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Abstract

Omega-3 fatty acid administration can affect the release of neurotransmitters and reduce 

inflammation and oxidative stress, but its use in traumatic brain injury (TBI) has not been 

described extensively. We investigated the effect of 7 day oral fish oil treatment in the recovery of 

potassium evoked dopamine release after TBI. Sham rats and TBI rats were given either olive oil 

or fish oil by oral gavage and were subject to cerebral microdialysis. Olive oil treated TBI rats 

showed significant dopamine release deficit compared to sham rats, and this deficit was restored 

with dietary omega-3 fatty acids. There was no effect of fish oil treatment on extracellular levels of 

dopamine metabolites such as 3,4-dihydroxyphenylacetic acid and homovanillic acid. These 

results suggest the therapeutic potential of omega-3 fatty acids in restoring dopamine 

neurotransmission deficits after TBI.
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Introduction

Polyunsaturated fatty acids (PUFA) such as omega-6 and omega-3 fatty acids are major 

components of neuronal membranes of the brain. They are obtained exclusively by diet, and 

their deprivation can lead to performance deficits in learning [32]. Their health benefits have 

long been investigated in cardiovascular and chronic inflammatory diseases. But more 

recently, there has been an increasing interest in the role of omega-3 fatty acids such as 

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in diseases of the central 

nervous system. Studies have shown the involvement of omega-3 fatty acids in psychiatric 

disorders such as depression and schizophrenia [28], neurodegenerative diseases such as 
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Alzheimer’s disease [12] and Parkinson’s disease [8], and acute brain injury such as 

ischemia [11]. Also, a few recent studies have demonstrated the possibility of using omega-3 

fatty acids as a therapeutic strategy post TBI by showing reduction in amyloid precursor 

protein and caspase-3, markers of axonal injury and apoptosis, respectively [4,25].

Dietary intake of omega-3 fatty acids have also been shown to affect the release of 

neurotransmitters. Previous microdialysis experiments demonstrated that dietary DHA 

deficiency reduces potassium evoked acetylcholine release in the hippocampus [2], whereas 

dietary enrichment of DHA increases it [17,3]. Similarly, omega-3 fatty acid deficient diet 

was shown to reduce tyramine stimulated dopamine release in the frontal cortex and nucleus 

accumbens [37,39], but dietary enrichment of it during early developmental stage was shown 

to restore dopamine release [22]. Electron micrographs revealed that rats with omega-3 fatty 

acid deficient diet had significantly decreased number of dopamine vesicles, suggesting that 

sufficient omega-3 fatty acid intake is needed for normal dopamine neurotransmission in the 

brain [38].

In an animal model of Parkinson’s disease using 6-hydroxydopamine, chronic dietary DHA 

supplementation resulted in attenuation of apomorphine induced rotating behavior in rats 

and lipid peroxidation [14]. Similarly, in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) model of Parkinson’s disease, oral intake of DHA was shown to have 

neuroprotective effects for dopamine neurons of substantia nigra and reduce motor deficits 

[31]. In this study by Tanriover et al., DHA was shown to increase expression of glial cell 

line-derived neurotrophic factor and neurturin. Also, omega-3 fatty acid diet consisting of 

both DHA and EPA increased brain derived neurotrophic factor (BDNF) mRNA expression 

in the striatum and BDNF protein levels in the motor cortex [9]. Since these neurotrophic 

factors promote neural growth and development, their induction may be a possible 

mechanism of neuroprotection by omega-3 fatty acids.

In our recent work [30], we demonstrated reduced potassium evoked striatal dopamine 

release at 1 week post TBI, which may be partially responsible for functional deficits in 

animals after injury. Since dietary omega-3 fatty acid can affect the release of 

neurotransmitters, we hypothesized that TBI induced striatal dopamine release deficit may 

be attenuated by oral fish oil treatment post injury at the same time interval. This study 

demonstrates for the first time that post injury treatment with oral fish oil can restore a 

dopamine release deficit after TBI.

Material and methods

All experiments conducted in this study were approved by the Institutional Animal Care and 

Use Committee of University of Pittsburgh. Male Sprague-Dawley rats weighing 275-300g 

were housed in a controlled environment and given food and water ad libitum throughout the 

duration of the study. Animals were assigned to the following groups: sham + olive oil, sham 

+ fish oil, injured + olive oil, and injured + fish oil (n=5-6 in each group).

Controlled cortical impact (CCI) model was used as previously described [15]. Briefly, 

animals were intubated and anesthesia was administered using 2% isoflurane and 2:1 
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N2O/O2 by mechanical ventilation throughout the duration of the surgery. After surgical 

incision and exposure of skull, craniectomy was performed over the right parietal bone. For 

groups receiving CCI, injury was given at 2.6mm deformation depth and 4m/s with the CCI 

device. For sham animals, only the craniectomy was performed. After CCI or sham injury, 

the animal recovery from anesthesia was observed by monitoring righting reflex.

