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Abstract

Disturbances of emotion regulation and depressive symptoms are common during the menopause 

transition. Reproductive hormone levels are not directly correlated with depressive symptoms, and 

other factors may influence mood symptoms during menopause. In this study, we sought to 

determine the role of metabolic function in mood symptoms during menopause, hypothesizing an 

association with menopause status and long-term glucose load. We studied 54 women across three 

menopause transition stages (15 premenopause, 11 perimenopause, and 28 postmenopause), 

examining effects of age, hormones, and metabolism on mood and neural activation during 

emotional discrimination. We assessed participants using behavioral and functional MRI measures 

of negative emotion and emotion discrimination, and glycated hemoglobin A1c, to assess long-

term glucose load. We found that emotionally unpleasant images activated emotion regulation 

(amygdala) and cognitive association brain regions (prefrontal cortex, posterior cingulate, 

temporal-parietal-occipital (TPO) junction, hippocampus). Cognitive association region activity 

increased with menopause stage. Perimenopausal women had left TPO junction activation, and 

postmenopausal women had prefrontal cortex, posterior cingulate, and TPO junction activation. 
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Negative affect was associated with decreased amygdala activation, while depression symptoms 

and negative mood were associated with increased TPO junction activation. Hemoglobin A1c was 

associated with negative interpretation bias of neutral images and cognitive region recruitment 

during emotion discrimination. FSH levels, indicating menopause stage, were associated with 

negative mood. Age was not associated with any behavioral measures or activation patterns during 

the emotion task. Our results suggest that an interaction between metabolic and hormonal factors 

may influence emotion regulation, leading to increased risk for depression during menopause.
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1. Introduction

During the transition to menopause, fluctuating hormone levels contribute to a variety of 

symptoms across multiple systems. In addition to vascular and metabolic effects, variable 

estrogen concentrations can impact neurological regulation of cognitive and emotional 

function (Rettberg et al., 2014). Women are more susceptible to depression than men during 

all stages of life, and are at particular risk of developing depressive symptoms during the 

menopause transition (Cohen et al., 2006; Llaneza et al., 2012; Weber et al., 2013).

Changes in estrogen concentrations within the central nervous system have the most 

profound effects in regions with dense estrogen receptors, with corresponding effects on the 

functions regulated by those regions. Disregulated estrogen signaling can impact cognitive 

and mood functions regulated by prefrontal, hippocampal, amygdala, and cingulate regions, 

but can also promote compensatory use of alternative neural networks (Brinton et al., 2015). 

During the menopause transition, fluctuations in the levels of both estradiol and FSH have 

been associated with depressive symptoms (Brinton et al., 2015; Freeman et al., 2014; 

Freeman et al., 2006). However, there is no direct association between circulating hormone 

concentrations and depression (Henderson et al., 2013; Ryan et al., 2009), suggesting that 

other factors may contribute to the increased risk of depression during the menopausal 

period (Gibbs et al., 2012). Unlike changes to cognitive function during menopause, which 

are likely mediated in part by age, there is no clear relationship between age or time past 

menopause and depression (Freeman et al., 2014; Henderson et al., 2013).

Metabolic disturbances (insulin resistance, metabolic syndrome, and diabetes) frequently 

accompany menopause (Carr, 2003; Janssen et al., 2008; Polotsky and Polotsky, 2010), and 

are independently associated with increased risk of mood disorders (McIntyre et al., 2009). 

In menopausal women, a higher BMI has been associated with depression, suggesting that a 

relationship between hormonal and metabolic factors may influence the development of 

depressive symptoms (Bromberger and Kravitz, 2011).

In the current study, we examined affective state, depressive symptoms, and neural activation 

driving emotion response, in the context of the hormonal and metabolic environments of 

women spanning the menopause transition. We expected to find differing patterns of neural 

network activation during an emotion task across the menopause stages. We hypothesized 
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that premenopausal women would have the greatest activation in the emotion regulating 

amygdala region, with increasing activation of compensatory cognitive association regions 

(hippocampus, parietal/temporal/occipital (PTO) junction) in the perimenopause and 

postmenopause groups. We also hypothesized that perimenopausal and postmenopausal 

women would exhibit more depressive symptoms than premenopausal women. We further 

expected to find that affective symptoms and alternative neural activation patterns would be 

associated with higher levels of glycated hemoglobin (HbA1c), a measure of long-term 

glucose load.

