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Abstract

Deficits in central, subcortical dopamine (DA) signaling may underlie negative symptom severity, 

particularly anhedonia, in healthy individuals and in schizophrenia. To investigate these 

relationships, we assessed negative symptoms with the Schedule for the Assessment of Negative 

Symptoms and the Brief Negative Symptom Scale (BNSS) and self-reported anhedonia with the 

Scales for Physical and Social Anhedonia (SPSA), Temporal Experience of Pleasure Scale, and 

Snaith-Hamilton Pleasure Scale in 36 healthy controls (HC), 27 siblings (SIB) of individuals with 

schizophrenia, and 66 individuals with schizophrenia or schizoaffective disorder (SCZ). A subset 

of participants (N = 124) were genotyped for DA-related polymorphisms in genes for DRD4, 

DRD2/ANKK1, DAT1, and COMT, which were used to construct biologically-informed multi-

locus genetic profile (MGP) scores reflective of subcortical dopaminergic signaling. DA receptor 

type 2 (D2R) binding was assessed among a second subset of participants (N = 23) using PET 
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scans with the D2R-selective, non-displaceable radioligand (N-[11C]methyl)benperidol. Higher 

MGP scores, reflecting elevated subcortical dopaminergic signaling capacity, were associated with 

less negative symptom severity, as measured by the BNSS, across all participants. In addition, 

higher striatal D2R binding was associated with less physical and social anhedonia, as measured 

by the SPSA, across HC, SIB, and SCZ. The current preliminary findings support the hypothesis 

that subcortical DA function may contribute to negative symptom severity and self-reported 

anhedonia, independent of diagnostic status.
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1. Introduction

The etiology of schizophrenia remains unclear but central dopamine (DA) transmission 

likely plays a role in its manifestation. Positive symptoms may be due in part to mesostriatal 

DA dysfunction (Brisch et al., 2014; Howes and Nour, 2016; Kapur, 2003), characterized by 

elevated striatal DA synthesis capacity and synaptic DA availability (Howes et al., 2012; 

Laruelle et al., 1999; Reith et al., 1994) which may in turn confer aberrant incentive salience 

onto non-relevant stimuli (Heinz, 2002; Robinson and Berridge, 1993; Schultz et al., 1997) . 

By contrast, negative symptoms are posited to arise in part from hypodopaminergic 

transmission in prefrontal cortex (Davis et al., 1991; Goghari et al., 2010; Heinz, 2002; 

Knable and Weinberger, 1997). In addition, fMRI studies have shown that negative 

symptoms, especially those in the motivational dimension such as anhedonia, relate to 

blunted blood oxygen level-dependent (BOLD) reward-related activation in striatum among 

patients (Dowd and Barch, 2010, 2012; Juckel et al., 2006b; Simon et al., 2010; Waltz et al., 

2009; Waltz et al., 2010) and healthy individuals (Corral-Frías et al., 2015). Negative 

symptoms may also be risk factors for depression (Kupferberg et al., 2016) and substance 

abuse (Leventhal et al., 2010) in healthy individuals. The role of striatal DA transmission in 

negative symptom severity therefore merits further investigation.

The study of DA-related genetic polymorphisms may aid in understanding the role of DA 

signaling in both positive and negative symptom severity in schizophrenia. The disease is 

80–85% heritable (Cardno and Gottesman, 2000) and common DA-related polymorphisms 

have been associated with variability in DA signaling (Asghari et al., 1995; Gluskin and 

Mickey, 2016; Heinz et al., 2000; Meyer-Lindenberg et al., 2005; Thompson et al., 1997). 

DA-related multilocus genetic profiles (MGPs) are composites of several DA-related 

polymorphisms and putatively predict ‘net’ DA function. Such DA-related MGPs have been 

associated with striatal BOLD responsivity to reward (Nikolova et al., 2011; Stice et al., 

2012), addictive behavior and personality (Davis and Loxton, 2013), food addiction, 

emotional and hedonic eating (Davis et al., 2013), and depression (Pearson-Fuhrhop et al., 

2014). To our knowledge, MGPs have not yet been used to study the role of subcortical DA 

signaling in symptom severity in schizophrenia or in healthy individuals.
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Investigation of striatal D2 receptors (D2R) may yield further insight into the link between 

symptom severity and striatal DA function. Some studies have found increased striatal 

D2/D3 receptor (D2/D3R) availability in schizophrenia compared to non-diseased 

individuals but many others have not (Howes et al., 2012). Alternatively, symptom severity 

may more strongly relate to D2/D3R availability than patient status. Low striatal D2/D3R 

availability in patients, either at baseline or due to receptor occupancy by antipsychotics, has 

been associated with greater negative symptom severity (de Haan et al., 2000; Heinz et al., 

1998; Lataster et al., 2011; Martinot et al., 1994; Pickar et al., 1996; Uchida et al., 2009) and 

dysphoria (Mizrahi et al., 2007). However, it has also been associated with greater positive 

and less negative symptom severity (Pogarell et al., 2012) and some studies did not show 

any relationship (Agid et al., 2007; Graff-Guerrero et al., 2009; Kegeles et al., 2008; Klemm 

et al., 1996; Talvik et al., 2006). Some of the variability in these findings may be due to 

certain properties of the D2/D3R radioligands used (i.e. [11C]raclopride, 

[123I]iodobenzamide). First, these radiligands do not distinguish between D2R and D3R 

(Elsinga et al., 2006; Mukherjee et al., 1999; Videbaek et al., 2000). While their distribution 

overlaps, these receptor subtypes are preferentially localized to different brain regions. 

