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Reaction coordinates are widely used throughout chemical physics to model and understand com-
plex chemical transformations. We introduce a definition of the natural reaction coordinate, suitable
for condensed phase and biomolecular systems, as a maximally predictive one-dimensional pro-
jection. We then show that this criterion is uniquely satisfied by a dominant eigenfunction of an
integral operator associated with the ensemble dynamics. We present a new sparse estimator for
these eigenfunctions which can search through a large candidate pool of structural order parame-
ters and build simple, interpretable approximations that employ only a small number of these order
parameters. Example applications with a small molecule’s rotational dynamics and simulations of
protein conformational change and folding show that this approach can filter through statistical
noise to identify simple reaction coordinates from complex dynamics. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974306]

I. INTRODUCTION

The reaction coordinate—a single collective variable that
quantifies progress in a chemical reaction—is a ubiquitous
concept in chemical kinetics.1,2 Reaction coordinates are, for
example, required for computing reaction rates using tran-
sition state theory,1–3 computing kinetically meaningful free
energy barriers,4 and accelerating conformational sampling in
many biomolecular simulation protocols.5–9 Their most impor-
tant use, however, is often in facilitating insight into chemical
reaction mechanisms.10–12

Implicit in the concept is the notion that the measurement
of reaction coordinate is dynamically informative and provides
a proxy for the rate-limiting dynamical processes of the sys-
tem. Reactions in soft matter and condensed phase systems,
such as the folding of a protein or an enzyme-catalyzed chem-
ical transformation, take place in a high-dimensional phase
space that may include many uninvolved solute and solvent
coordinates. In this regime, the identification of reaction coor-
dinates is difficult.12 Physical intuition may suffice to deter-
mine these critical degrees of freedom for low-dimensional
systems, such as simple bimolecular gas-phase reactions. But
in more complex processes involving tens of thousands or
more atoms, rough energy landscapes, and/or solvent dynam-
ics, methods to identify the reaction coordinate that rely merely
on physical intuition or trial and error can be ad hoc and
unsystematic.13–16

We recognize that the identification of a system’s reac-
tion coordinate(s) is invaluable for physical interpretation of
complex molecular systems, that researchers now have access
to extremely large data sets of unbiased molecular dynamics
simulations of biologically relevant macromolecules, and that
the interpretation of these data is often a major bottleneck.17

We therefore aim to develop a method to use these molec-
ular dynamics data sets to infer accurate and interpretable
reaction coordinates. Our approach builds on time-structure
based independent components analysis (tICA), a special case
of the more general variational approach to conformational

dynamics.18,19 But these tICA-derived reaction coordinates
can be a black box; they are difficult to interpret physically
because of their abstract construction as linear combinations
of a large number of structural features. In contrast, our new
estimator explicitly adds a sparsity consideration into the for-
mulation to filter through statistical noise and identify simple
physical reaction coordinates from complex dynamics.

The structure of this paper is as follows: First, we define
the natural reaction coordinate(s) based on a set of intuitive
mathematical properties that these collective variables should
satisfy. After introducing these properties, we discuss their
relationship to other commonly used definitions of the reac-
tion coordinate. Next, we prove that this definition is satisfied
by the leading eigenfunctions of an integral operator gov-
erning the ensemble dynamics.20 Finally, we introduce and
demonstrate a practical new estimator which can approxi-
mate these reaction coordinates as extremely sparse, inter-
pretable, regularized linear combinations of structural order
parameters.

II. DEFINING THE NATURAL REACTION COORDINATE

Although (or perhaps because) the idea of the reaction
coordinate is so widely used in chemical kinetics, the commu-
nity has not always agreed on its precise meaning. A number
of different definitions thereof have been proposed, including
the minimum energy path (MEP) or intrinsic reaction coor-
dinate,21–24 the minimum action path (MAP),25–29 and the
committor function.30,31

In order to proceed in the face of this definitional ambi-
guity, we begin from first principles and propose a set of
properties that a natural reaction coordinate should satisfy for
any time-homogeneous, reversible, ergodic Markov process.
This approach is geared towards conformational dynamics
of soft matter systems, and we make none of the assump-
tions common in chemical kinetics about the existence of two
metastable states, about the relative importance of entropic
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or enthalpic barriers, about low temperature, or about the
number of pathways that are possible. This level of generality
does come with a trade-off; it makes it impossible to lever-
age quasi-equilibrium approximations, and our algorithms will
require equilibrium sampling. The mathematical properties
which we specify require that the natural reaction coordinate
(a) be a dimensionality reduction that (b) is defined only by
the system’s dynamics, and that (c) is the maximally predictive
projection about the future evolution of the system. Below, we
describe and define each of these criteria in detail. Later on,
we will show how the formulation also extends naturally to
multiple orthogonal reaction coordinates.

A. A dimensionality reduction from Ω to RRR

A natural reaction coordinate should be a function which
maps any point in the system’s full phase space to a single real
number. Notating the reaction coordinate as q and phase space
as Ω,32 we may specify this as

q : Ω→ R.

The reason for this form is that it should be well-defined
to calculate how “far along” the reaction coordinate any con-
formation is, or to speak about the mean value of the reaction
coordinate for some equilibrium or non-equilibrium ensem-
ble of conformations. Reaction coordinates taking this form
include geometric or physical observables which could, in
principle, be as simple as the distance between two specific
atoms.

On the other hand, path-based definitions of the reaction
coordinate such as the MEP or MAP do not take this form.
Instead of functions from Ω to R, a path through phase space
is a function from R to Ω. These paths map an arc length to
a phase space coordinate, and the value of the reaction coor-
dinate is undefined for all conformations in Ω that are not on
this path. For the minimum energy path, this issue was dis-
cussed by Natanson et al.,33 who showed that while a reaction
coordinate of the form Ω → R could be defined by introduc-
ing a projection operator onto the MEP, there was considerable
ambiguity in the choice of projection function. This ambiguity
was present even for reactive systems containing only 3 atoms
without roughness and are exacerbated in high-dimensional
and condensed phase systems. This is one factor which makes
the Ω → R formulation more attractive than the R → Ω

formulation.

B. Uniquely determined by the dynamics

The natural reaction coordinate should be uniquely
defined by the equations of motion that govern the underly-
ing dynamics in Ω, which include the system’s Hamiltonian,
boundary conditions, and integration scheme. We wish to
define the natural reaction coordinate in a way that does not
depend on particular “reaction” or “product” conformations or
subsets of phase space.

Although it may appear intuitive to define the reaction
coordinate in terms of two end points or two states, this
definition has a number of formal and practical drawbacks.
Subdividing phase space into non-overlapping reactant and
product states, A ⊂ Ω, B ⊂ Ω, A ∩ B = ∅, is a useful

device, but this is a construct imposed by the modeller, not
the underlying Hamiltonian. All experimentally measurable
observables, such as ensemble averages, single-molecule time
series, or time-correlation functions of a spectroscopic quan-
tity, are independent of whether the modeller labels certain
regions of phase space as A or B.

For systems containing a small number of atoms, it is often
relatively obvious how these states should be determined: e.g.,
for a bond-forming reaction, one can simply measure whether
the distance between the atoms is greater than a certain cutoff.
And when the states are metastable, many quantities which
might formally depend on the exact specification of the states’
boundaries in fact have a very weak dependence thereon, as
long as the perturbed state boundaries are still metastable.34

But in high-dimensional systems where entropy plays a dom-
inant role, and when confronted with significant roughness in
the energy landscape on energy scales less than kBT, it can
be very difficult in practice to identify these metastable states.
Furthermore, many systems have more than two metastable
states.

Consider protein folding dynamics, where A and B
would generally be taken to be the protein’s folded and
unfolded states. A number of practical definitions of the
folded or unfolded state, based on metrics including root-
mean-square deviations (RMSDs) to a crystal structure, num-
bers of native contacts, or radii of gyration, are defensible.
None, however, are obviously mandated. If the definition of
the natural reaction coordinate depends on the exact line-
drawing between folded and unfolded, each definition of
the state boundaries would lead to a slightly different nat-
ural reaction coordinate, with no criteria to judge which is
optimal.

