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Abstract

We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for 

solving high dimensional sparse nonconvex learning problems. The main difference between 

APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that 

APISTA exploits an additional coordinate descent subroutine to boost the computational 

performance. Such a modification, though simple, has profound impact: APISTA not only enjoys 

the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence 

to a unique sparse local optimum with good statistical properties, but also significantly 

outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a 

family of nonconvex optimization problems motivated by estimating sparse semiparametric 

graphical models. APISTA allows us to obtain new statistical recovery results which do not exist 

in the existing literature. Thorough numerical results are provided to back up our theory.

1 Introduction

High dimensional data challenge both statistics and computation. In the statistics 

community, researchers have proposed a large family of regularized M-estimators, including 

Lasso, Group Lasso, Fused Lasso, Graphical Lasso, Sparse Inverse Column Operator, Sparse 

Multivariate Regression, Sparse Linear Discriminant Analysis (Tibshirani, 1996; Zou and 

Hastie, 2005; Yuan and Lin, 2005, 2007; Banerjee et al., 2008; Tibshirani et al., 2005; Jacob 

et al., 2009; Fan et al., 2012; Liu and Luo, 2015; Han et al., 2012; Liu et al., 2015). 

Theoretical analysis of these methods usually rely on the sparsity of the parameter space and 

requires the resulting optimization problems to be strongly convex over a restricted 

parameter space. More details can be found in Meinshausen and Bühlmann (2006); Zhao 

and Yu (2006); Zou (2006); Rothman et al. (2008); Zhang and Huang (2008); Van de Geer 

(2008); Zhang (2009); Meinshausen and Yu (2009); Wainwright (2009); Fan et al. (2009); 

Zhang (2010a); Ravikumar et al. (2011); Liu et al. (2012a); Negahban et al. (2012); Han et 

al. (2012); Kim and Kwon (2012); Shen et al. (2012). In the optimization community, 

researchers have proposed a large variety of computational algorithms including the 

proximal gradient methods (Nesterov, 1988, 2005; NESTEROV, 2013; Beck and Teboulle, 
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2009b,a; Zhao and Liu, 2012; Liu et al., 2015) and coordinate descent methods (Fu, 1998; 

Friedman et al., 2007; Wu and Lange, 2008; Friedman et al., 2008; Meier et al., 2008; Liu et 

al., 2009; Friedman et al., 2010; Qin et al., 2010; Mazumder et al., 2011; Breheny and 

Huang, 2011; Shalev-Shwartz and Tewari, 2011; Zhao et al., 2014c).

Recently, Wang et al. (2014) propose the path-following iterative soft shrinkage thresholding 

algorithm (PISTA), which combines the proximal gradient algorithm with path-following 

optimization scheme. By exploiting the solution sparsity and restricted strong convexity, 

they show that PISTA attains a linear rate of convergence to a unique sparse local optimum 

with good statistical properties for solving a large class of sparse nonconvex learning 

problems. However, though the PISTA has superior theoretical properties, it is empirical 

performance is in general not as good as some heuristic competing methods such as the 

path-following coordinate descent algorithm (PCDA) (Tseng and Yun, 2009b,a; Lu and 

Xiao, 2013; Friedman et al., 2010; Mazumder et al., 2011; Zhao et al., 2012, 2014a). To 

address this concern, we propose a new computational algorithm named APISTA 

(Accelerated Path-following Iterative Shrinkage Thresholding Algorithm). More 

specifically, we exploit an additional coordinate descent subroutine to assist PISTA to 

efficiently decrease the objective value in each iteration. This makes APISTA significantly 

outperform PISTA in practice. Meanwhile, the coordinate descent subroutine preserves the 

solution sparsity and restricted strong convexity, therefore APISTA enjoys the same 

theoretical guarantee as those of PISTA, i.e., APISTA attains a linear rate of convergence to 

a unique sparse local optimum with good statistical properties. As an application, we apply 

APISTA to a family of nonconvex optimization problems motivated by estimating 

semiparametric graphical models (Liu et al., 2012b; Zhao and Liu, 2014). PISTA allows us 

to obtain new sparse recovery results on graph estimation consistency which has not been 

established before. Thorough numerical results are presented to back up our theory.

NOTATIONS

Let υ = (υ1, …, υd)T ∈ ℝd, we define ‖υ‖1 = ∑j |υj|, , and ‖υ‖∞ = maxj |υj|. We 

denote the number of nonzero entries in υ as ‖υ‖0 = ∑j 𝟙(υj ≠ 0). We define the soft-

thresholding operator as  for any λ ≥ 0. Given a matrix A 
∈ ℝd×d, we use A*j = (A1j, …, Adj)T to denote the jth column of A, and Ak* = (Ak1, …, 

Akd)T to denote the kth row of A. Let Λmax(A) and Λmin(A) denote the largest and smallest 

eigenvalues of A. Let ψ1(A), …, ψd(A) be the singular values of A, we define the following 

matrix norms: , ‖A‖max = maxj ‖A*j‖∞, ‖A‖1 = maxj ‖A*j‖1, ‖A‖2 = maxj 

ψj(A), ‖A‖∞ = maxk ‖Ak*‖1. We denote υ\j = (υ1, …, υj−1, υj+1, …, υd)T ∈ ℝd−1 as the 

subvector of υ with the jth entry removed. We denote A\i\j as the submatrix of A with the ith 

row and the jth column removed. We denote Ai\j to be the ith row of A with its jth entry 

removed. Let  ⊆ {1, …, d}, we use υ  to denote a subvector of υ by extracting all entries 

of υ with indices in , and A  to denote a submatrix of A by extracting all entries of A 
with both row and column indices in .
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2 Background and Problem Setup

Let  be a parameter vector to be estimated. We are interested in solving a 

class of regularized optimization problems in a generic form:

(2.1)

where ℒ(θ) is a smooth loss function and ℛλ(θ) is a nonsmooth regularization function 

with a regularization parameter λ.

2.1 Sparsity-inducing Nonconvex Regularization Functions

For high dimensional problems, we exploit sparsity-inducing regularization functions, which 

are usually continuous and decomposable with respect to each coordinate, i.e., 

. For example, the widely used ℓ1 norm regularization decomposes as 

. One drawback of the ℓ1 norm is that it incurs large estimation bias when 

 is large. This motivates the usage of nonconvex regularizers. Examples include the 

SCAD (Fan and Li, 2001) regularization

and MCP (Zhang, 2010a) regularization

Both SCAD and MCP can be written as the sum of an ℓ1 norm and a concave function 

ℋλ(θ), i.e., ℛλ(θ) = λ‖θ‖1 + ℋλ(θ). It is easy to see that  is also 

decomposable with respect to each coordinate. More specifically, the SCAD regularization 

has

and the MCP regularization has
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In general, the concave function hλ(·) is smooth and symmetric about zero with hλ(0) = 0 

and . Its gradient  is monotone decreasing and Lipschitz continuous, i.e., for 

any , there exists a constant α ≥ 0 such that

(2.2)

Moreover, we require  if |θj| ≥ λβ, and  if |θj| ≤ λβ.

It is easy to verify that both SCAD and MCP satisfy the above properties. In particular, the 

SCAD regularization has α = 1/(β − 1), and the MCP regularization has α = 1/β. These 

nonconvex regularization functions have been shown to achieve better asymptotic behavior 

than the convex ℓ1 regularization. More technical details can be found in Fan and Li (2001); 

Zhang (2010a, b); Zhang and Zhang (2012); Fan et al. (2014); Xue et al. (2012); Wang et al. 

(2014, 2013); Liu et al. (2014). We present several illustrative examples of the nonconvex 

regularizers in Figure 2.1.

2.2 Nonconvex Loss Function

A motivating application of the method proposed in this paper is sparse transelliptical 

graphical model estimation (Liu et al., 2012b). The transelliptical graphical model is a 

semiparametric graphical modeling tool for exploring the relationships between a large 

number of variables. We start with a brief review the transelliptical distribution defined 

below.