2. Research Methods

2.1 Study Protocol

This was a cross-sectional study of women at 3 stages of the menopause transition. Women 

underwent a clinical evaluation including assessment of reproductive hormones, behavioral 

assessments of depression symptoms, mood, and affective state, and fMRI to observe neural 

activation patterns during an emotional images task. All procedures were approved by the 

University of Michigan Institutional Review Board, and written informed consent was 

obtained from all participants.

2.2 Participants

54 women, aged 42 – 61 years, were recruited from a population-based longitudinal study of 

the menopause transition. Women were divided into three menopause stage groups based on 

hormones and menstrual cycle criteria: 1) premenopause (regular menstrual cycles and 

FSH<11 IU/L); 2) perimenopause (at least one cycle in the previous year and FSH between 

11 and 45 IU/L); and 3) postmenopause (no cycles in previous year and FSH>40 IU/L). 

Women with a previous hysterectomy but at least one intact ovary were categorized using 

hormonal criteria. Women were excluded for acute illness, uncorrected thyroid disease, 

diabetes, neurological or psychiatric illness, current or past substance abuse, claustrophobia, 

contraindications to magnetic resonance imaging (pacemakers, surgical clips, and metallic 

surgical devices), smoking within 3 years, and hormone use within 3 months. Left-handed 

women were also excluded because potential hemispheric variability in cognitive function 

between right- and left-handed people, including differences in hemispheric lateralization 

particularly noted in women, can impede accurate comparisons of regional brain activation 

(van der Kallen et al., 1998).

2.3 Hormone and Metabolic Assays

We measured the reproductive hormones estradiol and FSH for use in determining 

menopause status and to characterize hormonal environment, and HbA1c, a measure of 

long-term glucose homeostasis, to represent overall metabolic function. Fasting serum was 

collected in the morning during the longitudinal study yearly visit, during follicular days 2–7 

in cycling women. Estradiol concentrations were measured with a modified off-line ACS:

180 E2-6 immunoassay (Bayer Diagnostics Corp, Norwood, MA). FSH concentrations were 

measured with a two-site chemiluminometric immunoassay using 2 monoclonal antibodies 

with specificity for intact FSH (Bayer Diagnostics). Glycated hemoglobin A1c (HbA1c) was 

measured with a non-porous ion exchange column and high performance liquid 
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chromatography (HPLC), using a Tosoh G7 HPLC Analyzer (Tosoh Biosciences Inc., South 

San Francisco, CA), and calculated as a percent of total hemoglobin.

2.4 Behavioral Assessment of Emotion Regulation

Measures were chosen to specifically reflect state and trait measures of mood, emotion 

regulation, and depressive symptoms. Negative affective state and mood were assessed using 

the Positive and Negative Affect Schedule – Expanded (PANAS-X) (Watson et al., 1988) 

and the Profile of Mood States (POMS) total mood disturbance score (Nyenhuis et al., 

1999). The Beck Depression Index was used to assess the severity of depressive symptoms 

even in the absence of frank Major Depression (Beck et al., 1961). Potential IQ differences 

between groups were assessed using the Shipley Insititute of Living Scale (Shipley, 1946).

2.5 fMRI Emotion Paradigm

During the fMRI scanning session, women performed an emotion identification task 

designed to engage limbic emotion regulation circuitry. During the task, women were 

presented with a series of images previously validated as emotionally neutral or unpleasant 

by a normative female sample. Participants indicated their interpretation of each image as 

“unpleasant” (negative) or “neutral”. Each picture was presented for 3.5s, with a 1.5s inter-

stimulus interval. The task was presented in blocked design across four runs, with 12 

pictures per block and four blocks per run. Response times and accuracy scores were 

recorded. Prior to scanning, participants practiced the task, using a separate set of images 

with similar emotional valence, to minimize performance differences attributable to 

unfamiliarity with the task. Stimuli were presented through display goggles, and responses 

made by response box button-press.