After rats had full recovery from surgical procedures and anesthesia (5-6 minutes post 

surgery), animals were given commercially available laboratory purified fish oil (Nature’s 

Bounty) or olive oil as controls as used in previous human clinical trials [13,18]. The 

animals were given 1.5mL of fish oil or olive oil by oral gavage. The fish oil contained 

360mg EPA and 240mg DHA. For the next 7 days, animals were given the same dose of oil 

every 24 hours via oral gavage.

Seven days post surgery, animals were re-anesthetized using 2% isoflurane and 2:1 N2O/O2. 

In vitro recovery of microdialysis probes was measured to be 24.2% at a flow rate of 2μl/

min, with no statistically significant difference among the four groups. Dental drill was used 

to enlarge the craniotomy site for placement of microdialysis probe (SciPro, Sanborn, NY), 

which was implanted into the striatum ipsilateral to the site of injury (AP:+0.0mm, L:

+2.8mm, DV:-4.0mm) and fixed using dental cement. The animals were then allowed to 

recover and were housed overnight in a Plexiglas chamber as previously described [30,16]. 

Artificial cerebrospinal fluid (ACSF) composed of 126.5mM NaCl, 2.4mM KCl, 1.1mM 

CaCl2, 0.83mM MgCl2, 27.5mM NaHCO3, and 0.5mM KH2PO4 was infused overnight at 

0.2μl/min in awake, freely-moving animals. Next day, flow rate was increased to 2μl/min for 

1 hour before the experiment. Samples were collected every 20 minutes during the 

experiment into Eppendorf tubes containing 5μL of 0.3M HClO2. Sixty minutes after initial 

sample collection began, ACSF was switched with high potassium ACSF solution 

containing 48.9mM NaCl, 80mM KCl, 1.1mM CaCl2, 0.83mM MgCl2, 27.5mM NaHCO3, 

and 0.5mM KH2PO4 with equal osmolarity as original ACSF. High potassium ACSF was 

switched back to original ACSF 40 minutes later. Following the microdialysis experiment, 

the rats were sacrificed and the locations of the probes were verified.

Dopamine and two of its major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), and 

homovanillic acid (HVA) were measured in microdialysate samples using HPLC with 

CoulArray Detector (ESA, Chelmsford, MA, USA). The HPLC system was equipped with 

eight coulometric electrodes with potentials from −120 to +300 mV. Immediately after 

collection, microdialysates were analyzed and quantified. Baseline values of dopamine were 

below the linear range of detection and were thus reported as 0μM.

Statistical analysis was performed using one way ANOVA for the dopamine area under the 

curve for the four groups in this study. For DOPAC and HVA statistical analysis, baseline 

value for each animal was calculated by averaging the values at initial 3 collection times. 

Then, the magnitudes of deviation away from the baseline at each time point after the 

potassium stimulus were summed to calculate the area under the curve for each group. One 

way ANOVA was used also for DOPAC and HVA areas under the curve. When a one way 

ANOVA found significant between groups difference, a one-tailed Dunnett’s post-hoc 
analysis was used to compare each group to injured with olive oil treated group. Calculations 
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were performed using PASW Statistics 19 software (SPSS Inc., Chicago, IL). Each data 

point was expressed as the group mean ± standard error of the mean.

Results

Potassium evoked extracellular dopamine for the injured + fish oil group showed lower 

dopamine levels compared to the three other groups (Fig. 1a). Dopamine peak areas under 

the curve were measured to assess the overall level of dopamine release in each group (Fig. 

1b). There was a significant between-group difference with F3,17=3.591 (p≤0.05). Post-hoc 
test showed a significant difference between the injured + olive oil and each of the three 

other groups (p≤0.05).

Potassium stimulus decreased extracellular DOPAC (Fig. 2a) and HVA (Fig. 2b) levels in all 

four groups. There was no significant between-group difference for the area under the curve 

for DOPAC and HVA [data not shown].

Discussion

This study demonstrates that TBI-induced deficits in evoked dopamine release in the 

striatum can be attenuated by daily oral treatment with fish oil. The effect of TBI in the olive 

oil control groups was consistent with our previous findings in which no treatments were 

given, showing dopamine release around 0.04μM with potassium stimulus [30]. This 

indicates that olive oil treatment has no effect on evoked dopamine release. There were no 

differences in extracellular DOPAC and HVA levels at one week post injury by fish oil 

treatment compared to olive oil treatment, suggesting that this treatment does not affect 

dopamine metabolizing enzymes such as monoamine oxidase and catechol-O-methyl 

transferase. Striatal dopamine neurotransmission has a major role in voluntary movement 

[23], motor learning [20], as well as spatial learning and memory [26]. Therefore, TBI 

induced deficit in striatal dopamine release may be a major contributing factor to behavioral 

impairments. The oral fish oil treatment’s reversal of dopamine release deficits may be a 

novel mechanism in the therapeutic use of omega-3 fatty acids after TBI.