Definition 2.1 (Transelliptical Distribution)—Let  be a set of strictly 

increasing univariate functions. Given a positive semidefinite matrix Σ* ∈ ℝd×d with 

rank(Σ*) = r ≤ d and  for j = 1, …, d, we say that a d-dimensional random vector X = 

(X1, …, Xd)T follows a transelliptical distribution, denoted as X ~ TEd(Σ*, ξ, f1, …, fd), if X 
has a stochastic representation

where Σ* = AAT, U ∈ r − 1 is uniformly distributed on the unit sphere in ℝr, and ξ ≥ 0 is a 

continuous random variable independent of U.
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Note that Σ* in Definition 2.1 is not necessarily the correlation matrix of X. To interpret Σ*, 

Liu et al. (2012b) provide a latent Gaussian representation for the transelliptical distribution, 

which implies that the sparsity pattern of Θ* = (Σ*)−1 encodes the graph structure of some 

underlying Gaussian distribution. Since Σ* needs to be invertible, we have r = d. To estimate 

Θ*, Liu et al. (2012b) suggest to directly plug in the following transformed Kendall’s tau 

estimator into existing gaussian graphical model estimation procedures.

Definition 2.2 (Transformed Kendall’s tau Estimator)—Let x1, …, xn ∈ ℝd be n 
independent observations of X = (X1, …, Xd)T, where xi = (xi1, …, xid)T. The transformed 

Kendall’s tau estimator Ŝ ∈ ℝd×d is defined as , where τ̂kj is the 

empirical Kendall’s tau statistic between Xk and Xj defined as

We then adopt the sparse column inverse operator to estimate the jth column of Θ*. In 

particular, we solve the following regularized quadratic optimization problem (Liu and Luo, 

2015),

(2.3)

For notational simplicity, we omit the column index j in (2.3), and denote Θ*j and I*j by θ 
and e respectively. Throughout the rest of this paper, if not specified, we study the following 

optimization problem for the transelliptical graph estimation

(2.4)

The quadratic loss function used in (2.4) is twice differentiable with

Since the transformed Kendall’s tau estimator is rank-based and could be indefinite (Zhao et 

al., 2014b), the optimization in (2.3) may not be convex even if ℛλ(θ) is a convex.

Remark 2.1—It is worth mentioning that the indefiniteness of Ŝ also makes(2.3) 

unbounded from below, but as will be shown later, our proposed algorithm can still 

guarantee a unique sparse local solution with optimal statistical properties under suitable 

solutions.
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Remark 2.2—To handle the possible nonconvexity, Liu et al. (2012b) estimate  based 

on a graphical model estimation procedure proposed in Cai et al. (2011) as follows,

(2.5)

(2.5) is convex regardless the indefiniteness of Ŝ. But a major disadvantage of (2.5) is the 

computation. Existing solvers can only solve (2.5) up to moderate dimensions. We will 

present more empirical comparison between (2.3) and (2.5) in our numerical experiments.

3 Method

For notational convenience, we rewrite the objective function ℱλ(θ) as

We call ℒ̃λ(θ) the augmented loss function, which is smooth but possibly nonconvex. We 

first introduce the path-following optimization scheme, which is a multistage optimization 

framework and also used in PISTA.

3.1 Path-following Optimization Scheme

The path-following optimization scheme solves the regularized optimization problem (2.1) 

using a decreasing sequence of N + 1 regularization parameters , and yields a 

sequence of N + 1 output solutions  from sparse to dense. We set the initial tuning 

parameter as λ0 = ‖∇ℒ(0)‖∞. By checking the KKT condition of (2.1) for λ0, we have

(3.1)

where the second equality comes from ‖ξ‖∞ ≤ 1 and 

 as introduced in §2.1. Since (3.1) indicates that 0 
is a local solution to (2.1) for λ0, we take the leading output solution as θ̂{0} = 0. Let η ∈ (0, 

1), we set λK = ηλK − 1 for K = 1, …, N. We then solve (2.1) for the regularization 

parameter λK with θ̂{K − 1} as the initial solution, which leads to the next output solution 

θ̂{K}. The path-following optimization scheme is illustrated in Algorithm 1.

3.2 Accelerated Iterative Shrinkage Thresholding Algorithm

We then explain the accelerated iterative shrinkage thresholding (AISTA) subroutine, which 

solves (2.1) in each stage of the path-following optimization scheme. For notational 

simplicity, we omit the stage index K, and only consider the iteration index m of AISTA. 

Suppose that AISTA takes some initial solution θ[0] and an initial step size parameter L[0], 
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and we want to solve (2.1) with the regularization parameter λ. Then at the mth iteration of 

AISTA, we already have L[m] and θ[m]. Each iteration of AISTA contains two steps: The 

first one is the proximal gradient descent iteration, and the second one is the coordinate 

descent subroutine.

Algorithm 1

Path-following optimization. It solves the problem (2.1) using a decreasing sequence of 

regularization parameters . More specifically, λ0 = ‖ℒ(0)‖∞ yields an all zero 

output solution θ̂{0} = 0. For K = 1, …, N, we set λK = ηλK − 1, where η ∈ (0, 1). We solve 

(2.1) for λK with θ̂{K − 1} as an initial solution. Note that AISTA is the computational 

algorithm for obtaining θK̂ + 1 using θ̂K as the initial solution. Lmin and  are 

corresponding step size parameters. More technical details on AISTA are presented are 

Algorithm 3.

Algorithm: 

Parameter: η, Lmin

Initialize: λ0 = ‖∇ℒ(0)‖∞, θ̂{0} ← 0, L̂{0} ← Lmin

For: K = 0, …., N − 1

  λK+1 ← ηλK, {θ̂{K+1}, L ̂{K+1}} ← AISTA(λK+1, θ{̂K}, L̂{K})

End for

Output: 

(I) Proximal Gradient Descent Iteration—We consider the following quadratic 

approximation of ℱλ(θ) at θ = θ[m],

where L[m+1] is the step size parameter such that λ,L[m+1] (θ; θ[m]) ≥ ℱλ(θ). We then take 

a proximal gradient descent iteration and obtain θ[m] by

(3.2)

where θ̃[m] = θ[m] − ∇ℒ̃λ(θ[m])/L[m+1]. For notational simplicity, we write

(3.3)
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For sparse column inverse operator, we can obtain a closed form solution to (3.2) by soft 

thresholding

The step size 1/L[m+1] can be obtained by the backtracking line search. In particular, we start 

with a small enough L[0]. Then in each iteration of the middle loop, we choose the minimum 

nonnegative integer z such that L[m+1] = 2zL[m] satisfies

(3.4)

(II) Coordinate Descent Subroutine—Unlike the proximal gradient algorithm which 

repeats (3.3) until convergence at each stage of the path-following optimization scheme, 

AISTA exploits an additional coordinate descent subroutine to further boost the 

computational performance. More specifically, we define  and solve the 

following optimization problem

(3.5)

using the cyclic coordinate descent algorithm (CCDA) initiated by θ[m+0.5]. For notational 

simplicity, we omit the stage index K and iteration index m, and only consider the iteration 

index t of CCDA. Suppose that the CCDA algorithm takes some initial solution θ(0) for 

solving (2.1) with the regularization parameter λ. Without loss of generality, we denote  = 

{1, …, | |}. At the tth iteration, we have θ(t). Then at the (t + 1)th iteration, we conduct the 

coordinate minimization cyclically over all active coordinates. Let w(t+1,k) be an auxiliary 

solution of the (t + 1)th iteration with the first k − 1 coordinates updated. For k = 1, we have 

w(t+1,1) = θ(t). We then update the kth coordinate to obtain the next auxiliary solution 

w(t+1,k+1).

More specifically, let ∇kℒ̃λ(θ) be the kth entry of ∇ℒλ̃(θ). We minimize the objective 

function with respect to each selected coordinate and keep all other coordinates fixed,

(3.6)

Once we obtain , we can set  to obtain the next auxiliary 

solution w(t+1,k+1). For sparse column inverse operator, let , we 

have
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(3.7)

where the last equality comes from the fact Ŝkk = 1 for all k = 1, …, d. By setting the 

subgradient of (3.7) equal to zero, we can obtain  as follows:

• For the ℓ1 norm regularization, we have .

• For the SCAD regularization, we have

• For the MCP regularization, we have

When all | | coordinate updates in the (t + 1)th iteration of CCDA finish, we set θ(t+1) = 

w(t+1,| |+1). We summarize CCDA in Algorithm 2. Once CCDA terminates, we denote its 

output solution by θ[m+1], and start the next iteration of AISTA. We summarize AISTA in 

Algorithm 3.