2.6 MRI Acquisition & Reconstruction Protocols

We used blood oxygen level dependent (BOLD) contrast imaging. Scans were acquired on 

an FDA-approved 3 Tesla GE MRI scanner. Localizer scans were acquired to identify 

landmarks, including the anterior commissure (AC) and the posterior commissure (PC), then 

30 3mm-thick oblique axial slices were prescribed parallel to the AC-PC line covering the 

entire cerebral cortex. These first two data sets were acquired using a T1-weighted pulse 

sequence (TR=500ms, TE=8ms, FOV=20cm, 256x192 matrix). Magnetic field uniformity 

was achieved through high-order shimming, then functional imaging was performed using a 

T2*-weighted pulse sequence with parameters: single-shot combined spiral in/out 

acquisition, gradient echo, TR=2000ms, TE=30ms, FA=90, FOV=20cm, 64x64 matrix. Slice 

thickness and locations were matched to the T1-weighted images. The entire volume of 30 

slices was acquired once every 2 seconds and scan duration was matched to the duration of 

the tasks. Images were reconstructed using the iterative approach and placed in NIfTI 

(Neuroimaging Informatics Technology Initiative) format for post-processing. First, the data 

were sync-interpolated in time to correct for staggered slice acquisition. Next, a motion 

correction algorithm was applied to realign functional data to the first image acquired during 

scanning. The data were thresholded to exclude extra-parenchymal voxels and the scan-wise 

global signals and power spectra were derived. For group comparisons, the preprocessed 

images were first coregistered into standard stereotactic space and anatomically normalized 

by non-linear warping to a common “reference” anatomical MR data set. The anatomical 
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T1-weighted MR data were warped using the ICBM (Montreal Neurological Institute) atlas 

template as a reference, and the transformation matrix was applied to the realigned 

functional images. After anatomical normalization, functional images were smoothed with a 

6mm Gaussian filter to reduce residual interindividual anatomical variability. Following pre-

processing, image analysis was undertaken using MATLAB (Mathworks, Inc.) and 

Statistical Parametric Mapping packages (SPM8; Wellcome Department of Cognitive 

Neurology).

2.7 Data analysis: Statistical parametric mapping

Statistical parametric maps (SPM) of significant differences between longitudinal time 

points, within subjects, were obtained from the fMRI data using SPM8 on the preprocessed 

T2*-weighted images. The data were fit in two stages, a first-level intrasubject model for 

task effects and a second-level within subjects model that addressed the effects of interest. 

At the first level, a general linear model (GLM) was fit at voxel level for each subject, and 

orthogonal contrasts constructed for the main comparisons of interest (negative images – 

neutral images, to isolate circuitry activated by emotionally negative stimuli). Second-level 

analyses were based on anatomically-standardized contrast images of each subject’s first-

level analysis. A whole-brain effect-of-task analysis was performed with the entire sample 

(1-sample t test). Data from whole brain images were corrected for multiple comparisons by 

setting the False Discovery Rate (FDR) threshold at 0.05, and beta values were extracted 

from regions meeting this criteria for significant activation for use in secondary analyses. 

Subsequent whole-brain analyses were performed separately for each group, and regions 

were reported if present in the effect-of-task analyses and met FDR significance threshold of 

0.05.

2.8 Data analysis: Clinical & behavioral

Clinical, demographic, and behavioral variables were compared between menopause stage 

groups using ANOVA analyses. Associations between clinical, behavioral, and regional 

activation were determined using Pearson correlational analyses. Because age significantly 

differed between groups, we performed comparisons between groups with and without age 

covariate. As age was not correlated with behavioral or imaging measures, age was not 

included as a covariate in Pearson correlation analyses.

3. Results

3.1 Demographic and clinical characteristics

Demographic and clinical characteristics are provided in Table 1. Menopause stage groups 

significantly differed in age (p<0.000), estradiol (p<0.000), FSH (p<0.000), and HbA1c 

(p<0.020), but had similar IQ (p=0.519) and BMI (p=0.108).

While age differed between groups, introducing age as a covariate to the analyses had little 

impact on clinical differences between groups. With age held constant at the mean of 52.01 

years, significant differences between groups remained for estradiol (91.97±9.62 pg/mL 

premenopause, 42.33±8.84 perimenopause, and 13.76±6.46 postmenopause, p<0.000), FSH 

(7.82±6.43 mIU/mL premenopause, 30.04±5.95 perimenopause, and 84.17±4.36 
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postmenopause, p<0.000), and HbA1c (5.36±0.14% premenopause, 5.73±0.12% 

perimenopause, and 5.57±0.094% postmenopause, p=0.042). Groups remained similar in IQ 

(p=0.209), education (p=0.088), and BMI (p=0.214).

