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Abstract How do the hippocampus and amygdala interact with
thalamocortical systems to regulate cognitive and cognitive-
emotional learning?Why do lesions of thalamus, amygdala, hip-
pocampus, and cortex have differential effects depending on the
phase of learning when they occur? In particular, why is the
hippocampus typically needed for trace conditioning, but not
delay conditioning, and what do the exceptions reveal? Why
do amygdala lesions made before or immediately after training
decelerate conditioning while those made later do not? Why do
thalamic or sensory cortical lesions degrade trace conditioning
more than delay conditioning? Why do hippocampal lesions
during trace conditioning experiments degrade recent but not
temporally remote learning? Why do orbitofrontal cortical le-
sions degrade temporally remote but not recent or post-lesion
learning? How is temporally graded amnesia caused by ablation
of prefrontal cortex after memory consolidation? How are atten-
tion and consciousness linked during conditioning? How do
neurotrophins, notably brain-derived neurotrophic factor
(BDNF), influence memory formation and consolidation? Is
there a common output path for learned performance? A neural
model proposes a unified answer to these questions that over-
come problems of alternative memory models.
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Overview and scope

The roles and interactions of amygdala, hippocampus, thala-
mus, and neocortex in cognitive and cognitive-emotional
learning, memory, and consciousness have been extensively
investigated through experimental and clinical studies (Berger
& Thompson, 1978; Clark, Manns, & Squire, 2001;
Frankland & Bontempi, 2005; Kim, Clark, & Thompson,
1995; Lee & Kim, 2004; Mauk & Thompson 1987;
Moustafa et al., 2013; Port, Romano, Steinmetz, Mikhail, &
Patterson, 1986; Powell & Churchwell, 2002; Smith, 1968;
Takehara, Kawahara, & Krino, 2003). This article develops a
neural model aimed at providing a unified explanation of chal-
lenging data about how these brain regions interact during
normal learning, and how lesions may cause specific learning
and behavioral deficits, including amnesia. The model also
proposes testable predictions to further test its explanations.
The most relevant experiments use the paradigm of classical
conditioning, notably delay conditioning and trace condition-
ing during the eyeblink conditioning task that is often used to
explicate basic properties of associative learning. Earlier ver-
sions of this work were briefly presented in Franklin and
Grossberg (2005, 2008).

Eyeblink conditioning has been extensively studied be-
cause it has disclosed behavioral, neurophysiological, and an-
atomical information about the learning and memory process-
es related to adaptively timed, conditioned responses to aver-
sive stimuli, as measured by eyelid movements in mice (Chen
et al., 1995), rats (Clark, Broadbent, Zola, & Squire, 2002;
Neufeld & Mintz, 2001; Schmajuk, Lam, & Christiansen,
1994), monkeys (Clark & Zola, 1998), and humans (Clark,
Manns, & Squire, 2001; Solomon et al., 1990), and by the
timing and amplitude of the nictitating membrane reflex
(NMR) which involves a nictitating membrane that covers
the eye like an eyelid in cats (Norman et al., 1974), rabbits
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(Berger & Thompson, 1978; Christian & Thompson, 2003;
McLaughlin, Skaggs, Churchwell, & Powell, 2002; Port,
Mikhail, & Patterson, 1985; Port et al., 1986; Powell &
Churchill 2002; Powell, Skaggs, Churchwell, & McLauglin,
2001; Solomon et al., 1990), and other animals. Eyeblink/
NMR conditioning data will herein be used to help formulate
and answer basic questions about associative learning, adap-
tive timing, and memory consolidation.

Classical conditioning involves learning associations between
objects or events. Eyeblink conditioning associates a neutral
event, such as a tone or a light, called the conditioned stimulus
(CS), with an emotionally-charged, reflex-inducing event, such as
a puff of air to the eye or a shock to the periorbital area, called the
unconditioned stimulus (US). Delay conditioning occurs when
the stimulus events temporally overlap so that the subject learns
to make a conditioned response (CR) in anticipation of the US
(Fig. 1). Trace conditioning involves a temporal gap between CS
offset and US onset such that a CS-activated memory trace is
required during the inter-stimulus interval (ISI) in order to estab-
lish an adaptively timed association betweenCS andUS that leads
to a successful CR (Pavlov, 1927).

Multiple brain areas are involved in eyeblink conditioning.
Many of these regions, and their interactions, are simulated in
the current neural model (Fig. 2). Sensory input comes into the
cortex, and the model, by way of the thalamus. Since the US is
an aversive stimulus, the amygdala is involved (Büchel,
Dolan, Armony, & Friston, 1999; Lee & Kim, 2004). The
hippocampus plays a role in new learning, in general
(Frankland & Bontempi, 2005; Kim, Clark, & Thompson,
1995; Takehara et al., 2003) and in adaptively timed learning,
in particular (Büchel et al., 1999; Green & Woodruff-Pak,

2000; Kaneko & Thompson, 1997; Port et al., 1986; Smith,
1968). The prefrontal cortex plays an essential role in the
consolidation of long-term memory (Frankland & Bontempi,
2005; Takehara, Kawahara, & Krino, 2003; Winocur,
Moscovitch, & Bontempi, 2010). Lesions of the amygdala,
hippocampus, thalamus, and neocortex have different effects
depending on the phase of learning when they occur.