Algorithm 2

The cyclic coordinate descent algorithm (CCDA). The cyclic coordinate descent algorithm 

cyclically iterates over the support of the initial solution. Without loss of generality, we 

assume  = {1, …, | |}.

Algorithm: θ̂ ← CCDA(λ, θ(0)).

Initialize: t ← 0,  = supp(θ(0))

Repeat:

  w(t+1,1) ← θ(t)

  For k = 1, …, | |

    

  End for

  θ(t+1) ← w(t+1,| |+1), t ← t + 1
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Until convergence

θ̂ ← θ(t)

Remark 3.1—The backtracking line search procedure in PISTA has been extensively 

studied in existing optimization literature on the adaptive step size selection (Dennis and 

Schnabel, 1983; Nocedal and Wright, 2006), especially for proximal gradient algorithms 

(Beck and Teboulle, 2009b,a; NESTEROV, 2013). Many empirical results have corroborated 

better computational performance than that using a fix step size. But unlike the classical 

proximal gradient algorithms, APISTA can efficiently reduce the objective value by the 

coordinate descent subroutine in each iteration. Therefore we can simply choose a constant 

step size parameter L such that

(3.8)

The step size parameter L in (3.8) guarantees λ,L(θ; θ[m]) ≥ ℱλ(θ) in each iteration of 

AISTA. For sparse column inverse operator, ∇2ℒ(θ) = Ŝ does not depend on θ. Therefore 

we choose

Algorithm 3

The accelerated iterative shrinkage thresholding algorithm (AISTA). Within each iteration, 

we exploit an additional coordinate descent subroutine to improve the empirical 

computational performance.

Algorithm: {θ̂, L̂} ← AISTA(λ, θ[0], L[0])

Initialize: m ← 0

Repeat:

  z ← 0

  Repeat:

    L [m+1] ← 2z L[m], θ[m+0.5] ← λ,Ω,L[m+1] (θ[m]), z ← z + 1

  Until: λ,L[m+1] (θ[m+0.5]; θ[m]) ≥ ℱλ(θ[m+1])

  θ[m+1] ← CCDA(λ, θ[m+0.5]), m ← m + 1

Until convergence

θ̂ ← θ[m−0.5], L̂ ← L[m]

Output: {θ̂, L̂}

L = Λmax(Ŝ). Our numerical experiments show that choosing a fixed step not only simplifies 

the implementation, but also attains better empirical computational performance than the 

backtracking line search. See more details in §5.

3.3 Stopping Criteria

Since θ is a local minimum if and only if the KKT condition minξ∈∂‖θ‖1 ‖∇ℒ̃λ(θ) + λξ‖∞ = 

0 holds, we terminate AISTA when
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(3.9)

where ε is the target precision and usually proportional to the regularization parameter. More 

specifically, given the regularization parameter λK, we have

(3.10)

where δK ∈ (0, 1) is a convergence parameter for the Kth stage of the path-following 

optimization scheme. Moreover, for CCDA, we terminate the iteration when

(3.11)

where δ0 ∈ (0, 1) is a convergence parameter. This stopping criterion is natural to the sparse 

coordinate descent algorithm, since we only need to calculate the value change of each 

coordinate (not the gradient). We will discuss how to choose δK’s and δ0 in §4.1.

4 Theory

Before we present the computational and statistical theories of APISTA, we introduce some 

additional assumptions. The first one is about the choice of regularization parameters.

Assumption 4.1

Let δK’s and η saitsify

where η is the rescaling parameter of the path-following optimization scheme, δK’s are the 

convergence parameters defined in (3.10), and δ0 is the convergence parameter defined in 

(3.11). We have the regularization parameters

Assumption 4.1 has been extensively studied in existing literature on high dimensional 

statistical theory of the regularized M-estimators (Rothman et al., 2008; Zhang and Huang, 

2008; Negahban and Wainwright, 2011; Negahban et al., 2012). It requires the regularization 

parameters to be large enough such that irrelevant variables can be eliminated along the 

solution path. Though ‖∇ℒ(θ*)‖∞ cannot be explicitly calculated (θ* is unknown), we can 

exploit concentration inequalities to show that Assumption 4.1 holds with high probability 

(Ledoux, 2005). In particular, we will verify Assumption 4.1 for sparse transellpitical 

graphical model estimation in Lemma 4.8.
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Before we proceed with our second assumption, we define the largest and smallest s-sparse 

eigenvalues of the Hessian matrix of the loss function as follows.

Definition 4.1

Given an integer s ≥ 1, we define the largest and smallest s-sparse eigenvalues of ∇2ℒ(θ) as

Largest s-Sparse Eigenvalue : ,

Smallest s-Sparse Eigenvalue : .

Moreover, we define ρ̃−(s) = ρ−(s) − α and ρ+(s) = ρ+(s) for notational simplicity, where α is 

defined in (2.2).

The next lemma shows the connection between the sparse eigenvalue conditions and 

restricted strongly convex and smooth conditions.

Lemma 4.1

Given ρ−(s) > 0, for any θ, θ′ ∈ ℝd with |supp(θ) ∪ supp(θ′)| ≤ s, we have

Moreover, if ρ−(s) > α, then we have

and for any ξ ∈ ∂‖θ‖1,

The proof of Lemma 4.1 is provided in Wang et al. (2014), therefore omitted. We then 

introduce the second assumption.
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Assumption 4.2

Given ‖θ*‖0 ≤ s*, there exists an integer s̃ satisfying

where κ = ρ+(s + 2s̃)ρ−̃(s + 2s̃).

Assumption 4.2 requires that ℒλ̃(θ) satisfies the strong convexity and smoothness when θ is 

sparse. As will be shown later, APISTA can always guarantee the number of irrelevant 

coordinates with nonzero values not to exceed s̃. Therefore the restricted strong convexity is 

preserved along the solution path. We will verify that Assumption 4.2 holds with high 

probability for the transellpitical graphical model estimation in Lemma 4.9.

Remark 4.2 (Step Size Initialization)

We take the initial step size parameter as Lmin ≥ ρ+(1). For sparse column inverse operator, 

we directly choose Lmin = ρ+(1) = 1.

4.1 Computational Theory

We develop the computational theory of APISTA. For notational simplicity, we define 

 and  for characterizing the the solution sparsity. We first start 

with the convergence analysis for the cyclic coordinate descent algorithm (CCDA). The next 

theorem presents its rate of convergence in term of the objective value.

Theorem 4.3 (Geometric Rate of Convergence of CCDA)—Suppose that 

Assumption 4.2 holds. Given a sparse initial solution satisfying , (3.5) is a 

strongly convex optimization problem with a unique global minimizer θ̄. Moreover, for t = 

1, 2…, we have

The proof of Theorems 4.3 is provided in Appendix A. Theorem 4.3 suggests that when the 

initial solution is sparse, CCDA essentially solves a strongly convex optimization problem 

with a unique global minimizer. Consequently we can establish the geometric rate of 

convergence in term of the objective value for CCDA. We then proceed with the 

convergence analysis of AISTA. The next theorem presents its theoretical rate of 

convergence in term of the objective value.

Theorem 4.4 (Geometric Rate of Convergence of AISTA)—Suppose that 

Assumptions 4.1 and 4.2 hold. For any λ ≥ λN, if the initial solution θ[0] satisfies

(4.1)
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then we have  for m = 0.5, 1, 1.5, 2, …. Moreover, for m = 1, 2, …, we have

where θ̄λ is a unique sparse local solution to (2.1) satisfying ωλ(θ̄λ) = 0 and .

The proof of Theorem 4.4 is provided in Appendix B. Theorem 4.4 suggests that all 

solutions of AISTA are sparse such that the restricted strongly convex and smooth conditions 

hold for all iterations. Therefore, AISTA attains the geometric rate of convergence in term of 

the objective value. Theorem 4.4 requires a proper initial solution to satisfy (4.1). This can 

be verified by the following theorem.

Theorem 4.5 (Path-following Optimization Scheme)—Suppose that 

Assumptions 4.1 and 4.2 hold. Given θ satisfying

(4.2)

we have ωλK(θ) ≤ λK/2.