In our view, a formal definition of the natural reaction
coordinate should be unique and independent of any parti-
tioning of phase space into regions and only a function of
the system’s underlying dynamics. As a dimensionality reduc-
tion, the natural reaction coordinate should teach us about the
system’s metastable states, not the other way around.

C. Maximally predictive projection

Finally, the key property that we use to define the natural
reaction coordinate relates to its ability to optimally predict
the dynamics. Of all possible one-dimensional measurements
of the state of some high-dimensional dynamical system, the
natural reaction coordinate should be the most informative
about the future evolution of the system. This relates to the
expectation, common in chemical kinetics, that the dynamics
along the reaction coordinate are rate-limiting and that all other
degrees of freedom in the system equilibrate more rapidly. The
maximally predictive single coordinate will measure progress
with respect to the rate-limiting bottlenecks, as the orthogonal
coordinates can more reliably be assumed to be at, or near,
equilibrium.

We now formalize this notion mathematically. To begin,
we define the following quantities:

• The system has a unique equilibrium distribution over
phase space, µ(x) : Ω → R. Note that ∀ x, µ(x) > 0
and ∫Ω dx µ(x) = 1.
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FIG. 1. Predictions, p̃t , made by the natural reaction coordinate, q∗, for Smoluchowski diffusion on two-well potential, U(x) = (x − 1)2(x + 1)2 with a uniform
diffusion constant, D = 1. The upper left panel shows the stationary distribution, µ(x), and the lower left panel shows the natural reaction coordinate, q∗, which
changes sign between the two metastable states. The main panel shows the family of possible predictions, p̃t , that can be made by Eq. (1) using this choice of q,
indicating the variable partitioning of density between the two basins. For an arbitrary initial distribution, p0, this coordinate minimizes the worst-case predictive
error about the future ensemble pt given only knowledge of the current ensemble’s projection onto q. As discussed in Sec. III, q∗ was calculated from the second
eigenfunction of the Smoluchowski operator, which was determined in this case using the FiPy partial differential equation solver.35

• Initially, the state of an ensemble is described by a (gen-
erally non-equilibrium) probability distribution over
phase space, p0(x) : Ω→ R.

• We consider an ansatz reaction coordinate, q(x) : Ω→
R and an associated scalar, τ, which will be interpreted
as a timescale of the dynamics along the ansatz reaction
coordinate.

• The scalar projection of the initial distribution, p0,
along the reaction coordinate is measured as 〈q|p0〉

= ∫Ω dx q(x)p0(x).
• At some later time, t > 0, the system will have

evolved from p0 to a new distribution over phase space,
pt(x) : Ω → R, according to the underlying equa-
tions of motion for the dynamics. Note that while pt is
a probability distribution, it is not a random variable; it
is produced deterministically from p0 and the system’s
equations of motion.

Now, consider the task of constructing an approximation
to pt . This approximation, p̃t , is constrained to depend only on
µ(x), τ, t, 〈q|p0〉, q(x), and the equilibrium mean and variance
of q(x). That is, given knowledge of the equilibrium distri-
bution, the ansatz reaction coordinate, its timescale, and no
other information about the current ensemble, p0, beyond its
projection onto the ansatz reaction coordinate, our goal is to
construct a prediction of the future ensemble at some later
time t.

A basic dimensional analysis argument and the constraint
that ∫Ω p̃t = 1 are sufficient to establish that, assuming that q
is measured in a system of units such that it has mean zero in
the equilibrium ensemble, the functional form of p̃t given q
must be

p̃t(x) = µ(x) + f (t/τ)
〈q|p0〉(q − 〈µ|q〉)

〈µ|q2〉
µ(x), (1)

where f is some non-random function that is independent of
x and 〈q2 |p0〉 is the variance of q. Later on, we will show that

p̃t(x) is necessarily an exponential, f (t/τ) = e−t/τ . For diffu-
sion on a double well potential, a diagrammatic example of the
family of predictions, p̃t , that can be made given a particular
choice of q is shown in Fig. 1.

Even with full knowledge of the Hamiltonian and equa-
tions of motion, this prediction will not be exact because the
one-dimensional measurement, 〈q|p0〉, gives incomplete infor-
mation about p0(x). We define the error in the prediction,
Ep0 [q], as the µ−1-weighted mean squared error,

Ep0 [q] = | |pt(x) − p̃t(x)| |2
µ−1

=

∫
Ω

dx µ−1(x)(pt(x) − p̃t(x))2. (2)

Note that this error depends on the arbitrary initial distri-
bution. To remove this dependency, we consider the worst-case
error by maximizing over all possible initial distributions,

E[q] = max
p0

Ep0 [q], (3)

q∗ = argmin
q

E[q]. (4)

The functional E[q] thus measures how well the measure-
ment of an arbitrary collective variable can be used to predict
the future state of the system. We define the natural reaction
coordinate, q∗, as the minimizer of E[q]. It is, in this sense,
the collective variable which is maximally informative about
the system’s dynamics.

D. Alternative definitions

The approach we have taken is not the only one possible.
Note first the choice of error functional, Eq. (2). While it may
not be initially intuitive, the µ−1-weighting on the norm is the
logical choice for a mean squared error. It is the µ−1 measure,
combined with detailed balance, that ensures, for example, that
minimizer, q∗, is strictly independent of t (see Section III B).
A different choice, like the Kullback-Leibler divergence of
Wasserstein distance, would be possible36 but lead to substan-
tially different results. Additionally, observe that in contrast to



044109-4 McGibbon, Husic, and Pande J. Chem. Phys. 146, 044109 (2017)

many other formulations,37–39 our approach is not based on the
explicit construction of a one-dimensional Smoluchowski-like
diffusion along the reaction coordinate.

Next, we turn our discussion to an alternative reaction
coordinate definition, the committor function. This quantity
was first introduced by Onsager as the splitting probability for
ion-pair recombination.40 The committor is defined based on
the prior identification of two non-overlapping states, A ⊂ Ω,
B ⊂ Ω, A ∩ B = ∅, which do not fully partition phase space,
A ∪ B ⊂ Ω. Then, the committor, pA(x), is defined as the
probability that a trajectory initiated from x would enter the
set A before entering B.30,31 In the context of protein folding,
where A is taken to be the protein’s folded state, the committor
is often referred to as p-fold.41,42 The committor, pA(x), takes a
value of 1 for conformations inside A and 0 for conformations
inside B. The condition {x : pA(x) = 1/2} defines a transition
state ensemble or separatrix—the set of conformations equally
likely to commit to either state A or state B.

Using the concept of the ensemble of transition paths,
which are defined as trajectory segments following the moment
at which the system has exited the set A and up until the sys-
tems enters the set B, without re-entering A, Hummer proved
an important result.34 He showed that, for diffusive dynamics,
the probability of being on a transition path given that the sys-
tem is at x, P(TPAB |x), is determined by the committor alone,
P(TPAB |x) = 2pA(x)(1− pA(x)). This implies also that the sep-
aratrix can be identified as the set of conformations which are
most likely to be on reaction paths.

