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An electrostatic electron source design capable of producing sub-20 femtoseconds

(rms) multi-electron pulses is presented. The photoelectron gun concept builds

upon geometrical electric field enhancement at the cathode surface. Particle tracer

simulations indicate the generation of extremely short bunches even beyond 40 cm

of propagation. Comparisons with compact electron sources commonly used for

femtosecond electron diffraction are made. VC 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4974779]

INTRODUCTION

The field of ultrafast structural dynamics is quickly growing, as shorter and brighter hard

X-ray and electron pulses are being produced and implemented to light up atoms in motion.1–8

The advent of forth generation light sources9,10 has made the production of ultra-bright femto-

second (fs) hard X-ray pulses possible, which have been successfully applied for time-resolved

diffraction11–14 and ultrafast coherent imaging.15–17 On the other hand, the use of ultrashort

electron bursts has also emerged as a powerful means to atomically resolve dynamical phenom-

ena and structure in the laboratory setting.18–35 In this regard, different approaches for the

generation of fs multi-electron bunches have been developed to meet the prerequisite time-

resolution to observe the movement of atoms; i.e., sub-picosecond electron pulses and ideally

the shorter the better to avoid temporal blurring in stroboscopically recorded images. Compact

femtosecond electron diffraction (FED) instruments with electrostatic electron guns, based on

quasi-flat cathode and anode electrodes, have enabled a time-resolution of ffi100 fs (rms, root-

mean-square deviation) with bright multi-electron pulses.36,37 For simplicity, electron pulses

were assumed to be Gaussian in shape, and therefore a conversion factor of 2.355 has been

used to calculate fwhm (full-width-at-half-maximum) from rms values. Recent designs with a

minimal cathode-to-sample distance have brought the temporal resolution of these sources

closer to the limit imposed by their initial energy spread—or single electron pulse limit.30,38–41

Electron kinetic energies (KE) produced by electrostatic guns typically range from sub 1 keV to

100 keV and are commonly referred to as sub-relativistic. More advanced electron sources

based on radio frequency (RF) photo-injectors are known to generate ultrashort bright pulses of

relativistic electrons (KE> 1 MeV). This technology is relatively mature within the accelerator

community due to its use in synchrotron and free electron laser facilities and has become popu-

lar for monitoring ultrafast structural dynamics.42–49 As its energy spread gets under control,

laser-driven electron acceleration is also arising as a low-cost alternative for the generation of

ultrashort and ultrabright electron pulses with KE in the 200 keV–1 GeV range.50–53 In addition,

different active and passive electron pulse compression schemes have been proposed and/or

demonstrated.27–29,53–64 One of the most successfully applied methods in recent FED experi-

ments with ultrabright electron bursts relies on the use of an RF (or microwave) cavity that acts
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as a temporal lens.27–29,55,56,60–63 This methodology was found to compress dense sub-

relativistic multi-electron pulses down to 67 fs (rms).60 Shorter multi-electron pulses are

expected from this approach for which synchronization noise has limited the instrument

response to about 80–150 fs (rms).60–62 However, a recent phase-lock scheme based on passive

optical enhancement has reduced this timing jitter to only ffi5 fs (rms).65–67 Therefore, RF pill-

lens electron pulse rebunching still holds great promise in providing sub-20 fs (rms) temporal

resolution with bright multi-electron bunches.56 Furthermore, all-optical electron pulse compres-

sion throughout the use of a single cycle THz resonator has recently shown to bring the dura-

tion of multi-electron pulses from 395 fs (rms) to 32 fs (rms) [930 fs (fwhm) to 75 fs (fwhm)]

with minimal long-term timing drift ffi 4 fs (rms).68,69 This method is expected to generate

even shorter multi-electron bursts.68

RESULTS AND DISCUSSION

Here, we introduce a rather simple all-electrostatic electron gun design that delivers multi-

electron bursts as short as 12 fs (rms) [28 fs (fwhm)] at a relatively long electron propagation

distance of 10 cm (sample position in our instrument) without the need of electron pulse tempo-

ral rebunching. A 300 kV FED setup based on this source concept is under construction at the

University of Waterloo. The electron gun exploits the advantage of strong on-axis electric field

acceleration at the electron birth. Figure 1 shows a computer-aided design (CAD) of the key

electron source components alongside a geometrical depiction of the photocathode head. The

cathode surface has a parabolic shape with a small flat circular area of 1 mm in diameter cen-

tered at the symmetry axis or electron propagation axis defined as ð0; 0; zÞ. This flat region is

necessary to avoid an excessive kick in the transverse direction acting on off-axis electrons that

greatly deteriorates the transverse and longitudinal properties of the electron bunch. The cath-

ode is positioned inside a double magnetic lens (in-lens system). The magnetic fields generated

by each lens point in the opposite direction along the z-axis in order to provide a resultant field