The proof of Theorem 4.5 is provided in Wang et al. (2014), therefore omitted. Since θ{0} 

naturally satisfies (4.2) for λ1, by Theorem 4.5 and induction, we can show that the path-

following optimization scheme always guarantees that the output solution of the (K − 1)th 

stage is a proper initial solution for the Kth stage, where K = 1, …, N. Eventually, we 

combine Theorems 4.3 and 4.4 with Theorem 4.5, and establish the global geometric rate of 

convergence in term of the objective value for APISTA in the next theorem.

Theorem 4.6 (Global Geometric Rate of Convergence of APISTA)—Suppose 

that Assumptions 4.1 and 4.2 hold. Recall that δ0 and δK’s are defined in §3.3, κ and s̃ are 

defined in Assumption 4.2, and α is defined in (2.2). We have the following results:

1. At the Kth stage (K = 1, …, N), the number of coordinate descent iterations 

within each CCDA is at most C1 log (C2/δ0), where

2. At the Kth stage (K = 1, …, N), the number of the proximal gradient iterations in 

each AISTA is at most C3 log (C4/δK), where

Zhao and Liu Page 14

J Comput Graph Stat. Author manuscript; available in PMC 2017 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. To compute all N + 1 output solutions, the total number of coordinate descent 

iterations in APISTA is at most

(4.3)

4. At the Kth stage (K = 1, …, N), we have

The proof Theorem 4.6 is provided in Appendix C. We then present a more intuitive 

explanation about Result (3). To secure the generalization performance in practice, we 

usually tune the regularization parameter over a refined sequence based on cross validation. 

In particular, we solve (2.1) using partial data with high precision for every regularization 

parameter. If we set δK = δoptλK for K = 1, …N, where δopt is a very small value (e.g. 10−8), 

then we can rewrite (4.3) as

(4.4)

where δ0 is some reasonably large value (e.g. 10−2) defined in §3.3. The iteration complexity 

in (4.4) depends on N.

Once the regularization parameter is selected, we still need to solve (2.1) using full data with 

some regularization sequence. But we only need high precision for the selected 

regularization parameter (e.g., λN), and for K = 1, …, N − 1, we only solve (2.1) for λK up 

to an adequate precision, e.g., δK = δ0 for K = 1, …, N − 1 and δN = δoptλN. Since 1/δopt is 

much larger than N, we can rewrite (4.3) as

(4.5)

Now the iteration complexity in (4.5) does not depend on N.

Remark 4.7—To establish computational theories of APISTA with a fixed step size, we 

only need to slightly modify the proofs of Theorems 4.4 and 4.6 by replacing ρ+(s* + 2s̃) and 

ρ+(s* + s̃) by their upper bound L defined in (3.8). Then a global geometric rate of 

convergence can also be derived, but with a worse constant term.

4.2 Statistical Theory

We then establish the statistical theory of the SCIO estimator obtained by APISTA under 

transelliptical models. We use Θ* and Σ* to denote the true latent precision and covariance 
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matrices. We assume that Θ* belongs to the following class of sparse, positive definite, and 

symmetric matrices:

where ψmax and ψmin are positive constants, and do not scale with (M, s*, n, d). Since Σ* = 

(Θ*)−1, we also have ψmin ≤ Λmin(Σ*) ≤ Λmax(Σ*) ≤ ψmax.

We first verify Assumptions 4.1 and 4.2 in the next two lemmas for transelliptical models.

Lemma 4.8—Suppose that . Given , we 

have

The proof of Lemma 4.8 is provided in Appendix D. Lemma 4.8 guarantees that the selected 

regularization parameter λN satisfies Assumption 4.1 with high probability.

Lemma 4.9—Suppose that . Given α = ψmin/2, there exist 

universal positive constants c1 and c2 such that for , with 

probability at least 1 − 2/d2, we have

where κ is defined in Assumption 4.2.

The proof of Lemma 4.9 is provided in Appendix E. Lemma 4.9 guarantees that if the 

Lipschitz constant of  defined in (2.2) satisfies α = ψmin/2, then the transformed 

Kendall’s tau estimator Ŝ = ∇2ℒ(θ) satisfies Assumption 4.2 with high probability.

Remark 4.10—Since Assumptions 4.1 and 4.2 have been verified, by Theorem 4.6, we 

know that APISTA attains the geometric rate of convergence to a unique sparse local 

solution to (2.3) in term of the objective value with high probability.

Recall that we use θ to denote Θ*j in (2.4), by solving (2.3) with respect to all d columns, we 

obtain  and , where  denotes the 

output solution of APISTA corresponding to λN for the jth column (j = 1, ‥d), and  to 

denote the unique sparse local solution corresponding to λN for the jth column (j = 1, ‥d), 
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which APISTA converges to. We then present concrete rates of convergence of the estimator 

obtained by APISTA under the matrix ℓ1 and Frobenius norms in the following theorem.

Theorem 4.11. [Parameter Estimation]—Suppose that , 

and α = ψmin/2. For , given , we 

have

The proof of (4.11) is provided in Appendix F. The results in Theorem 4.11 show that the 

SCIO estimator obtained by APISTA achieves the same rates of convergence as those for 

subguassian distributions (Liu and Luo, 2015). Moreover, when using the nonconvex 

regularization such as MCP and SCAD, we can achieve graph estimation consistency under 

the following assumption.

Assumption 4.3—Suppose that . Define  as 

the support of Θ*. There exists some universal constant c3 such that

Assumption 4.3 is a sufficient condition for sparse column inverse operator to achieve graph 

estimation consistency in high dimensions for transelliptical models. The violation of 

Assumption 4.3 may result in underselection of the nonzero entries in Θ*.

The next theorem shows that, with high probability, Θ̅λN and the oracle solution Θ̂o are 

identical. More specifically, let  for j = 1, …, d,  defined 

as follows,

(4.6)

Theorem 4.12. [Graph Estimation]—Suppose that , α = 

ψmin/2, and Assumption 4.3 holds. There exists a universal constant c4 

such that , if we choose , 

then we have
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The proof of Theorem 4.12 is provided in Appendix G. Since Θ̂o shares the same support 

with Θ*, Theorem 4.12 guarantees that the SCIO estimator obtained by APISTA can 

perfectly recover ℰ* with high probability. To the best of our knowledge, Theorem 4.12 is 

the first graph estimation consistency result for transelliptical models without any post-

processing procedure (e.g. thresholding).

Remark 4.13—In Theorem (4.12), we choose , which is different 

from the selected regularization parameter in Assumption 4.8. But as long as we have 

, which is not an issue under the high dimensional scaling

λN ≥ 8‖∇ℒ(θ*)‖∞ still holds with high probability. Therefore all computational theories in 

§4.1 hold for Θ̅λN in Theorem 4.12.

5 Numerical Experiments

In this section, we study the computational and statistical performance of APISTA method 

through numerical experiments on sparse transelliptical graphical model estimation. All 

experiments are conducted on a personal computer with Intel Core i5 3.3 GHz and 16GB 

memory. All programs are coded in double precision C, called from R. The computation are 

optimized by exploiting the sparseness of vector and matrices. Thus we can gain a 

significant speedup in vector and matrix manipulations (e.g. calculating the gradient and 

evaluating the objective value). We choose the MCP regularization with varying β’s for all 

simulations.

5.1 Simulated Data

We consider the chain and Erdös-Rényi graph generation schemes with varying d = 200, 

400, and 800 to obtain the latent precision matrices:

• Chain. Each node is assigned a coordinate j for j = 1, …, d. Two nodes are 

connected by an edge whenever the corresponding points are at distance no more 

than 1.

• Erdös-Rényi. We set an edge between each pair of nodes with probability 1/d, 

independently of the other edges.

Two illustrative examples are presented in Figure 5.1. Let  be the adjacency matrix of the 

generated graph, and ℳ2 be the rescaling operator that converts a symmetric positive 

semidefinite matrix to a correlation matrix. We calculate

We use Σ* as the covariance matrix to generate n = ⌈60 log d⌉ independent observations 

from a multivariate t-distribution with mean 0 and degrees of freedom 3. We then adopt the 

power transformation g(t) = t5 to convert to the t-distributed data to the transelliptical data. 
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Note that the corresponding latent precision matrix is Ω* = (Σ*)−1. We compare the 

following five computational methods:

1. APISTA: The computational algorithm proposed in §3.

2. F-APISTA: APISTA without the backtracking line search (using a fixed step size 

instead).