3.2 Brain regions activated during emotion task

Regional activation during the emotion task is provided in Table 2. To determine the regional 

activation effects of the emotion images task, we performed a 1 sample T test of whole-brain 

activation in all women, without considering menopause stage or age (Table 2A). We found 

that emotionally unpleasant images elicited significant regional activity in the medial 

prefrontal cortex (MNI coordinates x,y,z (mm)= −6, 52, 18; T=5.72; p (FDR corrected) 

=0.009; size 16392 mm3), posterior cingulate (2, −60, 28; T=8.93; p<0.000; size 188808 

mm3), right temporal/parietal/occipital (TPO) junction (54, −64, 0; T=9.94, p<0.000, size 

166696 mm3), left TPO junction (−52, −72, 4; T=8.94; p<0.000, size 21856 mm3), right 

amygdala (16, −4, −16; T=4.30; p=0.052; size 3904 mm3), left amygdala (−20, −6, −18; 

T=4.55; p=0.031; size 360 mm3), and left hippocampus (−24, −20, −18; T=4.90; p=0.012; 

size 3632 mm3).

While ANOVA comparisons did not reveal significant differences in regional activation 

between menopause stage groups at the stringent criteria of p<0.05 after FDR correction for 

multiple comparisons, 1-sample T tests performed in each group independently revealed 

distinct activation patterns within each group. When analyzed by menopause stage group 

(Table 2B), no regions met the stringent significance criteria of p<0.05 after FDR correction 

for multiple comparisons in premenopausal women. In perimenopausal women there was 

activation in the right TPO junction (x,y,z= 52, −62, −4; T=5.49; p=0.036, size 4736 mm3), 

and in postmenopausal women there was activation in the left prefrontal cortex (−8, 58, 20; 

T=5.59; p=0.004; size 15016 mm3), posterior cingulate (0, −58, 26; T=5.59; p<0.000; size 

11528 mm3), right TPO junction (52, −42, 10; T=8.09; p<0.000; size 21016 mm3), and left 

TPO junction (−44, −70, 4; T=9.78; p<0.000; size 24880 mm3). Because mean age differed 

between menopause stage groups, we included age as a covariate when analyzing each 

group individually, however analyses without age covariate had similar results (data not 

shown).

3.3 Behavioral and imaging task measures

Women had similar scores on measures of mood and affect across menopause stage groups 

(Table 3). The entire group had a mean Beck depression score of 4.14±3.80 (SD), with 

premenopausal women scoring 3.53±2.86, perimenopause 3.47±4.21, and postmenopause 

4.62±4.09 (p=0.490). The entire group had a mean PANAS-X negative affect score of 

2.00±2.65, premenopausal women scored 1.22±1.17, perimenopause 2.15±2.48, and 

postmenopause 2.48±3.29 (p=0.289). The entire group had a POMS negative mood score of 

3.66±22.88, premenopausal women scored −3.37±15.84, perimenopause 1.13±17.39, and 

postmenopause 7.56±27.71 (p=0.244).

ANOVA analyses revealed that women in each menopause stage group were similarly 

accurate in identifying negative emotional images during the fMRI scanning session, 

however perimenopausal women were significantly less accurate at identifying neutral 
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images than the other groups, suggesting a negative bias in this group. The entire group 

correctly identified 87±11% of emotionally negative images, with premenopausal women 

correctly identifying 86±10%, perimenopause 91±7%, and postmenopause 87±12% 

(p=0.494). The group identified the negative images at a mean speed of 1.42±0.23 seconds, 

premenopausal women at 1.43±0.27s, perimenopause 1.35±0.19s, and postmenopause 

1.44±0.23s (p=0.558). The entire group correctly identified 84 ± 9% of the emotionally 

neutral images, with premenopausal women correctly identifying 86 ± 8%, perimenopause 

77±12%, and postmenopause 85±9% (p=0.048). The group identified the neutral images at a 

mean speed of 1.53±0.22 seconds, premenopausal women at 1.43±0.19s, perimenopause 

1.53±0.22s, and postmenopause 1.57 0.22s (p=0.172).

