Skip to main content
. Author manuscript; available in PMC: 2017 Jan 27.
Published in final edited form as: J Comput Graph Stat. 2016 Nov 10;25(4):1272–1296. doi: 10.1080/10618600.2016.1164533

Table 5.2.

Quantitive comparison among different estimators on the Erdös-Rényi model. Since A-PISTA and F-APISTA can output valid results for large α’s, their estimators attains better performance than other competitors. The SCIO(P) and CLIME estimators use the ℓ1 norm regularization with no bias reduction. Thus their performance is worse than the other competitors in both parameter estimation and graph estimation.

Method d ‖Θ̂−Θ‖F ‖Θ̂−Θ‖1 T. P. R. F. P. R. α̂
PISTA 200 3.2647(0.1235) 1.6807(0.2675) 1.0000(0.0000) 0.0587(0.0013) 0.20
400 4.5609(0.7666) 2.2113(0.3358) 1.0000(0.0000) 0.0295(0.0091) 0.20
800 5.0751(0.3832) 2.5718(0.2826) 1.0000(0.0000) 0.0099(0.0020) 0.20

APISTA 200 2.2888(0.1141) 1.1644(0.2343) 1.0000(0.0000) 0.0193(0.0005) 0.33
400 3.2206(0.2733) 1.4974(0.2778) 1.0000(0.0000) 0.0067(0.0100) 0.33
800 4.0929(0.1862) 1.6347(0.2023) 1.0000(0.0000) 0.0036(0.0008) 0.50

F-APISTA 200 2.2890(0.1161) 1.1647(0.2390) 1.0000(0.0000) 0.0197(0.0007) 0.33
400 3.2251(0.2702) 1.4928(0.2731) 1.0000(0.0000) 0.0060(0.0102) 0.33
800 4.0984(0.1891) 1.6397(0.2096) 1.0000(0.0000) 0.0034(0.0009) 0.50

SCIO(P) 200 3.4277(0.5405) 1.5213(0.3223) 1.0000(0.0000) 0.0618(0.0170) 0.00
400 5.7144(0.8158) 1.9057(0.2933) 0.9994(0.0017) 0.0341(0.0145) 0.00

CLIME 200 3.6297(0.6103) 1.4876(0.2855) 1.0000(0.0000) 0.0581(0.0159) 0.00
400 5.9206(0.8385) 1.8246(0.2817) 1.0000(0.0000) 0.0320(0.0112) 0.00