A number of computational methods build approxima-
tions to the transition path ensemble, committor or isocommit-
tor surfaces. These include transition path sampling (TPS),30,31

transition interface sampling,43 and the finite temperature
string method.44,45

Most of the existing algorithms that identify physical
reaction coordinates from molecular simulations are based
on committor analysis or TPS.46–53 In the simplest version,
one initializes a large collection of trajectories from isosur-
faces of an ansatz reaction coordinate and measures which of
the two basins, A or B, they commit to. If this coordinate is
a good approximation to the committor, the measured split-
ting fraction will be narrowly peaked around the characteristic
value.54 Criteria based on this observation can then be used to
screen an ansatz reaction coordinate or optimize the param-
eters of a model for the reaction coordinate.47 More efficient
maximum likelihood method which fits a parametric model
for the reaction coordinate from TPS data further refines this
approach.49,51

By design, these algorithms which rest on the pre-
identification of the A and B states are not naturally suited
to systems with more than two metastable states, although
multiple-state extensions are available.55 When these two
states are both known a priori and metastable, then we expect,
but have not proven, that the committor function and the
natural reaction coordinate are nearly equivalent. Algorithms
that leverage this a priori knowledge have the advantage of
requiring significantly less sampling to converge their reaction
coordinate estimators. However, for the reasons discussed in
Section II B, we dispute the claim that the committor should be
taken as the perfect or exact reaction coordinate.47,48,56,57 The

authors’ experiences with large-scale simulations of protein
folding and activation on Folding@Home have shown that it
can be difficult to locate and precisely define these metastable
states. This suggests that, for an important class of problems,
the metastable states should be constructed from the output
of some model, as opposed to being treated as a modelling
input.58–60 These considerations motivate our formulation of
the natural reaction coordinate in a manner independent of the
choice to label certain regions of phase space as A or B.

We note that others have also defined a reaction coordinate
consistent with the intuitive mathematical properties specified
in Section II C, such as the subset of leading eigenfunctions
estimated by diffusion maps.61–63 In this formulation, a map
is created from sampled points in phase space by utilizing a
geometric distance metric, where points that are close geo-
metrically are expected to correspond to kinetically similar
conformations. The diffusion map formulation offers the same
major advantages as the natural reaction coordinate, namely,
that it is a dimensionality reduction that does not require any
information about the system beyond its dynamics, such as
knowledge of metastable states. However, it is noteworthy
that results ascertained from diffusion maps are invariant to
the time-indexing of trajectory frames; in other words, the
duration of the path between any two conformations does not
inform the analysis. As a result, diffusion maps do not provide
a straightforward way to estimate the timescale for a given
eigenvector. In contrast, the natural reaction coordinate defined
in this work yields a mathematical relationship between a
dynamical process’s eigenvector and its associated timescale,
and thus directly provides kinetic information about the
process.

III. A DOMINANT EIGENFUNCTION IS THE NATURAL
REACTION COORDINATE

In this section, we demonstrate that the natural reaction
coordinate, as defined by the minimizer of Eq. (4), is the sec-
ond leading eigenfunction of an integral operator associated
with a system’s Markovian dynamics in Ω. For simplicity, we
work here with a discrete-time Markov chain, {X0, X1, X2, . . .},
such as a typical all-atom molecular dynamics simulation with
a finite time step integrator, assuming only that the predic-
tion interval t is greater than 1 step (typically on the order
of 2 fs). Afterwards, we note why the same results apply if
the underlying dynamics are a continuous-time Markov pro-
cess and discuss the natural generalization to multiple reaction
coordinates.

A. Preliminaries

The one-step dynamics of a system’s Markovian evolution
forward in time can be completely described in terms of a
stochastic transition density kernel,

p(x, y)dy = P(Xt+1 ∈ Bε (y)|Xt = x), (5)

where Bε (y) is the open ε-ball centered at y with infinitesimal
measure dy. Essentially, this kernel measures the conditional
probability of jumping from x to y in one step.64 Integrating
over the initial ensemble, pt , gives a Chapman-Kolmogorov



044109-5 McGibbon, Husic, and Pande J. Chem. Phys. 146, 044109 (2017)

equation for the evolution of the ensemble to pt+1,

pt+1(y) =
∫
Ω

dx pt(x)p(x, y). (6)

By assumption, we consider only ergodic and reversible
Markov processes. Ergodicity is the property that there do
not exist two or more regions of Ω that are dynamically dis-
connected. That is, the integrated transition density is strictly
positive, ∫y∈A p(x, y) > 0 for all x and all non-empty subsets
of Ω, A. The reversibility condition is that the Markov chain
obeys a detailed balance equation with respect to its stationary
measure, µ(x),

µ(x) · p(x, y) = µ(y) · p(y, x). (7)

For molecular dynamics, µ(x) is the equilibrium distri-
bution associated with the thermodynamic ensemble that the
system is sampling, such as the Boltzmann distribution at con-
stant temperature, and reversibility can be interpreted as a type
of generalized symmetry on the function p(x,y).

The form of our maximally predictive projection formu-
lation suggests that the reaction coordinate acts like a pertur-
bation to the equilibrium distribution. This suggests that we
consider the equations for the time evolution of a new function,
ut(x) ≡ pt(x)/µ(x), which measures the same information as
pt(x) but encoded with the excess or depletion of probability in
an ensemble with respect to the stationary distribution. Apply-
ing the Chapman-Kolmogorov equation to the time evolution
of ut , we have

ut+1(y) =
1
µ(y)

∫
Ω

dx ut(x)µ(x)p(x, y). (8)

This equation is taken to define the action of the one step
backward transfer operator, T(1), which is uniquely defined by
the transition density kernel,

ut+1(y) = [T (1) ◦ ut](y). (9)

The transfer operator has many properties—we refer the
interested reader to the monograph of Schütte, Huisinga,
and Deuflhard for mathematical details.65 For our purposes,
the most relevant properties are that T(1) is compact and
self-adjoint and thus has a complete, countable set of real
eigenfunctions and eigenvalues,

T(1) ◦ ψi = λiψi, (10)

which we number in decreasing order by eigenvalue magni-
tude. Each ψi can be assumed to be normalized such that they
are orthonormal with respect to the µ-weighted inner product,

〈ψi |ψj〉µ =

∫
x

dx µ(x)ψi(x)ψj(x) = δij. (11)

Furthermore, the largest eigenvalue is λ1 = 1, with asso-
ciate eigenfunction ψ1(x) = 1, and the absolute values of the
remaining eigenvalues lie within the unit interval, |λi | < 1.65

These properties imply that the action of T(1) on ut can
be written as a spectral decomposition,

[T (1) ◦ ut](x) =
∞∑

i=1

λi〈ut |ψi〉µψi(x). (12)

By repeatedly applying the single-step T(1) operator, we
can also build the multi-step T(t) operator. Because of the lin-
earity of the operator and orthonormality of the eigenfunctions,
each repeated application only pulls out another factor of the
eigenvalue in the sum. The spectral decomposition of T(t) is
thus

[T (t) ◦ ut](x) =
∞∑

i=1

λt
i〈ut |ψi〉µψi(x). (13)

B. The error functional

We now apply this spectral decomposition of the transfer
operator to the analysis of the error functional from Section II C
and show that the natural reaction coordinate is equal to the
second transfer operator eigenfunction, q∗ = ψ2.

First, observe that the form of the prediction about the
future state of the system made using the reaction coordinate,
Eq. (1), can also be written as some operator that maps p0 →

p̃t or equivalently in u-notation as an approximate transfer
operator, T̃ (t), that maps u0 → ũt , where ũt(x) ≡ p̃t(x)/µ(x),

ũt = 〈u0 |1〉µ + f (t/τ)〈u0 |q〉µq(x) (14)

= T̃ (t) ◦ u0. (15)

The approximate transfer operator, T̃ (t), is rank 2; it has
two non-zero eigenvalues, 1 and f (t/τ), with associated
eigenfunctions 1 and q(x), respectively.

Next, we rewrite the error functional, Eq. (2) in u-notation
as well,

Eu0 [q] =
∫
Ω

dx µ(x)(ut(x) − ũt(x))2 (16)

= | |(T (t) − T̃ (t)) ◦ u0 | |
2
µ, (17)

E[q] = max
u0
| |(T (t) − T̃ (t)) ◦ u0 | |

2
µ, (18)

where the maximum is understood to be taken over properly
normalized u0, | |u0 | |µ = 1, instead of over probability densities
as in Eq. (3).

It follows, and is proven in Appendix A, that
ψ2 =minq E[q] and that f (t/τ) can be written as f (t/τ) = e−t/τ .
Because it is the minimizer of E[q], ψ2 is the natural reaction
coordinate.