Therefore, D2R and D3R may have distinct functional roles in symptom severity. Second, 

these radioligands are vulnerable to displacement by endogenous DA (Dewey et al., 1992; 

Laruelle et al., 1995; Riccardi et al., 2006), confounding interpretation of PET measures of 

in vivo D2/D3R availability. The relationship between symptom severity and striatal D2R 

using a non-displaceable, D2R-selective PET radioligand has not yet been studied in 

individuals with schizophrenia or in healthy individuals.

Here, we studied positive and negative symptom severity, with an emphasis on self-reported 

anhedonia, in healthy controls (HC), siblings of individuals with schizophrenia (SIB), and 

individuals with schizophrenia or schizoaffective disorder (SCZ). Unaffected siblings 

provide the opportunity to study relationships among variables of interest in individuals who 

share genes with their affected siblings but are medication-naïve. First, we tested the 

hypothesis that MGP scores, which were composites of DA-related genotypes and 

formulated to reflect genetically regulated subcortical DA signaling capacity (Stice et al., 

2012), would relate to symptom severity and self-reported anhedonia. Specifically, based on 

evidence of striatal hyperdopaminergic signaling in schizophrenia (Howes et al., 2012; 

Laruelle et al., 1999; Reith et al., 1994) and a lack of direct evidence for striatal 

hypodopaminergic signaling in association with symptom severity, we hypothesized that 

lower MGP scores that reflect lower subcortical DA signaling capacity would relate to lower 

levels of both positive and negative symptom severity and less self-reported anhedonia 

across HC, SIB, and SCZ. Second, using a novel D2R-selective PET radioligand that is not 

displaceable by endogenous DA, (N-[11C]methyl)benperidol ([11C]NMB), we tested the 

hypothesis that lower striatal D2R specific binding would relate to lower symptom severity 

and less self-reported anhedonia in a subset of HC, SIB, and unmedicated SCZ.
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2. Material and Methods

2.1 Participants

Participants (N =129) aged 18–50 years, including HC (n = 36), SIB (n = 27), and SCZ (n = 

66), were recruited by word of mouth, flyers, and during visits to clinics and mental health 

centers in St. Louis, MO (Table 1). In the whole sample, there were 12 pairs of related SIB 

and SCZ and 2 pair of SIB who were siblings of each other. All participants provided 

symptom severity and self-reported anhedonia data. Most participants provided saliva 

samples for genotyping (34 HC, 25 SIB, 65 SCZ; Table 2) and some completed [11C]NMB 

PET scans (10 HC, 10 SIB, 3 SCZ (unmedicated for ≥9 months at time of PET and 

unmedicated during clinical interview); 5 of whom who were not genotyped (2 HC, 2 SIB, 

and 1 SCZ). Of the individuals who were genotyped, there were 12 pairs of related SIB and 

SCZ and 1 pair of SIB who were siblings of each other. Two of the SIB who underwent PET 

scans were siblings of each other. Fifty five SCZ were taking antipsychotic medications at 

the time of screening. We converted antipsychotic medication doses to 100 mg 

chlorpromazine equivalents (Lehman et al., 2004 (for Loxapine calculation only); Leucht et 

al., 2014).

After the study procedures were fully explained, all participants provided written informed 

consent prior to participation. The study protocol was approved by the Washington 

University School of Medicine Human Research Protection Office and the Radioactive Drug 

Research Committee, and was carried out in accordance with the principles expressed in the 

Declaration of Helsinki. Exclusionary criteria are described in Supplementary Information 1.

2.2 Symptom Severity and Anhedonia Assessment

During the screening day, a trained research assistant administered the Structured Clinical 

Interview for the DSM-IV (First et al., 2002) to determine the lifetime and current history of 

Axis I disorders and obtain basic demographic information (Table 1). To assess symptom 

severity, the Schedule for the Assessment of Negative Symptoms (SANS) (Andreasen, 

1983a), Schedule for the Assessment of Positive Symptoms (SAPS) (Andreasen, 1983b), 

and the Brief Negative Symptom Scale (BNSS) (Kirkpatrick et al., 2011) were administered. 