3.4 Correlations between clinical, behavioral, and imaging measures

We performed correlation analyses to determine associations between regional activation 

patterns, hormonal and metabolic environments, and behavioral measures of emotion 

regulation in all women (Table 4). We found associations between activation of cognitive 

association regions during the emotional images task and metabolic and behavioral 

measures, but not with FSH or estradiol (Table 4A). Activation in the TPO junction was 

correlated with HbA1c levels (R=0.345, p=0.011 right; R=0.279, p=0.041 left), and 

activation in the prefrontal cortex was inversely correlated with BMI (R=−0.274, p=0.045). 

Posterior cingulate activation was correlated with accurate identification of negative images 

(R=0.439, p=0.001), and inversely correlated with accurate identification of neutral images 

(R=−0.402, p=0.003), and associated with time spent identifying negative images (R=0.410, 

p=0.003). TPO junction activation was correlated with depressive symptoms (R=0.283, 

p=0.038, right), with POMS negative mood score (R=0.310, p=0.023 right; R=0.330, 

p=0.015 left), and with accurate identification of neutral images (R=0.311, p=0.025 left). 

Activation of the emotion regulation amygdala region was inversely activated with PANAS-

X negative affect score (R=−0.297, p=0.036).

We also found associations between clinical and behavioral measures (Table 4B). FSH levels 

were correlated with POMS negative mood score (R=0.355, p=0.009), and HbA1c levels 

were inversely associated with accurate identification of neutral images (R=−0.334, 

p=0.014), and correlated with time spent identifying neutral images (R=0.300, p=0.031).

Age was not associated with any neurobiological, clinical, or behavioral measures.

To determine if relationships between metabolic function and imaging or behavioral 

measures were driven by higher HbA1c levels, we divided women into “lower” (mean 

HbA1c = 5.23%) and “higher” (mean HbA1c = 5.77%) HbA1c groups based on a median 

split at 5.47%. In the lower HbA1c group, activation in the TPO junction was not correlated 

with HbA1c levels (R = 0.219, p = 0.283 right; R = 0.052, p = 0.799 left), while TPO 

junction activation was correlated with HbA1c in the higher HbA1c group (R = 0.456, p = 

0.015 right; R = 0.466, p = 0.013 left). Accurate identification of neutral images was not 

correlated with HbA1c in either group when calculated separately, time spent identifying 

neutral images was correlated with HbA1c in the higher HbA1c group (R = 0.465, p = 

0.013), but not the lower HbA1c group (R = 0.092, p = 0.667).
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4. Discussion

Depression is universal, but occurs more frequently in women, particularly after menopause 

(Cohen et al., 2006; Llaneza et al., 2012; Weber et al., 2013). There is evidence that the 

hormonal environment plays some role in the etiology of depression – variability of estradiol 

levels was found to be associated with depressive symptoms in women who had recently 

experienced stressful life events (Gordon et al., 2015), and greater lifetime exposure to 

endogenous estrogens, assessed by age at menopause and length of reproductive period, is 

associated with lower risk of depression (Georgakis et al., 2016; Jung et al., 2015). However 

there is not a direct relationship between depressive symptoms and reproductive hormone 

levels (Henderson et al., 2013; Ryan et al., 2009), and studies of postmenopausal hormone 

therapy have found variable effects on depression symptoms (Gleason et al., 2015; Jung et 

al., 2015; Schmidt et al., 2015). Despite the increased risk of depressive symptoms during 

the menopausal period of hormonal instability, the relationship seems to be driven by factors 

other than reproductive hormone levels. In the current study, we examined the effects of age, 

reproductive hormone levels, and metabolic function on depressive symptoms, mood, 

affective state, and emotion processing in healthy women across the menopause transition. 

We found that FSH levels were associated with negative mood, and HbA1c, a measure of 

long-term glucose load, was associated with a tendency toward negative interpretation of 

emotionally neutral images, and with increased recruitment of cognitive association regions 

during emotion processing. Age was not associated with any behavioral measures of mood 

or emotion regulation or with neural activation patterns during the emotional images task. 