C. Continuous-time Markov processes

When the generating process is a continuous-time Markov
process, T (1) has an infinitesimal generator, L,

L = lim
t→0

T (t) − I
t

. (19)

The set of eigenfunctions of L and T(t) is equivalent, so
for these processes, ψ2 can be defined in either manner.

D. Multiple reaction coordinates

One attractive property of this definition of the reac-
tion coordinate is that it generalizes naturally to multiple
orthogonal reaction coordinates ordered by timescale.

Recall that the maximally predictive projection crite-
rion from Section II C assumed that the approximation, p̃t ,
was to be formed only from knowledge of the equilibrium
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distribution and the ansatz reaction coordinate. The multiple
coordinate generalization follows from modifying this criteria
to assume knowledge of µ and the first k − 1 eigenfunctions,
µ and ψ2, . . . ,ψk−1. Additionally, assume that the projection
of the initial distribution onto each coordinate is available.
Then, another application of the Eckart-Young theorem shows
that the maximally predictive remaining ansatz coordinate is
ψk . Multiple orthogonal natural reaction coordinates can thus
be defined in a stepwise manner and shown to be equal to
the leading eigenfunctions, ψ2, . . . ,ψk . In general, systems
containing k metastable states will have k − 1 eigenfunctions
whose associated eigenvalues are close to one, separated from
the remaining eigenvalues by a so-called spectral gap.66

It is reasonable to expect that for complex systems a
subset of leading eigenfunctions will be required to interpret
the underlying dynamical processes. For example, suffi-
ciently long molecular dynamics simulations of any proline-
containing protein should eventually sample the proline
trans-cis isomerization. Because of the partial double bond
character and resulting high energy barrier for rotation about
the X-Pro peptide bond (approximately 20 kcal/mol), this
process is typically much slower than folding.67,68 In this
case, it would be necessary to interpret both ψ2 and one or
more eigenfunctions beyond ψ2 to understand the folding
process.

E. Two-dimensional example

In the left panel of Fig. 2, we show an example potential
with two possible pathways between the dominant basins. The
potential is given by the following expression,38

U(x, y) = [1 − 0.5 tanh(y − x)](x + y − 5)2

+ 0.2[((y − x)2 − 9)2 + 3(y − x)]

− 15e−(x−2.5)2−(y−2.5)2
− 20e−(x−4)2−(y−4)2

. (20)

For Smoluchowski dynamics at kT = 5 with a homoge-
neous diffusion constant, D = 1, the natural reaction coordinate,
ψ2(x, y), is shown with solid contour lines in the right panel of
Fig. 2. Although ψ2 can be calculated without explicitly notat-
ing any two regions A and B as the reactant or product state, it

FIG. 2. An example two-dimensional potential energy surface (left panel)
with two of the possible pathways shown in magenta and green. The right
panel shows a contour plot of the natural reaction coordinate, ψ2(x, y), for
Smoluchowski dynamics at kT = 5 with a homogeneous diffusion constant,
D = 1, overlaid on the potential energy surface, which is shown with dotted
contours. We emphasize that while the natural reaction coordinate, ψ2 : Ω→
R, provides a measure of progress with respect to any path between the two
minima, it cannot be viewed as a single pathway itself.

provides a natural measure of progress of any conformation or
ensemble between the two dominant metastable states in the
upper left and lower right regions of the potential.

IV. THE tICA APPROXIMATOR

Markov state models (MSMs) and time-structure based
independent component analysis (tICA) are two widely used
approximators for ψ2 that can be parameterized directly
from molecular dynamics trajectories.18,19,66,69 Other popular
estimators include diffusion maps and kernel tICA.61,62,70–72

In the tICA method, the goal is to find the optimal varia-
tional approximation to ψ2 using a linear combination of basis
functions. These basis functions are generally structural order
parameters that can be evaluated easily for each snapshot in
a simulation, such as the distance between certain pairs of
atoms or some nonlinear transformation thereof, torsion angles
between quartets of atoms, or root-mean-squared deviations to
certain landmark conformations.

Assume that there are m linearly independent basis func-
tions, where typical values of m are in hundreds to thousands.
Without loss of generality, we assume that the basis functions
have been mean-subtracted, so that they have zero mean in
the equilibrium ensemble. We label the collection of basis
functions as { χj}

m
j=1.

Because T is self-adjoint, it can be shown that the true
eigenfunction, ψ2, satisfies a variational theorem,73,74

ψ2 = argmax
q

〈q|T(t) ◦ q〉µ,

〈µ|q〉 = 0,

〈q|q〉µ = 1.

(21)

Because inner products of the form 〈q|T(t) ◦ q〉µ can
be interpreted as the value of the autocorrelation function
of a mean-zero, unit variance observable at time t,18,73,74

we see as well that ψ2, in addition to being the most pre-
dictive collective variable, as discussed above, is the most
slowly decorrelating collective variable under the system’s
dynamics.

As in variational quantum chemistry methods, this quan-
tity serves as a figure of merit for the optimization of a
trial function. Expanding the ansatz as q =

∑
i ai χi, the

maximization is equivalent to the quadratic optimization
problem,

a∗ = argmax
a

aT C(t)a,

aTΣa = 1.
(22)

The solution, a∗, yielding the best approximation to ψ2 in
the span of the basis set is the generalized eigenvector asso-
ciated with the largest generalized eigenvalue of the matrices
C(t) and Σ.75

The symmetric matrix, C(t), and positive-definite matrix,
Σ, have elements given by

Cij(t) = 〈χi |T(t) ◦ χj〉µ = E
[
χi(Xt) · χj(X0)

]
, (23)

Σij = 〈χi | χj〉µ = E
[
χi(X0) · χj(X0)

]
, (24)

where the expectations are understood to be taken over the
stochastic process. As discussed in detail by Schwantes and
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Pande18 and Pérez-Hernández et al.,19 the matrix elements
can be estimated by empirical averages over the snapshots
in molecular dynamics trajectories. The matrix C(t) is a col-
lection of time-lagged correlations between the basis func-
tions, and Σ is a covariance matrix of the basis functions. In
Appendix B, we discuss the use of shrinkage estimators in
approximating Σ from time series data.

V. A SPARSE APPROXIMATOR FOR THE DOMINANT
EIGENFUNCTION

The tICA method has one obvious drawback: the solution,
our approximate natural reaction coordinate, is a linear combi-
nation of all m basis functions, and the loadings are typically
non-zero. This makes the solutions difficult to interpret in a
mechanistic manner because hundreds or thousands of differ-
ent interatomic distances and/or torsion angles, for example,
have been combined together into a single collective vari-
able. Because an important property of reaction coordinates
is their role in facilitating physical interpretation of the under-
lying molecular system, we consider it desirable to reduce the
number of explicitly used variables.

These same interpretability issues arise with numerous
methods in machine learning and statistics. For example, in
multivariate linear regression, a response variable is mod-
eled as the linear combination of input variables. Interpretable
models, with only a small number of non-zero coefficients,
can be obtained using variable selection methods such as the
lasso.76

In this section, we introduce a new sparse approximator
for ψ2. The solution will share the same form as the tICA
approximation, q(x) =

∑
i ai χi(x), except that the vast majority

of the expansion coefficients, ai, will be zero. This method
naturally extends to sparse approximators for each of the other
leading eigenfunctions, ψ3, . . . ,ψk .

One general approach for building sparsity-inducing esti-
mators is to augment the objective function—in our case,
Eq. (22)—with a regularization term that penalizes model
complexity and steers the optimization towards solutions that
fit the data well but also remain simple. By scaling the strength
of this term, the modeller can trade off between the two
goals.