Participants completed self-report scales including the Scales for Physical and Social 

Anhedonia (SPSA) (Chapman et al., 1976), Snaith-Hamilton Pleasure Scale (SHAPS) 

(Snaith et al., 1995) and Temporal Experience of Pleasure Scale (TEPS) (Gard et al., 2006) 

to assess hedonic capacity as well as the Wechsler Adult Intelligence Scale vocabulary and 

matrix reasoning subtests to assess intellectual functioning (WAIS 4th Edition (Wechsler, 

2008)).

2.3 Genotyping

Participants provided saliva on a voluntary basis with an Oragene saliva kit 

(www.dnagenotek.com). Following DNA extraction and quantitation normalization, the 

following polymorphisms were genotyped by the Molecular Psychiatry Core at Washington 

University in St. Louis School of Medicine by pyrosequencing: DRD2/ANKK1 TaqIA 

(rs1800497), COMT val158met (rs4680), the 48 bp exon 3 variable tandem number repeat 

(VNTR) polymorphism in the DRD4 gene, and the 40 bp DAT1 VNTR of the SLC6A3 
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gene. Call rates were 99% for DRD4 and SLC6A3 DAT1 and 100% for DRD2/ANKK1 
TaqIA (rs1800497) and COMT val158met (rs4680). Across the full sample and within each 

ethnic group, polymorphisms did not deviate from Hardy-Weinberg Equilibrium (HWE), 

with the exception of COMT val158met rs4680, which diverged in the full sample and the 

European American subsample (Supplementary Table 1). The divergence from HWE for 

rs4680 appears to be driven by low heterozygosity observations among SIB and SCZ (Table 

2). Given that the level of deviation from HWE in the full sample was above a Bonferroni 

corrected p-value for HWE testing (i.e., 0.05/4 single nucleotide polymorphisms ((SNPs), α 
= 0.0125), we retained this SNP in our profile score. Further, we report MGP results 

excluding COMT val158met rs4680 from our MGP score in Supplementary Information 2.

2.4 Multilocus Genetic Profile Scoring

MGP scores were assigned to each individual by assigning scores to allele pairs for each of 4 

polymorphisms similar to the method used by Stice et al. (2012). The DRD2/ANKK1 TaqIA 

(rs1800497) A2 allele is associated with greater striatal D2R binding relative to the A1 allele 

(Eisenstein et al., 2016; Gluskin and Mickey, 2016). The COMT (rs4680) val allele may be 

associated with lower amounts of tonic DA transmission in cortical regions due to greater 

COMT activity, but it is thought to confer greater phasic DA transmission in striatum and 

other subcortical regions due to reduced tonic auto-inhibition relative to met/met (Bilder et 

al., 2004). The DRD448 bp exon 3 7-repeat variant is associated with reduced dopamine-

mediated inhibition of cyclic AMP formation relative to DRD4 repeats <7 (Asghari et al., 

1995). Finally, individuals with the 9-repeat allele of SLC6A3 DAT1 have higher DAT 

expression compared to individuals homozygous for the 10-repeat allele (van de Giessen et 

al., 2009; van Dyck et al., 2005). In contrast to Stice et al. (2012), individuals homozygous 

or heterozygous for the SLC6A3 DAT1 9-repeat allele were assigned the high score as in 

Nikolova et al. (Nikolova et al., 2011) and in Davis et al. (Davis and Loxton, 2013; Davis et 

al., 2013). In addition, we did not genotype participants for the DRD2-141C Ins/Del 

polymorphism; therefore, the MGP formula did not include scores for these alleles. Scores 

were summed such that higher MGP scores indicated higher DA signaling capacity (Table 

2).

2.5 MRI and PET Acquisition, Preprocessing, and Analyses

MRI and PET data were acquired a mean of 14 months (S.D. = 11.5) after completion of the 

symptom severity and anhedonia measures in HC, SIB, and unmedicated SCZ. Simultaneous 

radioligand [11C]NMB PET and structural MR T1-weighted anatomical images were 

obtained with a Siemens Biograph mMR PET/MR scanner (Delso et al., 2011) using a 3-D 

MP-RAGE sequence (sagittal orientation, TR=2400 ms, TE=2.67 ms, flip angle=7 degrees, 

slab thickness=192 mm, FOV=256×256 mm; voxel dimensions= 1×1×1 mm). [11C]NMB, 

was prepared using an automated system previously described (Moerlein et al., 2010; 

Moerlein et al., 2004). Radiochemical purity of [11C]NMB was ≥ 95% and specific activity 

was ≥ 961 Ci/mmol (36 TBq/mmol). Injected dose of unlabeled NMB was ≤ 17.9 µg. 