Dietary treatment using omega-3 fatty acids may increase the synthesis of phosphatides 

which are major components of neuronal membranes. In a previous study, supplementing the 

diet of gerbils with DHA increased hippocampal dendritic spines, as well as synaptic 

proteins such as PSD-95 and syntaxin-1 [10,36]. While EPA also increased synaptic protein 

levels, arachidonic acid (omega-6 fatty acid) did not. Dietary supplementation using other 

precursors of phosphatides such as uridine [34] or cytidine (5′)diphosphocholine [1] 

increased the release of striatal dopamine. As previously mentioned, omega-3 fatty acid 

deficiency has been shown to reduce dopamine release [37], which may be due to reduced 

synaptic dopamine vesicles [38]. Because dietary enrichment of omega-3 fatty acid can 

restore dopamine release [22], dopamine vesicle formation by omega-3 fatty acid is a 

possible mechanism of restoring dopamine neurotransmission. In the current study, omega-3 

fatty acid treatment following TBI may have promoted synaptogenesis or vesicle formation 

to enhance dopamine signaling.
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Pretreatment with omega-3 fatty acids before TBI was also shown to prevent losses in brain 

derived neurotrophic factor, synapsin I, and cAMP response element-binding protein, as well 

as reduce oxidative stress [35]. In addition, there was a cognitive benefit in rats treated with 

omega-3 fatty acids: rats treated with omega-3 fatty acid had reduced TBI induced learning 

deficits. As shown by previous studies and the current report, omega-3 fatty acid enhances 

dopamine signaling and synaptogenesis. These may be possible mechanisms of cognitive 

enhancement by omega-3 fatty acid in the setting of TBI.

Attenuation of the striatal dopamine neurotransmission deficit by fish oil may also be 

associated with the acute neuroprotective effects of omega-3 fatty acids. Several 

neuroprotective mechanisms of omega-3 fatty acids have been studied including their roles 

as antioxidants, modulation of inflammatory signaling, and effects on gene expression [6]. 

In experimental spinal cord injury, dietary DHA or intravenous DHA injection can reduce 

markers of lipid, protein, and RNA/DNA oxidation, as well as increase neuronal and 

oligodendrocyte survival [19,21]. Based on these results showing reduction in oxidative 

stress with DHA treatment, the mechanism of neuroprotection by DHA may be through 

increases in activity of antioxidant enzymes. Superoxide dismutase activity level was 

increased whereas xanthine oxidase and nitric oxidase levels were decreased after dietary 

omega-3 fatty acid treatment in rats [29]. Also, the activity of glutathione peroxidase and 

glutathione increased in rat hippocampal cultures treated with DHA [33]

Omega-3 fatty acids may also be beneficial in attenuating dopamine neurotransmission 

deficits by reducing inflammation and changes due to inflammation. Markers of axonal 

injury and microglia were reduced with DHA treatment in spinal cord injury, and animals 

showed improvements in motor function [19]. In addition, proinflammatory cytokine IL-6 

and inflammatory cell infiltration was reduced by DHA treatment in ischemic brain injury 

[27]. Also, DHA can serve as a precursor to neuroprotectin D-1 (NPD1) a mediator which 

has anti-inflammatory and pro-survival signaling functions [6]. NPD-1 administration into 

cerebral ventricles in an ischemic model reduced neutrophil infiltration, proinflammatory 

gene signaling, and infarct size [24]. This proinflammatory effect after injury was also 

reversed by administration of DHA, suggesting that increased DHA supplementation may be 

neuroprotective by increasing NPD-1 signaling. In addition, intravenous infusion of DHA 

has been shown to reduce infarct volume and improve behavioral measures [7]. Recent 

evidences showed that both preinjury [5] and postinjury treatment [4,25] with omega-3 fatty 

acid for rats subjected to TBI provide neuroprotection. Rats treated with omega-3 fatty acid 

had reduced markers of injury such as beta amyloid precursor protein, CD68, and caspase-3, 

supporting the therapeutic potential of omega-3 fatty acid in TBI.

Conclusions

Various mechanisms of omega-3 fatty acid’s protective action in brain injury have been 

previously proposed. Dopamine neurotransmission is important for behavioral function, and 

previous research on TBI demonstrated deficits in dopamine synthesis and release. By 

utilizing microdialysis and HPLC, we demonstrated here that TBI induced deficit in 

potassium evoked dopamine release can be reversed by 7 day oral fish oil treatment. Future 
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studies are needed to elucidate the mechanism of omega-3 fatty acid increasing striatal 

dopamine release post TBI.
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Highlights

-Traumatic brain injury induces deficits in striatal dopamine release in rats.

-7 day fish oil treatment of rats by oral gavage induces recovery of striatal 

dopamine release.

-7 day fish oil treatment does not affect striatal dopamine metabolite levels.
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Fig. 1. 
Potassium stimulated dopamine levels. Dopamine levels were monitored using microdialysis 

and HPLC. At 60 min after the initial sample collection began, potassium ACSF stimulus 

was given for 40 minutes (a). The areas under the curve for dopamine levels were compared 

among all four groups (b). Black bar represents times for potassium stimulus. SO = sham + 

olive oil, SF = sham + fish oil, IO = injured + olive oil, IF = injured + fish oil. * = p ≤ 0.05
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Fig. 2. 
Extracellular DOPAC and HVA levels. DOPAC (a) and HVA (b) were monitored by HPLC. 

Potassium stimulus induced temporary decrease of DOPAC and HVA levels across all 

groups. Black bar represents times for potassium stimulus.
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