Arguably the most natural sparsity-inducing regularizer
would be the `0 norm, a penalty proportional to the number
of non-zero elements in the solution vector. Unfortunately,
`0-penalized problems generally require an NP-hard combina-
torial search. For many problems, such as linear regression, the
most common numerically tractable regularizers which lead to
sparse solutions are based on the `1 norm, which is sometimes
interpreted as a relaxation of `0.77,78

However, both the `0 and `1 versions of Eq. (22) are unsuit-
able. As discussed by Sriperumbudur, Torres, and Lanckriet,79

the addition of either an `0 or `1 penalty to Eq. (22) objective
leads to the intractable problem of maximizing a non-concave
objective function. They considered an alternative relaxation
of the `0 penalty,

| |x| |0 =
m∑

i=1

1{ |xi |,0} = lim
ε→0

m∑
i=1

log(1 + |xi |/ε)
log(1 + 1/ε)

. (25)

FIG. 3. The log-norm regularizer used in this work, log(1+|x |/ε )
log(1+1/ε ) , with

ε = 10−6, as compared to the `1 norm. The log-norm is a closer approx-
imation to the `0 norm and is attractive computationally for this problem
because it leads to a more efficient optimization algorithm than the `1.

Choosing a fixed ε > 0 yields a regularizer that is concave
(see Fig. 3), which is a property that will allow the sparse tICA
method with this choice regularizer to be optimized efficiently
as a difference of convex programs.80 Therefore, to define this
sparse tICA algorithm, we adopt the following formulation:81

maximize
x

xT Cx − ρ
m∑

i=1

log(1 + |xi |/ε)
log(1 + ε)

subject to xTΣx ≤ 1,

(26)

where ρ ≥ 0 is the regularization strength. At ρ = 0, the
problem reduces to standard tICA. Larger values of ρ will
induce sparsity in the solution vectors.

Investigating sparse generalized eigenvalue problems,
Sriperumbudur, Torres, and Lanckriet79 showed that
Algorithm 1 is a globally convergent method for solving Eq.
(26). The algorithm is iterative and refines an initial guess.
Each iteration requires solving Eq. (A1.1) in Algorithm 1, a
quadratically constrained quadratic program (QCQP).

These QCQPs are convex. When the number of basis func-
tions, m, is small (less than a few hundred), we have found
that they can be solved quickly and with high accuracy by off-
the-shelf convex optimization libraries. However, for sparse
tICA, our interest is in searching for sparse linear combina-
tions from libraries of many thousands of possible structural
order parameters. In this regime, more efficient algorithms are
necessary.

Algorithm 1: Sriperumbudur, Torres, and Lanckriet.79

Require: C is a n × n real symmetric matrix, Σ is a n × n positive definite
matrix, ρ > 0, ε > 0

Let: D(w(l )) be a diagonal matrix with (w(l)
1 , . . .,w(l)

n ) as its principal diagonal,
λmin(C) be the smallest eigenvalue of the matrix C.
Choose τ > max(0,−λmin(C)), x(0) ∈ {x : xTΣx ≤ 1}
ρε = ρ/ log(1 + ε−1)
while not converged do

w
(l)
i ← ρeτ

−1( |x(l)
i | + ε )−1

b(l) ← (τ−1C + In)x(l)

x(l+1) ← argmin
x

| |x − b(l) | |22 + | |D(w(l))x | |1 (A1.1)

subject to xTΣx ≤ 1

end while
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VI. AN ALTERNATING DIRECTION METHOD
OF MULTIPLIERS (ADMM) SOLVER
FOR THE QCQP SUBPROBLEM

We now derive a new, efficient solver for Eq. (A1.1) in
Algorithm 1 using the alternating direction method of multi-
pliers (ADMM). ADMM is a general method for constructing
optimization algorithms for problems of the form

minimize
x,z

f (x) + g(z)

subject to Ax − Bz = c,
(27)

where f (x) and g(z) are convex but not necessarily smooth,
functions. See the work of Boyd et al.82 for a comprehensive
review. We take f (x) to be the original objective function from
Eq. (A1.1) in Algorithm 1,

f (x) =
1
2
| |x − b| |22 + | |D(w)x| |1, (28)

where D(w) is matrix with the vector w along the diagonal,
and g(z) to encode the constraint,

g(z) =



0, if zTΣz ≤ 1,

∞, otherwise,
(29)

where A = B = In, and c = 0. The ADMM algorithm, in the
so-called scaled form, consists of the following iterations:

x(k+1) = argmin
x

(
f (x) +

%

2
| |x − z(k) + u(k) | |22

)
, (30)

z(k+1) = argmin
z

(
g(z) + %

2 | |x
(k+1) − z + u(k) | |22

)
,

u(k+1) = u(k) + x(k+1) − z(k+1),
(31)

where % is a scalar that acts like a step size parameter and can
be adjusted over the course of the optimization to maintain
stability.

By splitting the objective function into two parts, f and g,
the algorithm can alternate taking steps that minimize over the
variables x and z separately, with the u variable serving to pull
these variables towards each other and enforce the constraint
that x = z at convergence.

The advantage of this formulation is that, as we now show,
both the x and the z optimization steps can be performed very
efficiently.

A. ADMM x update

The x optimization, Eq. (30), can be rewritten as

argmin
x

1
2
| |x − b| |22 + | |D(w)x| |1 +

%

2
| |x − v| |22 , (32)

where v = z(k ) − u(k ). This function is component-wise sepa-
rable over the elements of x, f (x) =

∑
i fi(xi). The minimiza-

tion, Eq. (32), can thus be carried out as n separate scalar
minimizations,

argmin
xi

1
2

(xi − bi)
2 + wi |xi | +

%

2
(xi − vi). (33)

Although this objective function is not differentiable, it is
a simple application of subdifferential calculus to compute a

closed-form expression for the minimizer (see Ref. 83, Sec. 23
for background). The explicit solution is

xi =
1

% + 1
Swi (bi + %vi), (34)

where S, the soft-thresholding function, is defined as

Sκ(a) =




a − κ, if a > κ,

0, if |a| ≤ κ,

a + κ, if a < −κ.

(35)

This simple form and component-wise separability means
that the ADMM x update can be computed extremely rapidly.

B. ADMM z update

Because g(z) is a hard boundary function, the z update,
Eq. (31), can be interpreted as the projection of a point
a = x(k+1) + u(k+1) onto the constraint set, {z : zTΣz ≤ 1},
a hyper-ellipsoid. The problem can be rewritten as

z∗ =
argmin | |z − a| |2

z
subject to zTΣz ≤ 1.

(36)

For the nontrivial case in which the point a lies outside
the ellipsoid, aTΣa > 1, the solution, z∗, is on the border of
the ellipsoid, z∗TΣz∗ = 1. By precomputing the eigendecom-
position of Σ, this can be solved efficiently using Kiseliov’s
method which is detailed in Appendix C.84

An open source implementation of the estimator
is available in the MSMBuilder software package at
http://msmbuilder.org.110

C. Further orthogonal reaction coordinates

Like tICA, our algorithm is not restricted to finding a sin-
gle reaction coordinate but can also identify sparse approxima-
tions to the other long-timescale eigenfunctions, ψ3, . . . ,ψk .
Unlike in the tICA method, in which the full set of solutions
can be computed simultaneously with a single call to a stan-
dard generalized eigensolver, each sparse reaction coordinate
must be estimated with a separate calculation.

As with most iterative sparse principal component analy-
sis methods, we obtain the remaining generalized eigenvectors
by subtracting the influence of the solution from the matrix
C and then restarting optimization using the deflated matrix.
The trade-offs between methods for this deflation step have
been discussed by Mackey.85 Based on the recommenda-
tions therein, we have adopted Mackey’s Schur complement
deflation strategy.

D. Hyperparameter selection and implementation
notes

In order to use sparse tICA in practice, a value of the reg-
ularization strength, ρ, must be chosen. When ρ = 0, sparse
tICA reduces to the standard tICA algorithm, and larger values
of ρ will increase the sparsity. We recommend two possible
methods of choosing ρ. First, with cross-validation, the mod-
eller may split the data set into two or more portions, optimize
the reaction coordinate at different values of ρ using one frac-
tion of the data set, and check the value of the objective function

http://msmbuilder.org/
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on the left-out data set. For tICA and Markov state models,
this approach was discussed by McGibbon and Pande.86 It is
equally applicable to sparse tICA.