Participants received 5.9–18.8 mCi [11C]NMB intravenously. Emission data were collected 

in 3D mode for 30 frames: 3 × 1 min, 4 × 2 min, 3 × 3 min and 20 × 5 min. Attenuation 

correction was MR-based (Delso et al., 2011).
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MR and PET image processing was previously described in detail (Eisenstein et al., 2013; 

Eisenstein et al., 2012). A priori regions of interest (ROIs) including dorsal (putamen + 

caudate) and ventral (nucleus accumbens (NAc)) areas of the striatum were identified using 

FreeSurfer (Fischl et al., 2002) on the MP-RAGE MR images for each participant. Dynamic 

PET images were aligned to each other and then co-registered to the MP-RAGE image for 

each individual as previously described (Eisenstein et al., 2012). ROIs and the cerebellar 

reference region were resampled in the same atlas space (Hershey et al., 2003). Decay-

corrected tissue activity curves were obtained from the dynamic PET data. D2R non-

displaceable binding potentials (BPNDs) were obtained for each ROI using the Logan 

graphical method with whole cerebellum as a reference region (Antenor-Dorsey et al., 

2008). D2R BPNDs for each ROI were averaged across left and right hemispheres to reduce 

the number of comparisons for primary analyses. We recently published a report within this 

sample linking D2R binding to DRD2/ANKK1 TaqIA (rs1800497) genotype (Eisenstein et 

al., 2016).

2.6 Primary Data Analyses

Demographic variables were tested for differences among groups with Kruskal-Wallis H 
tests. Differences between groups in gender and ethnicity distributions, symptom severity, 

self-reported anhedonia, MGP scores, and D2R binding were assessed with univariate 

analyses of variance followed by Tukey’s LSD post hoc tests. To eliminate Type I error 

inflation due to relatedness, genetic analyses (those including MGP scores as predictor 

variables) were performed on a sample in which data from one sibling of each sibling pair (6 

SIB, 7 SCZ) was randomly removed, resulting in a total sample size of N = 111 unrelated 

individuals (34 HC, 19 SIB, 58 SCZ). Prediction of outcome variables by centered MGP 

scores were then assessed with hierarchical multiple linear regression (HMLR) models; 

covariates (age, gender, ethnicity, scaled WAIS score, and education) were included in step 

1, diagnostic group (HC vs. SIB vs. SCZ) was included in step 2, MGP scores were included 

in step 3, and the diagnostic group x MGP scores interaction was entered in step 4. In 

complementary analyses that included the full sample (N = 124), a random effects model 

(REM) implemented using PROC MIXED in SAS 9.4 (SAS Institute, Cary, NC) was 

applied to assess prediction of study variable outcomes by MGP scores accounting for 

correlation of outcome variables from the same family. Multivariate REMs with group and 

MGP score considering age, gender, ethnicity and number of years of education were 

constructed via a forward selection procedure. This procedure takes into account all factors 

where p < 0.3 in the univariate analyses and the significance level for entering factors was 

set at 0.1. Residual plots from the models were used to assess the normality assumption of 

errors. Predictions of study variables by D2R binding was assessed using HMLR; covariates 

(diagnostic group, age at time of PET, age at time of clinical interview, gender, ethnicity, 

WAIS scaled score, and education) were included in step 1, and D2R binding was included 

in step 2. REMs were not performed for analyses including D2R binding because these 

included data from only two related SIB individuals. When MGP scores or D2R binding 

significantly predicted total scores on a scale that served as a dependent variable (i.e. 

BNSS), follow-up HMLRs were performed to determine if MGP or D2R binding related to 

scores on subscales (i.e. alogia) of that scale. For primary HMLR analyses regarding 

symptom severity (3 scales) and anhedonia (3 scales), resulting p-values were corrected for 
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multiple comparisons using the Bonferroni method such that p ≤ 0.008 was considered 

statistically significant (0.05/6 scales). Otherwise, results were considered significant at p ≤ 

0.05.

3. Results

3.1 Sample Description

See Table 1 for descriptive statistics. In the genotyped sample, diagnostic groups did not 

differ in mean urine cotinine levels or gender and ethnicity distributions. However, SIB were 

significantly younger, had more education, and higher WAIS scores than SCZ. Among the 

subset of individuals that underwent PET scans, SCZ were less educated than SIB but 

otherwise there were no significant group differences. SCZ antipsychotic medications 

included Arapiprazole, Clozapine, Haloperidol, Iloperidone, Loxipine, Olanzepine, 

Paliperidone, Risperidone, Quetiapine, and Ziprasidone. Dosage data was missing for 3 

individuals. Eleven SCZ, including n = 3 who underwent PET, were not medicated. The 

mean (S.D.) 100 mg chlorpromazine equivalent was 723.5 mg (597.7) (range = 125–3333.3 

mg).

Genotype distribution among ethnic groups differed for DRD2/ANKK1 TaqIA (rs1800497; 

F2,121 = 4.3, p = 0.02) and COMT val158met (rs4680; univariate ANOVA F2,121 = 3.6, p = 

0.03, Table 2). Total MGP scores, however, did not differ between European American 

(mean (S.D.) = 6.4 (0.9)) and non-European American (6.3 (1.0)) individuals (Student’s 

between subjects t-test, t122 = −0.43, p = 0.67).