3. PISTA: The pathwise iterative shrinkage thresholding algoritm proposed in Wang 

et al. (2014).

4. CLIME: The sparse latent precision matrix estimation method proposed in Liu et 

al. (2012b), which solves (2.5) by the ADMM method (Alternating Direction 

Method of Multipliers, Li et al. (2015); Liu et al. (2014)).

5. SCIO(P): The SCIO estimator based on the positive semidefinite projection 

method proposed in Zhao et al. (2014b). More specifically, we first project the 

possibly indefinite Kendall’s tau matrix into the cone of all positive semidefinite 

matrices. Then we plug the obtained replacement into (2.3), and solve it by the 

coordinate descent method proposed in Liu and Luo (2015).

Note that (4) and (5) have theoretical guarantees only when the ℓ1 norm regularization is 

applied. For (1)–(3), we set δ0 = δK = 10−5 for K = 1, …, N.

We first compare the statistical performance in parameter estimation and graph estimation of 

all methods. To meet this end, we generate a validation set of the same size as the training 

set. We use the regularization sequence with N = 100 and . The 

optimal regularization parameter is selected by

where Θ̂λ denotes the estimated latent precision matrix using the training set with the 

regularization parameter λ, and S̃ denotes the estimated latent covariance matrix using the 

validation set. We repeat the simulation for 100 times, and summarize the averaged results in 

Tables 5.1 and 5.2. For all settings, we set δ0 = δK = 10−5. We also vary β of the MCP 

regularization from 100 to 20/19, thus the corresponding α varies from 0.01 to 0.95. The 

parameter estimation performance is evaluated by the difference between the obtained 

estimator and the true latent prediction matrix under the Forbenius and matrix ℓ1 norms. The 

graph estimation performance is evaluated by the true positive rate (T. P. R.) and false 

positive rate (F. P. R.) defined as follows,

Since the convergence of PISTA is very slow when α is large, we only present its results for 

α = 0.2. APISTA and F-APISTA can work for larger α’s. Therefore they effectively reduces 
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the estimation bias to attain the best statistical performance in both parameter estimation and 

graph estimation among all estimators. The SCIO(P) and CLIME methods only use ℓ1 norm 

without any bias reduction, their performance is worse than the other competitors. Moreover, 

due to the poor scalability of their solvers, SCIO(P) and CLIME fail to output valid results 

within 10 hours when d = 800.

We then compare the computational performance of all methods. We use a regularization 

sequence with N = 50, and λN is proper selected such that the graphs obtained by all 

methods have approximately the same number of edges for each regularization parameter. In 

particular, the obtained graphs corresponding to λN have approximately 0.1 · d(d − 1)/2 

edges. To make a fair comparison, we choose the ℓ1 norm regularization for all methods. We 

repeat the simulation for 100 times, and the timing results are summarized in Tables 5.3 and 

5.4. We see that F-APISTA method is up to 10 times faster than PISTA algorithm, and 

APISTA is up to 5 times after than PISTA. SCIO(P) and CLIME are much slower than the 

other three competitors.

5.2 Real Data

We present a real data example to demonstrate the usefulness of the transelliptical graph 

obtained by the sparse column inverse operator (based on the transformed Kendall’s tau 

matrix). We acquire closing prices from all stocks of the S&P 500 for all the days that the 

market was open between January 1, 2003 and January 1, 2005, which results in 504 

samples for the 452 stocks. We transform the dataset by calculating the log-ratio of the price 

at time t + 1 to price at time t. The 452 stocks are categorized into 10 Global Industry 

Classification Standard (GICS) sectors.

We adopt the stability graphs obtained by the following procedure (Meinshausen and 

Bühlmann, 2010; Liu et al., 2010):

1. Calculate the graph path using all samples, and choose the regularization 

parameter at the sparsity level 0.1;

2. Randomly choose 50% of all samples without replacement using the 

regularization parameter chosen in (1);

3. Repeat (2) 100 times and retain the edges that appear with frequencies no less 

than 95%.

We choose the sparsity level 0.1 in (1) and subsampling ratio 50% in (2) based on two 

criteria: The resulting graphs need to be sparse to ease visualization, interpretation, and 

computation; The resulting graphs need to be stable. We then present the obtained stability 

graphs in Figure 5.2. The nodes are colored according to the GICS sector of the 

corresponding stock. We highlight a region in the transelliptical graph obtained by the SCIO 

method and by color coding we see that the nodes in this region belong to the same sector of 

the market. A similar pattern is also found in the transelliptical graph obtained by the 

CLIME method. In contrast, this region is shown to be sparse in the Gaussian graph 

obtained by the SCIO method (based on the Pearson correlation matrix). Therefore we can 

see that the SCIO method is also capable of generating refined structures as the CLIME 

method when estimating the transelliptical graph.
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6 Discussions

We compare F-APISTA with a closely related algorithm – the path-following coordinate 

descent algorithm (PCDA1) in timing performance. In particular, we give a failure example 

of PCDA for solving sparse linear regression. Let X ∈ ℝn×d denote design matrix and y ∈ 
ℝn denote the response vector. We solve the following regularized optimization problem,

We generate each row of the design matrix Xi* from a d-variate Gaussian distribution with 

mean 0 and covariance matrix Σ ∈ ℝd×d, where Σkj = 0.75 if k ≠ j and Σkk = 1 for all j, k = 1, 

…, d. We then normalize each column of the design matrix X*j such that . The 

response vector is generated from the linear model y = Xθ* + ε, where θ* ∈ ℝd is the 

regression coefficient vector, and ε is generated from a n-variate Gaussian distribution with 

mean 0 and covariance matrix I. We set n = 60 and d = 1000. We set the coefficient vector as 

, and  for all j ≠ 250, 500, 750. We then set α = 0.95, N = 

100, , and δc = δK = 10−5.

We then generate a validation set using the same design matrix as the training set for the 

regularization selection. We denote the response vector of the validation set as ỹ ∈ ℝn. Let 

θ̂λ denote the obtained estimator using the regularization parameter λ. We then choose the 

optimal regularization parameter λ̂ by

We repeat 100 simulations, and summarize the average results in Table 6. We see that F-

APISTA and PCDA attain similar timing results. But PCDA achieves worse statistical 

performance than F-APISTA in both support recovery and parameter estimation. This is 

because PCDA has no control over the solution sparsity. The overselection irrelevant 

variables compromise the restricted strong convexity, and make PCDA attain some local 

optima with poor statistical properties.
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Appendix

A Proof of Theorem 4.3

Proof

Since ‖θ(0)‖0 ≤ s* + s̃ implies that | | ≤ s* + s̃, by Assumption 4.2 and Lemma 4.1, we know 

that (3.5) is strongly convex over θ . Thus it has a unique global minimizer. We then 

analyze the amount of successive decrease. By the restricted strong convexity of ℱλ(θ), we 

have
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(A.1)

where  satisfies the optimality condition of (3.6),

(A.2)

By combining (A.1) with (A.2), we have

which further implies

(A.3)

We then analyze the gap in the objective value yet to be minimized after each iteration. For 

any θ′, θ ∈ ℝd with , by the restricted strong convexity of ℱλ(θ), we have

(A.4)

where ξ ∈ ℝd with ξ  ∈ ∂‖θ ‖1 and ξ ⊥ = 0. We then minimize both sides of (A.4) with 

respect to  and obtain

(A.5)

where (i) comes from (A.2) and (ii) comes from the restricted strong smoothness of ℒ̃λ(θ).
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Eventually, by combing (A.5) with (A.3), we obtain

which further implies

(A.6)

By recursively applying (A.6), we complete the proof.

B Proof of Theorem 4.4

Proof

Before we proceed with the proof, we first introduce several important lemmas.

Lemma B.1

Suppose that Assumptions 4.1 and 4.2 hold. For any λ ≥ λN, if θ satisfies,

(B.1)

then we have

Lemma B.2

Suppose that Assumptions 4.1 and 4.2 hold. For any λ ≥ λN, if θ satisfies,

then we have ‖[ L,λ(θ)] ⊥‖0 ≤ s̃ for any L ≤ 2ρ+(s* + 2s̃).