Bz¼ 0 at the cathode surface (0, 0, 0). This is a necessary condition to null emittance growth

caused by magnetic fields at the electron pulse birth.70 This in-lens source design yields a lat-

eral spot size ffi 190 lm (rms) for a quasi-parallel electron beam at the sample’s plane. A nor-

malized transverse emittance of 0.025 mm mrad (or transverse coherence length of about 3 nm)

FIG. 1. CAD of the electron source concept. The main components are a parabolically shaped photocathode head with a

small flat region and a double magnetic lens system with a conical inner form. This cathode shape has been carefully

selected in order to confer an on-axis geometrical surface electric field magnitude of 50 MV/m without exceeding a maxi-

mum of 60 MV/m in other parts of the head. The in-lens system ensures Bz¼ 0 at the electron birth to avoid magnetic emit-

tance growth. The conical anode shape helps to maintain the surface electric field at the anode jEaj�5 MV=m and brings

the magnetic poles closer to the cathode head. The magnetic lens system has been optimized in order to obtain, within prac-

tical constraints, a reasonable electron spot size at the sample position and low power consumption to avoid water-cooling.

Inlet: black dotted line corresponds to the symmetry z-axis; green curves depict two parabolas displaced from the propaga-

tion axis by 0.5 mm in the radial direction and which follow the equation f ðrÞ ¼ 1:6 cm�1 r2; blue segment highlights the

flat region of 1 mm in diameter.
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was obtained. This value suffices for the study of most inorganic and organic crystalline materi-

als composed of small molecules. The lens system has been optimized to operate under the

assumption of a core material with a relative magnetic permeability of 104 and a saturation

magnetic field of 1.5 T. Such values are easily attainable by various soft magnetic iron alloys.71

The required total power was estimated to be only 200 W.

Local electric field enhancement by several orders of magnitude (ffi1 GV/m) is a well-

known effect in field emitters and single electron to a few electrons photo-triggered tip sour-

ces.72–78 Recently, such nanoemitters have been successfully applied to monitor photocurrents

in nanostructures77 as well as ultrafast structural dynamics.78 The introduced cathode head

exploits the use of moderate geometrical field enhancement while permitting the generation of

multi-electron bunches.

Electrons in simulations were generated at the cathode surface considering a temporal (lon-

gitudinal) Gaussian profile of 6 fs (rms) [14 fs (fwhm)], an initial energy spread of 0.2 eV, and

a lateral (transverse) Gaussian spot size of 50 lm (rms). Such initial electron pulse parameters

can be obtained via single-photon photoemission using the second harmonic from the output of

a non-collinear optical parametric amplifier (NOPA).79–81 A NOPA provides the frequency tun-

ability necessary to match the work function of various metal candidates such as Ti, stainless

steel, Mo, and W. The photocathode is held at a potential V¼�300 kV with respect to ground.

The cathode-anode separation distance along the propagation axis, dz ffi 5 cm, confers an aver-

age on-axis electric field hEzi ¼ � DV
dz
ffi �6 MV=m. Equipotential lines, calculated using

Poisson Superfish,82 are shown in panel A of Fig. 2 (red traces). A large increase in the magni-

tude of the on-axis electric field jEzj can be observed as we approach the cathode head reaching

a maximum value of 50 MV=m at the surface, see Fig. 2(b).

One of the major concerns of the current design is vacuum breakdown that can compro-

mise the stability of our electron source. Critical surface vacuum breakdown fields, Es;c, have

been measured and found to be Es;c ffi 6:5� 10 GV=m for refractory metals.83–85 Such critical

threshold is commonly expressed as jEs;cj ¼ bm bgjDVcj=d, where bm and bg are microscopic

and geometrical field enhancement factors, respectively, and DVc is the critical applied potential

drop over a given separation distance, d, between two electrodes. Thus, jDVcj=d equals the

magnitude of the average critical applied field jhEcij, and bgjhEcij becomes what we refer to as

the “geometrical critical surface electric field” jEg;cj, which therefore results in jEs;cj ¼ bm jEg;cj.
Typical values of bm for polished surfaces lie in the range of 100–300 (with 100 corresponding

to mirror-like surface finishing85). On the other hand, the magnitude of the maximum geometri-

cal surface electric field jEg;maxj in previous compact electron gun designs was calculated to be

about 20 MV/m and therefore satisfies the condition bmjEgj < jEs;cj. Note that we cannot mod-

ify jEs;cj but bm and jEgj within certain limits with bm ! 1 for a roughness free surface.

(a) (b)

FIG. 2. (a) Schematic of the electron source concept. Equipotential and magnetic field lines are shown in red and green,

respectively. (b) Electric field values obtained along the centrosymmetric axis (0, 0, z) for a cathode held at �300 kV.

Calculations were done using Poisson Superfish.82
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Surface conditioning is known to reduce dark current and greatly increase jhEcij86–88 by bring-

ing bm from several hundreds to about 20–50 for refractory metals.84 The use of a solid cath-

ode head made of Ti, for instance, is therefore essential to allow for proper surface processing.