3.2 MGP Scores and Symptom Severity

Unsurprisingly, SCZ reported higher symptom severity scores across measures (BNSS, 

SANS, SAPS) than HC and SIB (Table 1). MGP scores did not differ between groups (Table 

1). Elevated MGP scores, reflecting higher subcortical DA signaling capacity, were 

associated with reduced negative symptom severity as measured by the BNSS across HC, 

SIB, and SCZ (r111 = −0.28, p = 0.004, ΔR2 = 0.04; Figure 1, Supplementary Table 2). The 

magnitude of this relationship was larger when only African Americans were included in the 

analysis (r62 = −0.33, p = 0.01, ΔR2 = 0.06) but smaller when only European Americans 

were included (r42 = −0.22, p = 0.19, ΔR2 = 0.03). Post-hoc analyses of BNSS subscales 

revealed that elevated MGP scores related to lower Anhedonia (r111 = −0.21, p = 0.04), 

Avolition (r111 = −0.20, p = 0.04), Blunted Affect (r111= −0.19, p = 0.05), Distress (r111 = 

−0.23, p = 0.02) and Alogia (r111 = −0.22, p = 0.03) but not Asociality (r111 = −0.17, p = 

0.09) scores on subscales of the BNSS. MGP scores were more strongly associated with 

BNSS scores than individual DA-related SNPs or VNTRs (Supplementary Table 3). When 

separate analyses replaced the total MGP score with one calculated by summing allele 

scores and ‘leaving out’ contribution from one of the SNPs, results further indicated that no 

single loci drove the association between MGP and BNSS scores (associations remained 

significant or near-significant regardless of which SNP was ‘left out’; Supplementary Table 

3). REM analyses that accounted for correlation of outcome variables from the same family 

also indicated that higher MGP scores predicted lower BNSS scores (Pearson r124 = −0.20, 

REM p = 0.05) across HC, SIB, and SCZ. MGP scores did not relate to negative or positive 
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symptom severity as measured by the SANS (HMLR: r111 = −0.09, p = 0.35; Pearson r124 = 

−0.07, REM p = 0.87) or the SAPS (HMLR: r111 = −0.13, p = 0.20; Pearson r124 = −0.09, 

REM p = 0.77), respectively. There were no diagnostic group x MGP interactions for 

symptom severity (all p ≥ 0.27).

3.3 MGP Scores and Self-reported Anhedonia

Overall, SCZ had significantly greater self-reported anhedonia than HC and SIB (Table 1). 

Elevated MGP scores related to lower self-reported anhedonia as measured by the SPSA but 

this finding did not survive multiple comparisons correction (HMLR: r111 = −0..20, p = 0.04, 

ΔR2 = 0.03; Pearson r124 = −0.16; REM p = 0.18). MGP scores did not correlate with 

hedonic capacity as measured by SHAPS (HMLR: r111 = −0.07, p = 0.51; Pearson r124 = 

−0.06, REM p = 0.30) or TEPS (HMLR: r111 = 0.08, p = 0.42; Pearson r124 = 0.09, REM p 
= 0.42). There were no diagnostic group x MGP interactions for anhedonia severity (all p ≥ 

0.24).

Analyses including MGP scores not including COMT, which was not in HWE for the full 

sample, are presented in Supplementary Information 2. These results are similar in 

magnitude and direction to the results reported above.

3.4 Striatal D2R Binding and Symptom Severity

For each symptom severity measure (BNSS, SANS, SAPS), SCZ had significantly higher 

scores than HC and SIB (Table 1). D2R BPND did not differ between groups (Table 1). 

Dorsal striatal BPND was negatively correlated with SANS scores at trend-level significance 

(r23 = −0.45, p = 0.08; ΔR2 = 0.07). NAc D2R BPND did not relate to SANS scores (r23 = 

−0.38, p = 0.15). Neither dorsal striatal nor NAc D2R BPND was associated with negative 

symptom severity as measured by the BNSS (both ROIs: r23 ≥ −0.28, p ≥ 0.29), or positive 

symptom severity as measured by the SAPS (both ROIs: r23 ≥ −0.07, p ≥ 0.80).

3.5 Striatal D2R Binding and Self-reported Anhedonia

Self-reported anhedonia did not differ among groups (Table 1). Elevated dorsal striatal D2R 

BPND significantly predicted lower anhedonia as measured by the SPSA (r23 = −0.70, p = 

0.003, ΔR2 = 0.28; Figure 2, Supplementary Table 4). This relationship remained even when 

excluding SCZ (r20 = −0.69, p = 0.009, ΔR2 = 0.26) and when excluding the related SIB (r21 

= −0.64, p = 0.01, ΔR2 = 0.21) from the analyses. Specifically, in the whole sample, greater 

dorsal striatal D2R BPND related to both lower physical anhedonia (r23 = −0.56, p = 0.02, 

ΔR2 = 0.19) and social anhedonia (r23 = −0.69, p = 0.003, ΔR2 = 0.29). NAc D2R BPND 

predicted anhedonia as measured by the SPSA at a significance level that did not survive 

multiple comparisons correction (r23 = −0.57, p = 0.02, ΔR2 = 0.19). Neither dorsal striatal 

nor NAc D2R BPND were associated with SHAPS (both ROIs: r23 ≥ −0.30, p ≥ 0.26) or 

TEPS (r23≤ 0.21, p ≥ 0.43) scores.