Alternatively, when the primary goal is to generate phys-
ically interpretable reaction coordinates, the modeller may
choose the value of ρ to bring the number of non-zero
loadings down to a pre-specified number that is amenable
to interpretation. When employing this strategy, we recom-
mend that modellers watch the value of the pseudoeigen-
value (Rayleigh quotient), λ̂= xT Cx/xTΣx. It should decrease
slightly with increasing ρ, but dramatic drops in λ̂may indicate
over-regularization.

The procedure also depends on ε > 0, which controls the
shape of the regularizer. Lower values of ε lead to a tighter
approximation of the `0 norm but can also lead to numerical
instabilities as the derivative of the regularizer near zero goes
to infinity, as can be seen in Fig. 3. Empirically, we have found
that ε = 10−6 provides a suitable balance.

Finally, note that the scalar % is required during the opti-
mization as well. This parameter affects only the convergence
rate of the solver, as opposed to the final solution, and can be
dynamically adjusted over the course of the optimization using
standard methods described by Boyd et al.82

VII. EXAMPLES
A. Torsional reaction coordinate

We demonstrate our approach on molecular dynamics
simulations of a simple 2-fluorobiphenyl derivative, shown in
Fig. 4. This system is interesting as a toy example because
chemical intuition suggests that the rotation of the rings with
respect to one another will be hindered. We anticipate the
dynamics of the aliphatic tails to be faster and uncoupled to
the reaction coordinate. Can our algorithm recover this sparse
reaction coordinate?

After parameterization with the generalized Amber
forcefield,87 we simulated the system in the gas phase for
250 ns at 290 K using a Langevin integrator with a friction

FIG. 4. A 2-fluorobiphenyl derivative simulated in this work. An overcom-
plete set of 510 internal coordinates were measured from each frame, which
included four dihedral angles (described by carbons 2-1-5-4, 2-1-5-6, 3-1-5-4,
and 3-1-5-6) that described the inter-ring torsion angle.

coefficient of 1 ps−1 and time step of 2 fs using OpenMM
6.3.88 Snapshots from the simulation were saved every 20 ps.
From each simulation snapshot, we recorded the values of an
overcomplete set of 510 internal coordinates, which included
the distances between all unique pairs of carbon atoms, mea-
sured in nanometers, the angles between pairs of bonded
atoms, in radians, and the sine and cosine of the dihedral
angles between all quartets of bonded atoms. After mean sub-
traction, these coordinates form our basis functions, χi, for
tICA and our sparse variant. Despite our chemical intuition,
from an algorithmic perspective, finding the reaction coor-
dinate for this system is something like finding a needle in a
haystack.

In Fig. 5, we show the resulting dominant eigenvector
as estimated by tICA and our new approach using increas-
ing values of the regularizer, ρ. The pseudoeigenvalue, λ̂,
is the Rayleigh quotient of the collective variable, related
to its timescale by τ̂i =−1/ln λ̂i. In standard tICA, this value is
maximized exclusively, whereas in sparse tICA, this objec-
tive is balanced against a penalty that favors zero coeffi-
cients. We see in Fig. 5 that the tICA solution, as expected,

FIG. 5. tICA and sparse tICA results for simulations of the 2-fluorobiphenyl derivative shown in Fig. 4 with increasing values of the regularization strength, ρ.
The unregularized tICA results report a reaction coordinate which is a dense linear combination of all 510 input features. In contrast, with increasing values of
the regularization strength, ρ, the sparse tICA algorithm filters out this noise to identify only the sines of the four dihedral angles that collectively characterize
the inter-ring torsional reaction coordinate, with only a minor decrease in the pseudoeigenvalue, λ̂.
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FIG. 6. Probability density function of the von Mises distribution with κ = 20
and different values of the location parameter, µ. For an angle x, the function

is given by f (x; κ) = eκ cos(x−µ)

2πI0(κ) , where I0(κ) is the modified Bessel function
of order 0. The function has a full-width at half maximum of approximately
30◦.

returns a collective variable that is a linear combina-
tion of all 510 input coordinates, with a nonzero com-
ponent on each of the coordinates and significant noise.

In contrast, our sparse tICA algorithm suppresses this
noise and identifies sparse collective variables that are formed
from linear combinations of only a small number of the input
degrees of freedom. This sparsity increases with larger values
of the regularization strength, ρ, and only leads to a modest
decrease in the approximated timescale associated with the
coordinate. For ρ = 10−3 and ρ = 10−2, only four input coor-
dinates survive. Inspection of these coordinates shows that they
are the sines of the four dihedral angles that cross between the
rings (atoms 2-1-5-4, 2-1-5-6, 3-1-5-4, and 3-1-5-6 in Fig. 4).
We interpret these results to show that sparse tICA has, with-
out any prior chemical knowledge, filtered through a collection
of structural order parameters, many of which are irrelevant in
describing the slowest dynamical process of this molecule, and
located the subset which can approximate the natural reaction
coordinate.

B. Bovine pancreatic trypsin inhibitor (BPTI)

In this section, we apply the sparse tICA method to ana-
lyze the native state dynamics of the bovine pancreatic trypsin
inhibitor (BPTI), a small 58-residue globular protein that has

FIG. 7. The ARG 42 φ angle over the course of the 1 ms simulation of native
state dynamics of BPTI performed by D.E. Shaw Research.89 Our sparse tICA
algorithm identifies this as the reaction coordinate for a process that involves
the opening and hydration of the protein’s core.

been extensively investigated by experimental and computa-
tional methods. We reanalyzed the 1 ms all-atom molecular
dynamics simulation performed by D. E. Shaw Research at

FIG. 8. The near-native (above) and ARG 42-flipped (below) conformations
of BPTI from the simulation trajectory. The first panel shows the near-native
conformation sampled by the majority of the simulation with a ARG 42
φ angle between −50◦ and −150◦, with the expected four crystallographic
waters. Nearly 800 µs into the simulation, the trajectory samples an alternate
state in which the protein’s core opens and hydrates and the crystallographic
waters can exchange with the bulk. In this state, the ARG 42 φ angle has
flipped, putting its oxygen pointing into the now hydrated core.



044109-11 McGibbon, Husic, and Pande J. Chem. Phys. 146, 044109 (2017)

300 K with explicit solvent.89 With its rigid disulfide bonds,
the system remains folded over the course of the simulation
but samples a number of near-native states.

For each frame in the trajectory data set, sampled every 25
ns, we computed the value of an extensive set of 2880 structural
order parameters from the backbone and side chain dihedral
angles. For each of the 57 protein backbone φ and ψ torsion
angles, as well as the 46 χ1 torsion angles, we computed 18
order parameters by evaluating the probability density func-
tion of the von Mises distribution at different values of its
location parameter, evenly spaced around the unit circle at 20◦

increments. A subset of these functions is shown in Fig. 6.
These functions act like softened indicator functions that wrap
appropriately on (−180◦, 180◦). We hypothesized that this
would be a suitable basis in which to expand the reaction
coordinates for BPTI because it is well suited for express-
ing a function representing flux between two regions on a
Ramachandran plot. Each structural order parameter in our
input basis set can thus be interpreted as roughly indicating
whether a particular torsion angle is within one of 18 different
∼30◦ windows.

Using these input features, we fit a sparse tICA model
with ρ = 0.005 and observed a surprising result. The first
solution depends only on the φ dihedral angle of ARG 42. The
time series of this angle over the course of the simulation is
shown in Fig. 7, and we see that this degree of freedom makes a
single dramatic flip over the course of the simulation. When we
inspected conformations from this flipped state, we observed
that the protein’s core had opened and hydrated. While this
large-scale structural change is obvious from visual inspection
of the trajectory, the fact that the φ angle of ARG 42 acts as a
switch between these two states was unexpected. While many
other degrees of freedom also change between these two states,
such as the orientation of the upper disulfide linkage (visible
in Fig. 8) these degrees of freedom also fluctuate within the
near-native state. It is the rare inward flip of ARG 42 which we
observe to draw in solvent to hydrate the protein’s small core.

