186/s12863-015-0227-7
http://www.ncbi.nlm.nih.gov/pubmed/26195126
http://dx.doi.org/10.1017/S1751731115002943
http://www.ncbi.nlm.nih.gov/pubmed/27076405
http://dx.doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
http://dx.doi.org/10.1186/gb-2009-10-4-r42
http://www.ncbi.nlm.nih.gov/pubmed/19393038
http://dx.doi.org/10.3389/fgene.2015.00109
http://dx.doi.org/10.3389/fgene.2015.00109
http://www.ncbi.nlm.nih.gov/pubmed/25852748
http://dx.doi.org/10.1093/bioinformatics/btn129
http://www.ncbi.nlm.nih.gov/pubmed/18397895
http://dx.doi.org/10.1101/gr.094052.109
http://www.ncbi.nlm.nih.gov/pubmed/19648217
http://www.ncbi.nlm.nih.gov/pubmed/1644282
http://dx.doi.org/10.1093/bioinformatics/btp696
http://www.ncbi.nlm.nih.gov/pubmed/20080509
http://dx.doi.org/10.1371/journal.pbio.0040072
http://www.ncbi.nlm.nih.gov/pubmed/16494531


51. Gautier M, Vitalis R. rehh: an R package to detect footprints of selection in genome-wide SNP data from

haplotype structure. Bioinformatics. 2012; 28: 1176–1177. doi: 10.1093/bioinformatics/bts115 PMID:

22402612

52. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative

HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013; 14: 128. doi: 10.1186/1471-

2105-14-128 PMID: 23586463

53. Kelder T, Pico AR, Hanspers K, vanIersel MP, Evelo C, Conklin BR, et al. Mining biological pathways

using wikipathways web services. PLoS ONE. 2009; 4:e6447. doi: 10.1371/journal.pone.0006447

PMID: 19649250

54. Laisser ELK, Chenyambuga SW, Msalya G, Kipanyula MJ, Mdegela RH, Karimuribo ED, et al. Knowl-

edge and perception on ticks, tick-borne diseases and indigenous cattle tolerance to East Coast fever in

agro-pastoral communities of Lake Zone in Tanzania. Livestock Research for Rural Development.

2015; 27: 64. Available from http://www.lrrd.org/lrrd27/4/lais27064.htm.

Genetic Structure of Tanzanian Indigenous Cattle

PLOS ONE | DOI:10.1371/journal.pone.0171088 January 27, 2017 18 / 18

http://dx.doi.org/10.1093/bioinformatics/bts115
http://www.ncbi.nlm.nih.gov/pubmed/22402612
http://dx.doi.org/10.1186/1471-2105-14-128
http://dx.doi.org/10.1186/1471-2105-14-128
http://www.ncbi.nlm.nih.gov/pubmed/23586463
http://dx.doi.org/10.1371/journal.pone.0006447
http://www.ncbi.nlm.nih.gov/pubmed/19649250
http://www.lrrd.org/lrrd27/4/lais27064.htm