3.6 Striatal D2R Binding and MGP Scores

Consistent with our previous report linking the DRD2/ANKK1 rs1800497 to D2R in this 

sample (Eisenstein et al., 2016), MGP scores predicted dorsal striatal (r18= 0.65, p = 0.02) 

but not NAc D2R BPND (r18 = 0.46, p = 0.11). At the individual SNP/VNTR level, the 
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DRD2/ANKK1 rs1800497 polymorphism significantly related to dorsal striatal D2R BPND, 

as previously reported (Eisenstein et al., 2016). None of the other polymorphism tested 

(COMT rs4680, SLC6A3 DAT1, DRD4 exon 3 48 bp) predicted dorsal striatal D2R binding 

(all r ≤ 0.47, p ≥ 0.10). However, D2R binding was still predicted by the MGP score when 

the DRD2/ANKK1 rs1800497 polymorphism was excluded from the calculation (r18 = 0.55, 

p = 0.05).

4. Discussion

Contrary to our hypotheses, elevated subcortical DA signaling capacity, reflected by higher 

MGP scores, predicted lower negative symptom severity as measured by the BNSS, and, at a 

level that did not survive multiple comparisons correction, lower self-reported anhedonia as 

measured by the SPSA across HC, SIB, and SCZ. Our results add to existing PET/SPECT 

(de Haan et al., 2000; Heinz et al., 1998; Lataster et al., 2011; Martinot et al., 1994; Pickar et 

al., 1996; Uchida et al., 2009; Voruganti et al., 2001; Voruganti and Awad, 2006) and fMRI 

(Dowd and Barch, 2010, 2012; Galderisi et al., 2015; Goghari et al., 2010; Juckel et al., 

2006a; Simon et al., 2010; Strauss et al., 2014; Waltz et al., 2009; Waltz et al., 2010) 

evidence that negative symptom severity relates to altered subcortical DA signaling and 

striatal reactivity, respectively. Our findings are also in line with those of other studies in 

which genetic profile scores reflecting high DA signaling capacity relate to increased brain 

responsivity to reward (Nikolova et al., 2011; Stice et al., 2012) and lower depressive 

symptom severity (Pearson-Fuhrhop et al., 2014). By contrast, we did not observe a 

relationship between MGP and SANS scores. The BNSS differs from the SANS in that, 

besides requiring shorter administration time, it differentiates consummatory from 

anticipatory pleasure, has a Distress subscale, and has separate items for measuring facial 

expression, vocal expression, and expressive gestures (Daniel, 2013). Given that, in our 

study, higher MGP scores related to anhedonia, as measured by the Anhedonia subscale, 

lack of normal distress, as measured by the Distress subscale, and poverty of speech, as 

measured by the Alogia subscale, these differences between scales are a potential reason for 

our limited ability to detect a relationship between DA signaling capacity and negative 

symptom severity as measured by the SANS. Future studies may aim to replicate our results, 

which should be viewed as preliminary due to small sample sizes, the small number of genes 

used in the MGP formula, and differences in genetic distributions between ethnic groups.

We did not observe a relationship between positive SAPS-measured symptom severity and 

subcortical DA signaling capacity as reflected by MGP scores. This is surprising since 

hyperdopaminergic function in the mesolimbic pathway may underlie positive symptoms in 

schizophrenia (Davis et al., 1991). However, most SCZ were medicated and variability in 

positive symptom severity may have been masked in these individuals. It is also possible that 

SNPs related to presynaptic aspects of DA signaling would better predict positive symptom 

severity than an MGP score that may reflect overall subcortical DA signaling capacity

Also contrary to our hypotheses, higher dorsal striatal D2R binding, as measured by PET 

with [11C]NMB, was associated with less self-reported anhedonia, as measured by the 

SPSA, and, at a near-significant level, less negative symptom severity as measured by the 

SANS across diagnostic groups. This relationship remained intact when SCZ were removed 
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from the analysis. Our finding is in line with those in which D2R pharmacological blockade 

or genetic knockout caused reward-related behavior deficits (Elmer et al., 2005; Wise, 1978) 

and D2/D3R agonism reversed anhedonia (Willner et al., 1994) in rodents. Also consistent 

with our results, human pharmacological studies show that anhedonia is attenuated by 

chronic D2/D3R agonism in Parkinson disease (Lemke et al., 2006) and chronic, partial D2R 

agonism in schizophrenia (Liemburg et al., 2011). Finally, greater striatal D2/D3R 

occupancy with antipsychotics relates to dysphoria in patients (Mizrahi et al., 2007) and 

antipsychotic use induces dysphoria in healthy individuals (King et al., 1995). Of note, DA 

receptor sensitivity is positively related to affective flattening, but not anhedonia per se, in 

depressed patients (Schmidt et al., 2001). However, unlike the current and previous human 

studies described, the Schmidt et al. (2001) study did not distinguish between D1- and D2-

type receptors. In summary, the current preliminary result, which must be confirmed by 

future replication studies, supports the hypothesis that anhedonia is in part due to low D2R 

function (Heinz et al., 1994; Wise, 1982).