C. Folding of a three-helix bundle

Next we use the sparse tICA algorithm to elucidate a spe-
cific process; in this case, the folding of α3D, a 73-residue
three-helix bundle.90,91 We analyzed the α-carbon trace of
a 707 µs molecular dynamics dataset for α3D generated by
Lindorff-Larsen et al.92 The protein folds and unfolds 12 times
over the course of the simulations. We extracted inter-residue
α-carbon distances for all pairs separated by least two residues
from each frame for a total of 2485 distances. From these
distances, we fit a sparse tICA model (ρ = 0.5).

The dominant reaction coordinate, ψ2, depends on just
one feature: the distance between GLY 49 and GLU 52. These
residues are close in the sequence and typically remain sep-
arated by about 9 Å; however, they occasionally are found
within 6 Å of each other. A plot of the GLY 49–GLU 52 dis-
tance superimposed over a plot of the conformation’s RMSD
shows no obvious relationship between this contact distance
and the folding process (Fig. 9(a)). However, trajectory events
characterized by the shortening of the GLY 49–GLU 52 dis-
tance occur more rarely than folding events, and thus this
contraction is the slowest process found by sparse tICA. This
slow dynamical process is intriguing but may be artifactual.
Three plausible interpretations of this result are that the identi-
fied process is (1) a random artifact of unconverged sampling,
(2) an artifact due to a systematic problem with the force
field (as opposed to a statistical anomaly), or (3) a legit-
imate and newly identified slow, dynamical process in the
unfolded state of α3d. Regardless of the correct interpretation
of ψ2, the algorithm identifies a new and interesting degree of
freedom.

However, our intention is to use the sparse tICA algo-
rithm to gain insight into the folding process. The second
solution, ψ3, isolates two residue contact pairs: GLU 32–ASP
65 and GLU 39–ARG 57. Both pairs contain residue contacts
between the same two α-helices. Fig. 9(b) shows a plot of the
two contact distances comprising ψ3 superimposed with the

FIG. 9. (a) Superimposing a plot of the slowest sparse
tICA solution, ψ2, and the RMSD of the protein confor-
mation to the folded structure shows that the inter-residue
contact distance isolated by ψ2 does not correspond to
the folding of α3D. (b) Superimposing a plot of the next
sparse tICA solution, ψ3, and the RMSD of the protein
conformation to the folded structure shows that either
inter-residue contact distance implicated in ψ3 serves as
a suitable reaction coordinate for folding. (c) The folded
state of α3D illustrating the residue pairs defining the
contact distances retained inψ2 (violet) andψ3 (blue and
cyan). Only the first half of the dataset is shown.
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conformation’s RMSD. It is clear that both the GLU 32–ASP
65 and GLU 39–ARG 57 distances serve as a sparse proxy
for whether the protein is folded or unfolded. This analysis
suggests that the formation of the tertiary contact between the
two helices identified by ψ3 is the rate-limiting step of the
folding process.

VIII. CONCLUSIONS

In this work, we have introduced a definition of the nat-
ural reaction coordinate as a function that satisfies a set of
simple mathematical properties: that it (a) is a dimensionality
reduction that (b) is defined only by the system’s dynam-
ics and that (c) is the maximally predictive projection about
the future evolution of the system. The definition is partic-
ularly apt for soft-matter systems in which there may be
more than two metastable states or for systems in which
identifying and structurally defining the metastable states are
challenging. For any time-homogeneous, reversible, ergodic
Markov chain such as thermostatted molecular dynamics,
these properties are uniquely satisfied by a dominant eigen-
function of the transfer operator associated with the dynamics,
ψ2. This eigenfunction is also the most slowly decorrelat-
ing collective variable in the system. Subsequent, orthogonal
reaction coordinates for other long-timescale dynamical pro-
cesses are described by the leading eigenfunctions ψ3 and
following.

We developed a practical new estimator that builds upon
the tICA method for estimating these eigenfunctions. Like
tICA, this estimator is used to post-process molecular dynam-
ics trajectories. Unlike the variational tICA method which
constructs an approximation to these eigenfunctions using a
linear combination of structural order parameters in which
all of the coefficients are generally non-zero, our estimator
finds sparse solutions. It is thus able both to filter through
inevitable statistical noise and identify simple, interpretable
structural order parameters that approximate these natural
reaction coordinates, without any prior knowledge of the
system.

Application of this method to molecular dynamics sim-
ulations of a 2-fluorobiphenyl derivative and BPTI shows
that the approach can identify reaction coordinates for the
slow dynamical processes in these data sets that are read-
ily interpretable. In BPTI, we see that opening and hydra-
tion of the protein core are controlled by a flip of a sin-
gle backbone φ angle at ARG 42. When applying sparse
tICA to folding simulations of α3D, we find that a non-
dominant reaction coordinate, ψ3, serves as a reaction coor-
dinate for folding while the dominant reaction coordinate,
ψ2, instead captures a seemingly unrelated, rare contraction
of the distance between two residues close in the protein
sequence. This example highlights that the desired reaction
coordinate may not be the first (i.e., slowest) solution to
the algorithm. Furthermore, when the process corresponding
to the dominant reaction coordinate seems unrelated to the
process of interest, it may indicate that the system dynam-
ics have been insufficiently sampled, or motivate inspec-
tion of the force field parameters related to the features
controlling ψ2.

We anticipate that this method will be useful for the
analysis of today’s large molecular dynamics data sets. An
implementation of this estimator is available in the MSM-
Builder software package at http://msmbuilder.org/ under the
GNU Lesser General Public License.
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APPENDIX A: ANALYSIS OF THE ERROR
FUNCTIONAL

To prove by why ψ2 =minqE[q], (Eq. (18)), observe that
for any q, there exists a function v(x) in the span of the first
three eigenfunctions of T, v = a1ψ1 + a2ψ2 + a3ψ3, which
is normalized, 〈v |v〉µ = 1, and which is in the null space of
T̃, T̃ ◦ v = 0.93 Since E[q] is the maximum of Eµ0 [q] over all
possible µ0, it also must be greater than the error incurred for
this particular starting distribution, µ0 = v . Thus,

E[q] ≥ ||(T (t) − T̃ (t)) ◦ v | |2µ (A1)

= | |T (t) ◦ v | |2µ (A2)

=

3∑
i=1

λ
2t
i a2

i (A3)

≥ λ2t
3 , (A4)

where the third line only includes a sum up to i = 3 because,
by construction, 3 is in the span of the first three eigenfunc-
tions. The final line follows because of the ordering of the
eigenvalues and the normalization of 3, implying

∑3
i=1 a2

i = 1.
Interpreting this inequality, we see that the worst-case pre-

diction error for any ansatz reaction coordinate, q, is always
greater than or equal to λ2t

3 . Furthermore, for the particu-
lar choice q=ψ2 and f (t/τ)= λt

2, the equality is achieved,
E[ψ2]= λ2t

3 .94 If we define τ ≡ − 1/ ln λ2, f (t/τ) can be writ-
ten as f (t/τ)= e−t/τ . Therefore ψ2 is the natural reaction
coordinate, the minimizer of E[q].

The reader may recall that this argument is equivalent to
the Eckart-Young theorem on the optimal low-rank approx-
imation of a matrix.95 For self-adjoint linear operators, the
original result is given by Schmidt.96 See the works of Courant
and Hilbert (p. 161),97 and Micchelli and Pinkus98 for further
details.