Our results indicate relationships between menopause status, metabolic profile, and regional 

brain activation during emotional decision-making, which may lead to increased risk for 

depression during menopause.

In our entire sample, viewing emotionally unpleasant images activated both emotion 

regulation and cognitive association regions in the brain. When we separated the whole-

brain analyses by menopause status group, a pattern emerged where activation in the 

cognitive association regions became more pronounced with advancing menopause stage. 

Perimenopausal women had significant activation in the left TPO junction, and 

postmenopausal women had activation in the prefrontal cortex, posterior cingulate, and TPO 

junction. This complexly interconnected region of the brain regulates visual information 

processing, with direct and indirect connections between visual cortex and limbic emotion 

regulation regions (De Benedictis et al., 2014). The posterior cingulate is also a highly 

interconnected cognitive association region, and has been implicated in memory retrieval of 

emotionally salient events (Maddock et al., 2003; Riegel et al., 2015). While women in all 

three menopause stage groups had similar measures of mood and affective state, women in 

the perimenopausal group were most likely to interpret emotionally neutral images as 

unpleasant, suggesting a negative interpretation bias.

Across our entire sample, negative affective state, which may be associated with future risk 

for depression in older adults (Harralson and Lawton, 1999), was associated with decreased 

activation in the amygdala, while depression symptoms and negative mood were associated 

with increased activation in the TPO junction. This pattern of results suggest that increased 

negative symptomology is associated with less activation in emotion regulation regions and 
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increased activation in cognitive association regions during emotion processing, a potential 

proxy for ruminative processes and negative cognitive bias. This conclusion is further 

supported by an association between posterior cingulate activation and accurately 

identifying emotionally unpleasant images, and also with a tendency to misidentify 

emotionally neutral images as unpleasant, while taking a longer time to make this decision. 

Higher levels of HbA1c, a measure of long-term glucose homeostasis, were associated with 

increased activation in the TPO junction, and with lower accuracy, and longer reaction time, 

at correctly identifying emotionally neutral images. Interestingly, the range of HbA1c values 

in our sample, and particularly the perimenopausal group, fall near the 5.7% cut-off for pre-

diabetes determined by the U. S. National Health and Nutrition Examination Survey 

(NHANES) (Zhang et al., 2015). When we divided our group into “higher” and “lower” 

HbA1c levels, relationships between HbA1c and TPO junction activation and reaction time 

to emotionally neutral images were found to exist only in women with higher HbA1c levels, 

with mean HbA1c falling within pre-diabetic range. Similar threshold effects have been 

found for other relationships between metabolic measures and neural outcomes, for example 

glucose levels are associated with reduced cortical thickness in Alzheimer’s Disease only in 

patients with glucose levels in the diabetic range (Wennberg et al., 2016). Our results 

suggest that the negative interpretation bias associated with increased recruitment of 

cognitive association regions during emotional decision-making may be driven by metabolic 

dysfunction during menopause.

While disturbances of emotion regulation and depressive symptoms are common during the 

menopause transition, it is not clear what mechanisms underlie this phenomenon. In this 

study we found evidence of altered emotion regulation in peri- and postmenopausal women, 

with women in these groups displaying recruitment of cognitive association regions during 

an emotion discrimination task, and evidence of negative interpretation bias in 

perimenopausal women. This pattern echoes that found in studies of individuals with 

depression, where a negative bias is associated with increased connectivity between emotion 

and cognitive regulating regions (Zhou et al., 2010). In our study, neither hormonal variables 

nor age appear to be driving these outcomes in our study sample. On the contrary, our data 

suggest that metabolic factors may play a role.

Evidence from the literature supports metabolic influences on limbic function and emotion 

regulation, with disrupted emotion regulation in the context of metabolic dysfunction. 