MGP scores predicted dorsal striatal D2R binding as measured by PET. We have previously 

shown, in this same sample, that DRD2/ANKK1 TaqIA A1 allele carriers had lower dorsal 

striatal D2R specific binding relative to individuals homozygous for A2 (Eisenstein et al., 

2016) . The presence of this relationship in this sample lends support to the use of 

[11C]NMB as a valid PET radioligand to measure D2R binding. Unfortunately, we did not 

have the statistical power (n = 15 participants with PET and genetic data) to test whether 

D2R binding mediated the relationship between MGP scores and self-reported anhedonia.

The current study has limitations. First, the sample size was small and precluded reliable 

analysis of genotype frequencies in small ethnic subgroups and reported associations should 

be interpreted with caution until replicated. Second, the PET radioligand used, [11C]NMB, 

due to its selectivity for D2R over D3R, is not optimal for measuring D2R in NAc since it 

contains fewer D2R than dorsal striatal regions, causing increased variability in D2R BPND 

measurements (Eisenstein et al., 2012). We were likely unable to detect strong relationships 

between ventral striatum and other variables for this reason. However, greater NAc D2R did 

relate to less self-rated anhedonia, as measured by the SPSA, at a significance level that did 

not pass multiple comparisons correction. For similar reasons, we did not examine D2R 

binding in the prefrontal cortex, which would have been interesting given its association 

with negative symptoms (Davis et al., 1991; Goghari et al., 2010; Knable and Weinberger, 

1997). Third, we did not have statistical power to investigate the impact of smoking severity 

or antipsychotic medication use on the relationships between MGP scores or striatal D2R 

binding and negative symptoms. Fourth, for some participants, there was a considerable 

length of time between completion of anhedonia self-report questionnaires and PET 

measurement of striatal D2R binding. However, previous research indicates high test-retest 

reliability for trait anhedonia in patients and controls over 90 days (Blanchard et al., 1998) , 

1 year (Blanchard et al., 2001), and 10 years (Herbener and Harrow, 2002). Fifth, the 

relationships between MGP scores or D2R binding and negative symptom severity did not 

hold across all measures. Although moderate to high correlations in the expected directions 

were observed between SANS and BNSS scores and between SPSA, SHAPS, and TEPS 

scores (data not shown), subtle differences in aspects of negative symptom severity and self-

reported anhedonia that are measured by each scale and/or low statistical power to detect 
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these relationships may have contributed to our null findings. Future studies should include 

larger samples and control for ethnicity to avoid these kinds of limitations. Finally, MR-

based attenuation correction may bias PET activity measurements such that it is 

underestimated in most of the brain and overestimated in deep brain regions compared to 

CT-based attenuation maps (Su et al., 2016). Since the bias does not appear to affect clinical 

assessment and PET activities after both MR- and CT-based attenuation methods are closely 

correlated (Su et al., 2016), it should not have affected our results in a way that changes their 

interpretation. In the future, CT-based attenuation correction may be implemented to obtain 

more accurate PET activity measurements from hybrid PET/MR scanners.

In summary, the current study shows that subcortical DA signaling capacity, as reflected by 

MGP scores, and dorsal striatal D2R binding correlated with clinician-rated and self-

reported negative symptom severity across HC, SIB and SCZ. These preliminary results 

support the notion that striatal DA signaling contributes to negative symptoms, including 

anhedonia, thereby serving as a potential pharmacotherapeutic target in psychiatric diseases 

including schizophrenia and depression.
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Figure 1. 
Greater DA signaling capacity, as reflected by MGP scores, was related to lower negative 

symptom severity as measured by the Brief Negative Symptom scale (BNSS) across 

diagnostic groups. HC, healthy control; SIB, sibling of individual with schizophrenia; SCZ, 

individual diagnosed with schizophrenia or schizoaffective disorder; MGP, multilocus 

genetic profile.
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Figure 2. 
Lower D2R binding in dorsal striatum was associated with greater self-reported anhedonia 

as measured by the Scales for Physical and Social Anhedonia (SPSA) across diagnostic 

groups. HC, healthy control; SIB, sibling of individual with schizophrenia; SCZ, individual 

diagnosed with schizophrenia or schizoaffective disorder; D2R, dopamine D2 receptor; 

BPND, non-displaceable binding potential
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Table 1

Participant Demographics and Symptom Severity for Each Study

Genotyping Study

Healthy
Control
(n=34)

Sibling
(n=25) Schizophrenia (n=65)

Group
Difference p-

value

Mean (S.D.)