The proofs of Lemmas B.1 and B.2 are provided in Wang et al. (2014), therefore omitted. 

Since the initial solution θ[0] satisfies the approximate KKT condition. By Lemma B.1, we 

know that θ[0] satisfies
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(B.2)

We assume L[m] ≤ 2ρ+(s* + 2s̃). Since , by (B.2) and Lemma B.2, we have θ[0.5] 

= L,λ(θ[0]) and . Since the coordinate descent subroutine iterates over  = 

supp(θ[0.5]), its output solution θ[1] also satisfies . Since the proximal gradient 

descent iteration and coordinate descent subroutine decrease the objective value, by (B.2), 

we also have

Then by induction, we know that all successive θ[m]’s satisfy  for m = 1.5, 2, 

2.5, ….

Now we verify L[m] ≤ 2ρ+(s* + 2s̃). Since we start with a small enough L = ρ+(1) ≤ 2ρ+(s* 

+ 2s̃). If L does not satisfy the stopping criterion for the backtracking line search in (3.4), 

then we multiply L by 2. Once L attains the interval ∈ [ρ+(s* + 2s̃), 2ρ+(s* + 2s̃)], it stops 

increasing. Because by the restricted strong smoothness of ℒλ̃(θ), such a step size 

parameter always guarantees that the algorithm iterates from a sparse θ[m] to a sparse 

θ[m+0.5], and meanwhile satisfies the stopping criterion of the backtracking line search. Thus 

L[m] ≤ 2ρ+(s* + 2s̃) is verified.

The existence and uniqueness of θ̄λ has been verified in Wang et al. (2014). Therefore the 

proof is omitted. We then proceed to derive the geometric rate of convergence to θ̄λ by the 

next lemma.

Lemma B.3

Suppose that Assumptions 4.1 and 4.2 hold. For any λ ≥ λN, if θ satisfies

(B.3)

given L ≤ 2ρ+(s* + 2s̃), then we have

The proof of Lemma B.3 is provided in Wang et al. (2014), therefore omitted. Since we have 

verified that all θ[m]’s satisfy (B.3) and all L[m]’s satisfy L[m] ≤ 2ρ+(s* + 2s̃) for m = 0, 1, 2, 

…, Lemma B.3 implies
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(B.4)

where the first inequality holds because the coordinate descent subroutine decreases the 

objective value. Then by recursively applying (B.4), we compete the proof.

C Proof of Theorem 4.6

Proof

Before we proceed with the proof of Result (1), we first introduce the following lemma.

Lemma C.1

Suppose that Assumptions 4.1 and 4.2 hold. For any λ ≥ λN, if θ satisfies

then for any λ′ ∈ [λN, λ], we have

The proof of Lemmas C.1 is provided in Wang et al. (2014), therefore omitted. If we take λ 
= λ′ = λK and θ = θ̂{K−1}, then Lemma C.1 implies

(C.1)

Recall (A.3) in Appendix A. Within each coordinate descent subroutine for λK, we have

(C.2)

By combining Theorem 4.3 with (C.2), we have

Therefore given
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(C.3)

we have

which satisfies the stopping criterion of CCDA for λK. Since both the proximal gradient 

descent iteration and coordinate descent subroutine decrease the objective value, we have

(C.4)

within each coordinate descent subroutine for the Kth stage. By combining (C.1) and (C.3) 

with (C.4), we have

Before we proceed with the proof of Result (2), we first introduce the following lemma.

Lemma C.2

Suppose that Assumptions 4.1 and 4.2 hold. For any λ ≥ λN, if θ satisfies,

(C.5)

given L ≤ 2ρ+(s* + 2s̃), we have

The proof of Lemma C.2 is provided in Wang et al. (2014), therefore omitted. Recall that in 

Appendix B, we have shown that at the Kth stage, θ[m] satisfies (C.5). The backtracking line 

search guarantees L[m+1] ≤ 2ρ+(s* + 2s̃). Thus by Lemma C.2, we have
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(C.6)

where the last inequality holds since the coordinate descent subroutine decreases the 

objective value. By combining (C.6) with Theorem 4.4, we obtain

Thus as long as

(C.7)

we have

which satisfies the stopping criterion of AISTA at the Kth stage. By combining (C.1) with 

(C.7), we have

Result (3) is just a straightforward combination of Results (1) and (2).

To prove Result (4), we need to use Lemma C.1 again. In particular, for K < N, we take λ′ 
= λN, λ = λK and θ = θ̂{K}. We then have

(C.8)

Since we have λK > λN for K = 1, …, N − 1, (C.8) implies
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(C.9)

For K = N, (C.8) implies

(C.10)

By combining (C.9) with (C.10), we prove Result (4).

D Proof of Lemma 4.8

Proof

Before we proceed with the proof, we need to introduce the following lemma.

Lemma D.1

Suppose that . We have

(D.1)

The proof of Lemma D.1 is provided in Liu et al. (2012a), therefore omitted. We consider 

the following decomposition,

(D.2)

Then by combining (D.1) and (D.2) with the fact ‖θ*‖1 ≤ ‖Θ*‖1 ≤ M, we have

which completes the proof.

E Proof of Lemma 4.9

Proof

Before we proceed with the proof, we first introduce the following lemma.
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Lemma E.1

Suppose that . There exists a universal constant c2 such that

(E.1)

The proof of Lemma E.1 is provided in Han and Liu (2015), therefore omitted. We consider 

the decomposition

(E.2)

By assuming ‖θ‖0 ≤ s* + 2s̃ and

we further have

(E.3)

(E.4)

Thus for , we have

Given α = ψmin/2, we have

(E.5)

Since we need to secure s̃ = c1s* ≥ (144κ2 + 250κ)s*, we take

(E.6)

In another word, we need
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Eventually by combining (E.1) and (E.5) with (E.6), we complete the proof.

F Proof of Theorem 4.11

Proof

Recall that the output solution θ̂{N} satisfies  and ωλN ≤ δNλN. By Lemma B.1, 

we have

(F.1)

By the definition of the matrix ℓ1 and Frobenius norms, we have

(F.2)

Recall that we use θ̂{N} to denote arbitrary column of Θ̂{N}. By combining (F.2) with (F.1), 

we have

Since all above results rely on Assumptions 4.1 and 4.2, by Lemma 4.8 and 4.9, we have

with probability 1 − 3d−2, which completes the proof.

G Proof of Theorem 4.12

Proof

For notational simplicity, we omit the column index j, and use  and θ̂o ∈ ℝd to denote the 

true support j and corresponding oracle estimator Θ̂o respectively for the jth column. In 

particular, we can rewrite (4.6) as follows,

(G.1)
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Suppose that Assumption 4.2 holds. We have

which implies that S  is positive definite. Thus (G.1) is strongly convex and θ̂o is a 

unique minimizer. In our following analysis, we also assume

(G.2)

By the strong convexity of (G.1), we have

(G.3)

where (i) comes from the fact that θ̂o is the minimizer to (G.1). For notational simplicity, we 

denote . By the Cauchy-Schwarz inequality, (G.3) can be rewritten as

where the last inequality comes from (G.2) and the fact that Δ̂o contains at most s* entries. 

By simple manipulations, we obtain

(G.4)

where the last inequality comes from the fact ‖θ*‖1 ≤ ‖Θ*‖1 ≤ M. By combining (G.4) with 

Assumption 4.3, we obtain

where (i) comes from the fact . Now we assume 

 for some constant c4 (will be discussed later). We then have

Zhao and Liu Page 34

J Comput Graph Stat. Author manuscript; available in PMC 2017 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Now we show that θ̂o is a sparse local solution to (2.4). In particular, we have the following 

decomposition,

Since  is the minimizer to (G.1), by the KKT condition of (G.1), we have

(G.5)

Moreover, since , we have

(G.6)

By combining (G.5) with (G.6), we have

(G.7)

Now we consider

Therefore as long as

we have , which implies that there exists ξ ∈ ∂‖0‖1 such that
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(G.8)

By combining (G.7) with (G.8), we know that θ̂o satisfies the KKT condition and is a local 

solution to (2.4).