Insulin has neurotransmitter-like functions within the CNS, and insulin receptors are 

abundant throughout interior brain structures (Adamo et al., 1989; Werner and LeRoith, 

2014). Insulin signaling through receptors located within the hippocampus are thought to 

regulate cognitive processes, while those in the amygdala and other limbic regions have 

roles in emotion regulation functions (Akintola and van Heemst, 2015). In addition to 

signaling through insulin receptors, interactions with other neurotransmitter systems can 

affect emotion regulation and influence behavioral outcomes. In a previous study of insulin 

resistant women with polycystic ovary disease, we found evidence of decreased opioid tone, 

an emotion and stress-regulatory mechanism, in limbic regions compared to non-insulin 

resistant controls, which was associated with greater brain regional activation during the 

emotional images task, mood disturbances, and measures of metabolic dysfunction (Berent-

Spillson et al., 2011; Marsh et al., 2013). These results are consistent with studies finding 
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high prevalence of insulin resistance in depressed patients, with suspected brain glucose 

metabolism deficiencies secondary to central insulin resistance (Baxter et al., 1985; 

Okamura et al., 2000; Rasgon and Kenna, 2005). This hypothesis is supported by animal 

studies, where decreased limbic responsiveness was noted after chronic hypoglycemia in rats 

(Hurst et al., 2012). Interestingly, an earlier set of similar studies found that estradiol 

administration preserved limbic activation response after chronic hypoglycemia in 

ovariectomized rats (Nedungadi et al., 2006), supporting an interactive effect of metabolic 

factors with hormonal environment during menopause.

Strengths of this study include the inclusion of three distinct menopause stage groups, 

defined by a combination of hormonal environment and cycle patterns, which allowed us to 

examine the role of age, hormonal, and metabolic factors in emotion regulation not only 

between pre- and postmenopausal women, but also in women in the transitional period itself. 

We utilized glycated hemoglobin A1c as a measure of long-term metabolic homeostasis, 

which allowed us to assess metabolic function over a period of weeks to months, rather than 

using plasma glucose or insulin concentrations, which are subject to acute influences that 

may not reflect the longer-term metabolic environment. However we were limited by the 

cross-sectional nature of the study, which did not allow for detection of changes over time 

and through the menopause transition in each woman. We were also limited by the relatively 

small sample size of the perimenopausal group, primarily due to the transitional nature of 

this period. All neuroimaging analyses were performed using a stringent FDR correction for 

multiple comparisons. Because of the number of clinical and behavioral factors considered, 

it is possible that interpretation of these results may be limited by multiple comparison 

issues, however we minimized this possibility by assessing a distinct set of relevant variables 

for each outcome of the study. Because some of the variables differed between menopause 

stage groups, and due to the limited sample size of some groups, it is possible that violations 

of homogeneity of regression across subgroups may be a limitation to interpretation of these 

results.

The results of this study suggest a relationship between menopause status, metabolic 

function, and emotion regulation, in a sample of healthy women without clinical depression. 

Our results indicate a pattern of increasing cognitive regulation of emotional decision 

making through the menopause transition, accompanied by a negative interpretation bias that 

is especially prominent during the perimenopausal period. This relationship appears to be 

driven by metabolic factors rather than by age or the hormonal environment. This suggests a 

potential role for metabolic function and glucose regulation in the etiology of depressive 

symptoms during the menopause transition.
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Highlights

• Menopausal women use cognitive regions during emotional decision making

• Cognitive region activation for emotion processing is associated with negative 

mood

• HbA1c is associated with negative bias and cognitive region activation
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Table 2

Regions activated during emotion task in all women (A) and by menopause status (B)

A

Region Coordinates T P (FDR corr) Size (mm3)

Medial prefrontal cortex −6, 52, 18 5.72 0.001 16392

Posterior cingulate 2, −60, 28 8.93 0.000 18808

R temp/par/oc junction 54, −64, 0 9.94 0.000 16696

L temp/par/oc junction −52, −72, 4 8.94 0.000 21856

R amygdala 16, −4, −16 4.30 0.052 3904

L amygdala −20, −6, −18 4.55 0.031 360

L hippocampus −24, −20, −18 4.90 0.012 3632

B

Region Coordinates T P (FDR corr) Size (mm3)

Premenopause

no significant regions

Perimenopause

R temp/par/oc junction 52, −62, −4 5.49 0.036 4736

Postmenopause

L prefrontal cortex −8, 58, 20 5.59 0.004 15016

Posterior cingulate 0, −58, 26 6.82 0.000 11528

R temp/par/oc junction 52, −42, 10 8.09 0.000 21016

L temp/par/oc junction −44, −70, 4 9.78 0.000 24880
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