Age at clinical
interview 34.4 (9.6) 30.2 (8.6) 37.4 (8.3)*** <0.01

Education (years) 13.8 (2.2) † 15.0 (2.2) 13.2 (2.2)** 0.01

WAIS Scaled Score 10.8 (2.9) 12.2 (2.8) 9.7 (3.1)+,*** <0.01

Cotinine levels over
4 study visits
(ng/ml)

1.5 (2.3)
(n=28)

0.8 (1.5)
(n=23) 1.4 (2.1) (n=50) 0.26

Brief Negative
Symptom Scale
Score

2.4 (4.4) 2.6 (4.8) 18.5 (11.8)***,### <0.001

Schedule for
Assessment of
Negative Symptoms

2.4 (2.7) 2.8 (2.9) 8.9 (3.8)***,### <0.001

Schedule for
Assessment of
Positive Symptoms

0.2 (0.7) 0.3 (0.7) 5.8 (4.0)***,### <0.001

Scales for Physical
and Social
Anhedonia

21.3 (11.4) 16.6 (12.5) 32.6 (14.6)***,### <0.001

Snaith-Hamilton
Pleasure Scale 52.9 (3.1) 52.2 (4.7) 48.8 (7.6)*,## <0.01

Temporal
Experience of
Pleasure Scale

87.1 (9.2) 88.0 (8.9) 82.9 (18.4) 0.22

Multilocus Genetic
Profile Score 6.4 (1.0) 6.6 (0.9) 6.3 (0.9) 0.26

Distribution

Gender 16 F/18 M 17 F/8 M 37 F/28 M 0.10

Ethnicity
20 AA, 13

EA (2 Hi), 1
Asian

10 AA, 15
EA (1Hi)

36 AA, 23 EA (0 Hi), 1
Asian, 2 Amer Ind/Alask
Nat, 3 more than one race

0.10

PET D2R Binding Study

Healthy
Control
(n=10)

Sibling
(n=10) Schizophrenia (n=3)

Group
Difference p-

value

Mean (S.D.)

Age at PET scan 34.6 (9.4) 32.0 (7.6) 40.3 (8.5) 0.29

Age at clinical
interview 33.1 (8.8) 30.8 (8.1) 40 (9) 0.30

Education (years) 13.1 (1.7) † 14.8 (1.6) 12.3 (0.6)* 0.04

WAIS Scaled Score 10.9 (2.8) 12.2 (2.7) 9.3 (4.0) 0.44

Cotinine levels at
PET (ng/ml) 1.4 (2.3) 1.7 (2.3) 1.1 (0.9) 0.62
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Genotyping Study

Healthy
Control
(n=34)

Sibling
(n=25) Schizophrenia (n=65)

Group
Difference p-

value

Brief Negative
Symptom Scale
Score

3.4 (6.1) 2.6 (5.3) 21.3 (15.5)**,## 0.002

Schedule for
Assessment of
Negative Symptoms

3.2 (3.0) 2.7 (2.6) 10 (5.3)**,## 0.006

Schedule for
Assessment of
Positive Symptoms

0.3 (0.7) 0.4 (0.8) 4.3 (4.2)***,### 0.001

Scales for Physical
and Social
Anhedonia

22 (13.9) 21.7
(15.6) 35 (9.5) 0.35

Snaith-Hamilton
Pleasure Scale 52.7 (2.9) 50.4 (6.1) 51.7 (4.0) 0.56

Temporal
Experience of
Pleasure Scale

89.9 (6.5) 83.3
(11.8) 112 (48.5) 0.07†

Dorsal striatal D2R
BPND

7.7 (1.04) 8.1 (1.1) 7.6 (1.1) 0.65

Nucleus accumbens
D2R BPND

3.0 (0.4) 3.2 (0.4) 3.0 (0.2) 0.54

Distribution

Gender 4 F/6 M 6 F/4 M 1 F/2 M 0.59

Ethnicity 5 AA, 5 EA
(1 Hi)

5 AA, 5
EA (0 Hi) 2 AA, 1 EA (0 Hi) 0.87

Abbreviations: WAIS, Wechsler Adult Intelligence Scale; F, female; M, male; AA, African American; EA, European American; Hi, Hispanic; As, 
Asian; Amer Ind/Alask Nat, American Indian/Alaskan Native; PET, positron emission tomography.

*, **, ***
p ≤ 0.05, 0.01, 0.001 relative to sibling group;

##, ###
p ≤ 0.01, 0.001 relative to healthy control group;

†
p < 0.10 relative to sibling group;

+
p = 0.09 relative to healthy control group. p-values shown in bold denote a statistically significant difference among groups.
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