Now we will show that θ̂o and θ̄λN are identical. Since  and , we have

By the restricted strong convexity of ℱλN, we have

(G.9)

(G.10)

where ξ̃ and ξ̃o are defined as

By combining (G.9) with (G.10), we have , i.e., θ̂o = θ̄λN. Note that we 

choose , which is different from the selected regularization 

parameter in Assumption 4.8. But as long as we have , which is not an issue 

under the high dimensional scaling

λN ≥ 8‖∇ℒ(θ*)‖∞ still holds with high probability. Since the above results universally hold 

over all columns of Θ̅λN and Θ* under Assumptions 4.1 and (4.2), by Lemmas 4.8 and 4.9, 

we obtain Θ̂o = Θ̅λN, which completes the proof.
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Figure 2.1. 
Two illustrative examples of the nonconvex regularization functions: SCAD and MCP. Here 

we choose λ = 1 and β = 2.01 for both SCAD and MCP.
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Figure 5.1. 
Different graph patterns. To ease the visualization, we only present graphs with d = 200.
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Figure 5.2. 
Stock Graphs. We see that both transelliptical graphs reveal more refined structures than the 

Gaussian graph.

Zhao and Liu Page 39

J Comput Graph Stat. Author manuscript; available in PMC 2017 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao and Liu Page 40

Ta
b

le
 5

.1

Q
ua

nt
iti

ve
 c

om
pa

ri
so

n 
am

on
g 

di
ff

er
en

t e
st

im
at

or
s 

on
 th

e 
ch

ai
n 

m
od

el
. S

in
ce

 A
PI

ST
A

 a
nd

 F
-A

PI
ST

A
 c

an
 o

ut
pu

t v
al

id
 r

es
ul

ts
 f

or
 la

rg
e 
α

’s
, t

he
ir

 e
st

im
at

or
 

at
ta

in
s 

be
tte

r 
pe

rf
or

m
an

ce
 th

an
 o

th
er

 c
om

pe
tit

or
s.

 T
he

 S
C

IO
(P

) 
an

d 
C

L
IM

E
 e

st
im

at
or

s 
us

e 
th

e 
ℓ 1 

no
rm

 r
eg

ul
ar

iz
at

io
n 

w
ith

 n
o 

bi
as

 r
ed

uc
tio

n.
 T

hu
s 

th
ei

r 

pe
rf

or
m

an
ce

 is
 w

or
se

 th
an

 th
e 

ot
he

r 
co

m
pe

tit
or

s 
in

 b
ot

h 
pa

ra
m

et
er

 e
st

im
at

io
n 

an
d 

gr
ap

h 
es

tim
at

io
n.

M
et

ho
d

d
‖Θ

̂ −Θ
‖ F

‖Θ
̂ −Θ

‖ 1
T

. P
. R

.
F.

 P
. R

.
α

PI
ST

A

20
0

4.
11

12
(0

.7
85

6)
1.

05
17

(0
.1

14
1)

1.
00

00
(0

.0
00

0)
0.

00
48

(0
.0

07
9)

0.
20

40
0

6.
45

07
(0

.9
06

2)
1.

07
56

(0
.0

71
7)

1.
00

00
(0

.0
00

0)
0.

00
07

(0
.0

00
4)

0.
20

80
0

8.
26

40
(1

.1
45

6)
1.

04
34

(0
.0

67
3)

1.
00

00
(0

.0
00

0)
0.

00
03

(0
.0

00
6)

0.
20

A
PI

ST
A

20
0

2.
51

62
(0

.2
67

7)
0.

76
65

(0
.1

58
3)

0.
99

93
(0

.0
01

2)
0.

00
01

(0
.0

00
1)

0.
95

40
0

3.
36

64
(0

.2
73

5)
0.

82
98

(0
.0

98
6)

1.
00

00
(0

.0
00

0)
0.

00
02

(0
.0

00
0)

0.
67

80
0

5.
02

44
(0

.7
98

4)
0.

93
12

(0
.1

22
6)

1.
00

00
(0

.0
00

0)
0.

00
02

(0
.0

00
4)

0.
50

F-
A

PI
ST

A

20
0

2.
51

63
(0

.2
67

0)
0.

76
58

(0
.1

55
9)

0.
99

94
(0

.0
01

5)
0.

00
01

(0
.0

00
2)

0.
95

40
0

3.
36

29
(0

.2
70

2)
0.

82
53

(0
.0

95
9)

1.
00

00
(0

.0
00

0)
0.

00
02

(0
.0

00
0)

0.
67

80
0

5.
02

37
(0

.7
96

3)
0.

93
73

(0
.1

28
9)

1.
00

00
(0

.0
00

0)
0.

00
02

(0
.0

00
5)

0.
50

SC
IO

(P
)

20
0

6.
18

12
(1

.2
92

4)
1.

22
45

(0
.0

77
7)

1.
00

00
(0

.0
00

0)
0.

01
65

(0
.0

22
0)

0.
00

40
0

8.
99

91
(0

.9
89

4)
1.

22
55

(0
.0

78
5)

1.
00

00
(0

.0
00

0)
0.

00
58

(0
.0

04
7)

0.
00

C
L

IM
E

20
0

6.
47

71
(0

.8
61

7)
1.

21
87

(0
.0

35
8)

1.
00

00
(0

.0
00

0)
0.

01
26

(0
.0

04
3)

0.
00

40
0

9.
12

21
(0

.9
99

7)
1.

21
77

(0
.0

62
9)

1.
00

00
(0

.0
00

0)
0.

00
43

(0
.0

03
2)

0.
00

J Comput Graph Stat. Author manuscript; available in PMC 2017 January 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao and Liu Page 41

Ta
b

le
 5

.2

Q
ua

nt
iti

ve
 c

om
pa

ri
so

n 
am

on
g 

di
ff

er
en

t e
st

im
at

or
s 

on
 th

e 
E

rd
ös

-R
én

yi
 m

od
el

. S
in

ce
 A

-P
IS

TA
 a

nd
 F

-A
PI

ST
A

 c
an

 o
ut

pu
t v

al
id

 r
es

ul
ts

 f
or

 la
rg

e 
α

’s
, t

he
ir

 

es
tim

at
or

s 
at

ta
in

s 
be

tte
r 

pe
rf

or
m

an
ce

 th
an

 o
th

er
 c

om
pe

tit
or

s.
 T

he
 S

C
IO

(P
) 

an
d 

C
L

IM
E

 e
st

im
at

or
s 

us
e 

th
e 
ℓ 1 

no
rm

 r
eg

ul
ar

iz
at

io
n 

w
ith

 n
o 

bi
as

 r
ed

uc
tio

n.
 

T
hu

s 
th

ei
r 

pe
rf

or
m

an
ce

 is
 w

or
se

 th
an

 th
e 

ot
he

r 
co

m
pe

tit
or

s 
in

 b
ot

h 
pa

ra
m

et
er

 e
st

im
at

io
n 

an
d 

gr
ap

h 
es

tim
at

io
n.

M
et

ho
d

d
‖Θ

̂ −Θ
‖ F

‖Θ
̂ −Θ

‖ 1
T

. P
. R

.
F.

 P
. R

.
α
̂

PI
ST

A

20
0

3.
26

47
(0

.1
23

5)
1.

68
07

(0
.2

67
5)

1.
00

00
(0

.0
00

0)
0.

05
87

(0
.0

01
3)

0.
20

40
0

4.
56

09
(0

.7
66

6)
2.

21
13

(0
.3

35
8)

1.
00

00
(0

.0
00

0)
0.

02
95

(0
.0

09
1)

0.
20

80
0

5.
07

51
(0

.3
83

2)
2.

57
18

(0
.2

82
6)

1.
00

00
(0

.0
00

0)
0.

00
99

(0
.0

02
0)

0.
20

A
PI

ST
A

20
0

2.
28

88
(0

.1
14

1)
1.

16
44

(0
.2

34
3)

1.
00

00
(0

.0
00

0)
0.

01
93

(0
.0

00
5)

0.
33

40
0

3.
22

06
(0

.2
73

3)
1.

49
74

(0
.2

77
8)

1.
00

00
(0

.0
00

0)
0.

00
67

(0
.0

10
0)

0.
33

80
0

4.
09

29
(0

.1
86

2)
1.

63
47

(0
.2

02
3)

1.
00

00
(0

.0
00

0)
0.

00
36

(0
.0

00
8)

0.
50

F-
A

PI
ST

A

20
0

2.
28

90
(0

.1
16

1)
1.