This is difficult to achieve in back illuminated electron guns due to the implementation of ultra-

thin film photocathodes that can be easily damaged by arcing. On this subject, the cathode

shape was optimized to obtain a maximum geometrical surface electric field jEg;maxj <
60 MV=m in order to maintain bmjEgj below jEs;cj. In addition, the source design ensures low

surface electric fields at the anode electrode (jEaj� 5 MV=m), a fact that will greatly mitigate

anode-initiated vacuum breakdown.88

Fig. 3 shows the electron pulse duration rtz (rms) obtained from ASTRA simulations89 for

different electron source geometries as a function of the number of electrons per bunch. Black

trace corresponds to our 300 kV FED electron gun concept for a total electron propagation

distance dT¼ 10 cm. Blue and red traces refer to the results obtained for conventional 100 kV

compact FED setups with flat parallel electrodes, dT¼ 2 cm, and constant on-axis electric fields

of Ez¼�20 MV/m and �10 MV/m, respectively. Note that despite the relatively long propaga-

tion distance, the proposed design provides rtz < 20 fs for bunches containing 104 electrons,

and only rtz ffi 12 fs in the limit of low space charge effects. It should be mentioned, however,

that the main disadvantage of the proposed electron source is its relatively larger spot size,

ffi190 lm (rms), when compared with that of a compact FED setup, ffi55 lm (rms), with the

same initial electron beam parameters.

The most noteworthy feature of this new source design is its ability for delivering ultra-

short multi-electron bursts after significantly long propagation distances. As can be seen in Fig.

4(a) by direct comparison against conventional FED setups, geometrical field enhancement

plays a key role in minimizing the temporal broadening caused by energy spread at

FIG. 3. Standard deviation or root-mean-square (rms) electron pulse duration (rtz, in fs) as a function of the number of

electrons per bunch (#e�) obtained from ASTRA particle tracer simulations.89 Black trace corresponds to our 300 kV FED

design and dT¼ 10 cm. Blue and red traces correspond to compact 100 kV FED setups (i.e., large flat cathodes) with

dT¼ 2 cm and constant electrostatic fields of Ez ¼ �20 MV and �10 MV/m, respectively.
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photoemission. Temporal broadening is known to be dominant at the initial stage of electron

propagation90 and found to be, approximately, inversely proportional to the geometrical surface

electric field at the electron birth. Hence, geometrical surface field enhancement appears as a

simple means to reduce the temporal broadening introduced by the initial momentum spread.

Therefore, the proposed electrostatic electron source approach lessens the need of using

microwave cavities to compensate for such temporal spreading.67 Moreover, we can also

observe in Fig. 4 an important decrease of the electron pulse expansion rates when KE is

increased from 100 keV to 300 keV (red and blue dots versus closed and open black dots).

This is a consequence of relativistic effects that diminish space-charge repulsive forces by a

factor of c�3.91 We find remarkable (see black closed dots in Fig. 4(b)) that rtz is below

60 fs even for a pulse containing 104 electrons and after 40 cm of propagation. Longer prop-

agation distances may be advantageous for improving transverse electron beam properties

owing to the use of additional electron optics and apertures between the electron source and

the sample.

Given the extremely short length of the produced electron bursts, we decided to explore

the effect of instabilities of the power source on the instrument response time. Fluctuations of

the electron gun voltage, rDV , result in variations of the arrival time (t0) of each electron pulse

to the sample (or time zero jitter, rt0 ). We found for our 300 kV FED design rt0=fs ffi 4

�10�2 � rDV=eV � dT=cm. Hence, voltage drifts of 10 ppm (rDV ¼ 3 eV) and dT¼ 10 cm trans-

late into rt0 ffi 1.2 fs. A state-of-the-art high-voltage power supply is therefore necessary to

guarantee that the overall temporal instrument response is not limited by fluctuations of the

voltage source.92

CONCLUSIONS

We have presented an electron source that builds solely on electrostatic fields and that is

capable of generating ultrashort and bright multi-electron pulses with minimal temporal degra-

dation over long propagation distances. The main two ingredients of this electron source design

are: (i) geometrical field enhancement that increases the strength of the electric field at the elec-

tron birth and therefore reduces the temporal broadening caused by initial energy spread; and

(ii) higher KE that helps to diminish the detrimental effects of space charge and leads to a

decrease of the electron pulse expansion rate. With a time resolution down to ffi 12 fs (rms),

FED instruments based on this new electron gun concept hold great promise in resolving even

high-frequency vibrational modes without the necessity of implementing RF-electron pulse

rebunching or all-optical electron pulse compression schemes.

(a) (b)

FIG. 4. Electron pulse duration rtz (rms) as a function of propagation distance from the cathode surface for bunches con-

taining 103 and 104 electrons, panels (a) and (b), respectively. Black closed dots: our 300 kV FED design. Blue and red

dots: compact 100 kV FED setups with constant electric fields of Ez¼�20 MV/m and Ez¼�10 MV/m, respectively.

Black open dots: compact 300 kV FED setup with constant electric field Ez¼�10 MV/m.
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