APPENDIX B: COVARIANCE MATRIX ESTIMATION

In this section, we discuss some issues related to the esti-
mation of the covariance matrix, Σ, from time series data such
as molecular dynamics simulations. If we consider a single
trajectory of length N and collect the results of the evaluation
of each of the zero-meaned m basis functions on each of the T

http://msmbuilder.org/
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snapshots into a matrix, χ∈ Rm×N , the standard estimator for
Σ would be the sample covariance matrix,

S =
1

N − 1
χ χT . (B1)

Covariance matrix estimation is a ubiquitous problem
common to many fields of science and engineering, and a
number of issues with this estimator are known. In particular,
results from random matrix theory suggest that the eigenspec-
trum of the estimated covariance matrix, Ŝ, is over-dispersed
with respect to the true value. That is, its large eigenvalues
are too large, and its small eigenvalues are too small. For a
fixed number of basis functions, m, the sample eigenvalues
can be shown to converge to the true eigenvalues as N goes to
infinity,99 but when m is allowed to grow with N, keeping m/N
fixed, results such as the Marčkenko-Pastur law suggest that
the sample eigenvalues are not effective estimators and do not
converge to the true eigenvalues.100

In the context of a weight matrix in a generalized eigen-
value problem, misestimation of the small eigenvalues of S
is particularly problematic. The generalized eigenvalue prob-
lem requires that S be positive-definite—in the extreme case
when Ŝ is rank-deficient, the maximum value of Eq. (22) is not
defined and we get the matrix equivalent of a division by zero.

The most popular class of stabilized covariance matrix
estimators are called shrinkage estimators and take the form

Σ̂ = (1 − γ)S + γ(Tr(S)/m)I, (B2)

for some positive constant γ. The interpretation of this expres-
sion is that the shrunk covariance matrix is a convex com-
bination of two estimators, the (low bias, but high variance)
sample covariance matrix, and the (high bias, but low variance)
estimator that assumes all basis functions have identical vari-
ances and zero covariance. An estimator of this form was first
popularized by Ledoit and Wolf in the context of Markowitz
portfolio selection.101–103 Other shrinkage targets are possible
beyond the scaled identity; we refer the reader to the excellent
review by Schäfer and Strimmer.104

The key insight of Ledoit and Wolf is that, under a Frobe-
nius norm objective on the difference between the shrunk
covariance matrix and the true covariance matrix, the asymp-
totically optimal value of the shrinkage constant, γ, can be
estimated directly from S, without knowing the true covari-
ance matrix. Thus, no extra tunable parameters need to be
added to the algorithm, which is important for usability.

Further improvements to the Ledoit-Wolf (LW) estima-
tor were made by Chen, Wiesel, and Hero III.105 First, using
the Rao-Blackwell theorem,106 they produced a more accu-
rate Rao-Blackwellized Ledoit-Wolf (RBLW) estimator for
the optimal shrinkage constant that dominates the LW esti-
mator. In addition, unlike the LW estimator, the RBLW esti-
mator can be computed even more efficiently and essentially
requires no significant computational work beyond the calcu-
lation of the sample covariance matrix, S. The expression for
the RBLW-optimal shrinkage constant, γ, is

γ = min(α, β/U), (B3)

where α, β, and U are given by

α =
N − 2

N(N + 2)
, (B4)

β =
(m + 1)N − 2

N(N + 2)
, (B5)

U =
m Tr(S2)

Tr2(S)
− 1. (B6)

We recommend this RBLW estimator for Σ for use with
both tICA and sparse tICA.

APPENDIX C: PROJECTION OF POINT
ONTO AN ELLIPSOID

Here we discuss our method for projecting a point in RN

onto an ellipsoid, following Kiseliov.84 Given a point a outside
the ellipsoid and a positive definite matrix Σ, the problem can
be written as

z∗ =

argmin | |z − a| |2

z

subject to zTΣz ≤ 1.

(C1)

Because, for our purposes, it will be necessary to solve the
problem many times for different values of a with the same
value of Σ, it will be advantageous to consider any possible
pre-processing of Σ that will speed up the calculation for
each a.

For the nontrivial case in which the point a lies outside
the ellipsoid, the solution is on the border of the ellipsoid,
z∗TΣz∗ = 1, so we address only the equality. First, consider
the Lagrangian, L,

L = | |z − a| |2 + µ(zTΣz − 1). (C2)

The solution to Eq. (C1) satisfies the condition ∇L = 0,
yielding

z∗ = (In + µ
∗Σ)−1a. (C3)

The value of the Lagrange multiplier at the solution, µ∗,
must be determined to ensure that the constraint is satisfied.
This requires solving the scalar equation G(µ)= 0, where G(µ)
is defined as

G(µ) = z∗(µ)TΣz∗(µ) − 1, (C4)

z∗(µ) = (In + µΣ)−1a. (C5)

We solve for the root of G using Newton’s method,
which requires computing G and G′ = dG/dµ. Assuming
that the eigendecomposition of Σ has been precomputed,
Σ =VD(w)VT , applying the Woodbury matrix identity shows
that G and G′ can be computed in linear time, without explic-
itly inverting any matrices or solving any linear systems, as
Eq. (C5) suggests might be necessary,

z∗(µ) = (In + µΣ)−1a (C6)

= (In + µVD(w)VT )−1a (C7)

= (V(In + µD(w))VT )−1a (C8)

= VD(e)VT a, (C9)

where ei = (µwi + 1)−1. Then, expanding G(µ), we have

G(µ) = z∗(µ)TΣz∗(µ) − 1 (C10)

= (VD(e)VT a)T VD(w)VT VD(e)VT a − 1 (C11)

= aT VD(f)VT a − 1, (C12)
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Algorithm 2: Projection of a point onto an ellipsoid.

Require: a∈ Rn,Σ∈ Sn
++

w, V← eigs(Σ) B Compute eigenvalues and eigenvectors
c← VT a
if cT D(w)c ≤ 1 then

return a B Trivial if a is inside the set
else

µ(0) ← 1
while not converged do B Newton’s method

G(k) ← −1 +
∑n

i=1 c2
i wi/(µ(k)wi + 1)2

G′(k)
← −2

∑n
i=1 c2

i w
2
i /(µ

(k)wi + 1)3

µ(k+1) ← µ(k) − G(k)/G′(k)

end while
ei ← (µ(k)wi + 1)−1

return VD(e)c
end if

where f i = wie2
i = wi/(µwi + 1)2. The derivative required for

Newton’s method, dG/dµ, is then very simple to calculate.
This algorithm is summarized in Algorithm 2. The

quadratic convergence of Newton’s method and low per-step
work makes this preferable to alternatives such as the Lin-Han
method.107

APPENDIX D: RUNTIME PERFORMANCE

In addition to our ADMM-based solver, we implemented
the sparse tICA algorithm using CVXPY and the off-the-
shelf splitting conic solver (SCS) to solve the QCQP.108,109 In
Fig. 10, we compare the runtime of these two approaches. For
this comparison, we randomly generated the matrix Σ from a
Wishart distribution with m degrees of freedom and an identity
scale matrix, and initialized the ADMM solver from a vector,
x, with elements drawn from the standard normal distribution.
The error bars indicate standard deviations over 5 replicates.
The timings were performed on a Mid 2014 Apple Macbook
Pro laptop.

We see generally that our solver is roughly an order of
magnitude faster on the QCQP than CVXPY with SCS. Our
sparse tICA implementation, however, is also able to effi-
ciently warm-start because the vectors w and b also converge
during the outer iteration of Algorithm 1. Because of this,

FIG. 10. Comparison of the runtime of our specialized QCQP solver and
a generic solver using CVXPY and SCS.108,109 We observe a speedup of
approximately one order of magnitude. Efficient warm-starting of the QCQP
in Algorithm 1 yields further improvements in runtime. Error bars indicate
standard deviations over 5 replicates.

we find that when we substitute in the off-the-shelf solver to
Algorithm 1, the speedup achieved by our ADMM approach is
even more substantial. For example, while converging the first
sparse tICA solution with m = 500 using our ADMM imple-
mentation takes on the order of 0.1 s, the same optimization
takes approximately 7 min using the off-the-shelf solver.
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19G. Pérez-Hernández, F. Paul, T. Giorgino, G. De Fabritiis, and F. Noé, J.
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