16
47

(0
.2

39
0)

1.
00

00
(0

.0
00

0)
0.

01
97

(0
.0

00
7)

0.
33

40
0

3.
22

51
(0

.2
70

2)
1.

49
28

(0
.2

73
1)

1.
00

00
(0

.0
00

0)
0.

00
60

(0
.0

10
2)

0.
33

80
0

4.
09

84
(0

.1
89

1)
1.

63
97

(0
.2

09
6)

1.
00

00
(0

.0
00

0)
0.

00
34

(0
.0

00
9)

0.
50

SC
IO

(P
)

20
0

3.
42

77
(0

.5
40

5)
1.

52
13

(0
.3

22
3)

1.
00

00
(0

.0
00

0)
0.

06
18

(0
.0

17
0)

0.
00

40
0

5.
71

44
(0

.8
15

8)
1.

90
57

(0
.2

93
3)

0.
99

94
(0

.0
01

7)
0.

03
41

(0
.0

14
5)

0.
00

C
L

IM
E

20
0

3.
62

97
(0

.6
10

3)
1.

48
76

(0
.2

85
5)

1.
00

00
(0

.0
00

0)
0.

05
81

(0
.0

15
9)

0.
00

40
0

5.
92

06
(0

.8
38

5)
1.

82
46

(0
.2

81
7)

1.
00

00
(0

.0
00

0)
0.

03
20

(0
.0

11
2)

0.
00

J Comput Graph Stat. Author manuscript; available in PMC 2017 January 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao and Liu Page 42

Ta
b

le
 5

.3

Q
ua

nt
iti

ve
 c

om
pa

ri
so

n 
of

 c
om

pu
ta

tio
na

l p
er

fo
rm

an
ce

 o
n 

th
e 

ch
ai

n 
m

od
el

 (
in

 s
ec

on
ds

).
 W

e 
se

e 
th

at
 th

e 
F-

A
PI

ST
A

 m
et

ho
d 

at
ta

in
s 

th
e 

be
st

 ti
m

in
g 

pe
rf

or
m

an
ce

 a
m

on
g 

al
l m

et
ho

ds
. T

he
 S

C
IO

(P
) 

an
d 

C
L

IM
E

 m
et

ho
ds

 a
re

 m
uc

h 
sl

ow
er

 th
an

 th
e 

ot
he

r 
th

re
e 

m
et

ho
ds

.

d
P

IS
T

A
A

P
IS

T
A

F
-A

P
IS

T
A

SC
IO

(P
)

C
L

IM
E

20
0

0.
83

42
(0

.0
24

8)
0.

26
93

(0
.0

03
1)

0.
10

13
(0

.0
02

2)
2.

65
72

(0
.1

25
3)

8.
59

32
(0

.5
39

6)

40
0

3.
87

82
(0

.0
69

6)
1.

21
03

(0
.0

36
8)

0.
45

59
(0

.0
30

8)
25

.4
51

(2
.5

75
2)

48
.2

35
(5

.3
49

4)

80
0

30
.0

14
(0

.3
51

4)
6.

59
70

(0
.2

33
8)

2.
42

83
(0

.2
60

5)
31

5.
87

(3
4.

63
8)

46
0.

12
(4

5.
12

1)

J Comput Graph Stat. Author manuscript; available in PMC 2017 January 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao and Liu Page 43

Ta
b

le
 5

.4

Q
ua

nt
iti

ve
 c

om
pa

ri
so

n 
of

 c
om

pu
ta

tio
na

l p
er

fo
rm

an
ce

 o
n 

th
e 

E
rd

ös
-R

én
yi

 m
od

el
 (

in
 s

ec
on

ds
).

 W
e 

se
e 

th
at

 th
e 

F-
A

PI
ST

A
 m

et
ho

d 
at

ta
in

s 
th

e 
be

st
 ti

m
in

g 

pe
rf

or
m

an
ce

 a
m

on
g 

al
l m

et
ho

ds
. T

he
 S

C
IO

(P
) 

an
d 

C
L

IM
E

 m
et

ho
ds

 a
re

 m
uc

h 
sl

ow
er

 th
an

 th
e 

ot
he

r 
th

re
e 

m
et

ho
ds

.

d
P

IS
T

A
A

P
IS

T
A

F
-A

P
IS

T
A

SC
IO

(P
)

C
L

IM
E

20
0

0.
54

01
(0

.0
24

8)
0.

20
48

(0
.0

05
6)

0.
10

63
(0

.0
11

0)
2.

71
2(

0.
13

55
8)

7.
13

25
(0

.7
89

1)

40
0

3.
05

01
(0

.0
82

9)
0.

99
82

(0
.0

45
3)

0.
45

55
(0

.0
07

1)
26

.1
40

(2
.1

50
3)

45
.1

60
(4

.9
02

6)

80
0

28
.5

81
(0

.3
51

7)
6.

84
17

(0
.7

54
3)

2.
70

37
(0

.2
14

5)
33

2.
90

(3
0.

11
5)

44
2.

57
(5

0.
97

8)

J Comput Graph Stat. Author manuscript; available in PMC 2017 January 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao and Liu Page 44

Ta
b

le
 6

.1

Q
ua

nt
ita

tiv
e 

co
m

pa
ri

so
n 

be
tw

ee
n 

F-
A

PI
ST

A
 a

nd
 P

C
D

A
. W

e 
se

e 
th

at
 F

-A
PI

ST
A

 a
nd

 P
C

D
A

 a
tta

in
 s

im
ila

r 
tim

in
g 

re
su

lts
. B

ut
 P

C
D

A
 a

ch
ie

ve
s 

w
or

se
 

st
at

is
tic

al
 p

er
fo

rm
an

ce
 th

an
 F

-A
PI

ST
A

 in
 b

ot
h 

su
pp

or
t r

ec
ov

er
y 

an
d 

pa
ra

m
et

er
 e

st
im

at
io

n.

M
et

ho
d

‖θ
̂ −θ

* ‖
2

‖θ
̂

‖ 0
‖θ

̂
c ‖

0
C

or
re

ct
 S

el
ec

ti
on

T
im

in
g

F-
A

PI
ST

A
0.

80
01

(0
.9

08
9)

2.
80

1(
0.

51
23

)
0.

89
0(

2.
11

2)
66

7/
10

00
0.

01
81

(0
.0

02
5)

PC
D

A
1.

12
75

(1
.2

53
9)

2.
65

5(
0.

70
51

)
1.

64
4(

3.
01

6)
51

7/
10

00
0.

01
95

(0
.0

02
1)

J Comput Graph Stat. Author manuscript; available in PMC 2017 January 27.


	Abstract
	1 Introduction
	NOTATIONS

	2 Background and Problem Setup
	2.1 Sparsity-inducing Nonconvex Regularization Functions
	2.2 Nonconvex Loss Function
	Definition 2.1 (Transelliptical Distribution)
	Definition 2.2 (Transformed Kendall’s tau Estimator)
	Remark 2.1
	Remark 2.2


	3 Method
	3.1 Path-following Optimization Scheme
	3.2 Accelerated Iterative Shrinkage Thresholding Algorithm

	Algorithm 1
	Algorithm 2
	Algorithm 3
	3.3 Stopping Criteria

	4 Theory
	Assumption 4.1
	Definition 4.1
	Lemma 4.1
	Assumption 4.2
	Remark 4.2 (Step Size Initialization)
	4.1 Computational Theory
	Theorem 4.3 (Geometric Rate of Convergence of CCDA)
	Theorem 4.4 (Geometric Rate of Convergence of AISTA)
	Theorem 4.5 (Path-following Optimization Scheme)
	Theorem 4.6 (Global Geometric Rate of Convergence of APISTA)
	Remark 4.7

	4.2 Statistical Theory
	Lemma 4.8
	Lemma 4.9
	Remark 4.10
	Theorem 4.11. [Parameter Estimation]
	Assumption 4.3
	Theorem 4.12. [Graph Estimation]
	Remark 4.13


	5 Numerical Experiments
	5.1 Simulated Data
	5.2 Real Data

	6 Discussions
	References
	Appendix
	Figure 2.1
	Figure 5.1
	Figure 5.2
	Table 5.1
	Table 5.2
	Table 5.3
	Table 5.4
	Table 6.1