In particular, the model clarifies why the hippocampus is
needed for trace conditioning, but not delay conditioning
(Büchel et al., 1999; Frankland & Bontempi, 2005; Green &
Woodruff-Pak, 2000; Kaneko & Thompson, 1997; Kim, Clark,
& Thompson, 1995; Port et al., 1986; Takehara, Kawahara, &
Krino, 2003); why thalamic lesions retard the acquisition of
trace conditioning (Powell & Churchwell, 2002), but have less
of a statistically significant effect on delay conditioning
(Buchanan & Thompson, 1990); why early but not late amyg-
dala lesions degrade both delay conditioning (Lee & Kim,

Fig. 1 Eyeblink conditioning associates a neutral event, called the
conditioned stimulus (CS), with an emotionally-charged, reflex-
inducing event, called the unconditioned stimulus (US). Delay
conditioning occurs when the stimulus events temporally overlap. Trace
conditioning involves a temporal gap between CS offset and US onset
such that a CS-activated memory trace is required during the inter-
stimulus interval (ISI) in order to establish an association between CS
and US. After either normal delay and trace conditioning, with a range of
stimulus durations and ISIs a conditioned response (CR) is performed in
anticipation of the US

Fig. 2 The neurotrophic START, or nSTART, macrocircuit is formed
from parallel and interconencted networks that support both delay and
trace conditioing. Connectivity between thalamus and sensory cortex
includes pathways from the amygdala and hippocampus, as does
connectivity between sensory cortex and prefrontal cortex, specifically
orbitofrontal cortex. These circuits are homologous. Hence the current
model lumps the thalamus and sensory cortex together and simulates only
sensory cortical dynamics. Multiple types of learning and neurotrophic
mechanisms of memory consolidation cooperate in these circuits to
generate adaptively timed responses. Connections from sensory cortex
to orbitofrontal cortex support category learning. Reciprocal
connections from orbitofrontal cortex to sensory cortex support
attention. Habituative transmitter gates modulate excitatory
conductances at all processing stages. Connections from sensory cortex
to amygdala connections support conditioned reinforcer learning.
Connections from amygdala to orbitofrontal cortex support incentive
motivation learning. Hippocampal adaptive timing and brain-derived
neurotrophic factor (BDNF) bridge temporal delays between
conditioned stimulus (CS) offset and unconditioned stimulus (US) onset
during trace conditioning acquisition. BDNF also supports long-term
memory consolidation within sensory cortex to hippocampal pathways
and from hippocampal to orbitofrontal pathways. The pontine nuclei
serve as a final common pathway for reading-out conditioned
responses. Cerebellar dynamics are not simulated in nSTART. Key:
arrowhead = excitatory synapse; hemidisc = adaptive weight; square =
habituative transmitter gate; square followed by a hemidisc = habituative
transmitter gate followed by an adaptive weight
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2004) and trace conditioning (Büchel et al., 1999); why hippo-
campal lesions degrade recent but not temporally remote trace
conditioning (Kim et al., 1995; Takehara et al., 2003); why in
delay conditioning, such lesions typically have no negative im-
pact on CR performance but this finding may vary with exper-
imental preparation and CR success criteria (Berger, 1984;
Chen et al., 1995; Lee & Kim, 2004; Port, 1985; Shors, 1992;
Moustafa, et al., 2013); why cortical lesions degrade temporally
remote but not recent trace conditioning, but have no impact on
the acquisition of delay conditioning (Frankland & Bontempi,
2005; Kronforst-Collins & Disterhoft, 1998; McLaughlin et al.,
2002; Takehara et al., 2003; see also, Oakley & Steele Russell,
1972; Yeo, Hardiman, Moore, & Steele Russell,.1984); how
temporally-graded amnesia may be caused by ablation of the
medial prefrontal cortex after memory consolidation (Simon,
Knuckley, Churchwell, & Powell, 2005; Takehara et al.,
2003; Weible, McEchron, & Disterhoft, 2000); how attention
and consciousness are linked during delay and trace condition-
ing (Clark, Manns, & Squire, 2002; Clark & Squire, 1998,
2010); and how neurotrophins, notably brain-derived neuro-
trophic factor (BDNF), influence memory formation and con-
solidation (Kokaia et al., 1993, Tyler et al., 2002).

The article does not attempt to explain all aspects of
memory consolidation, although its proposed explanations
may help to do so in future studies. One reason for this is
that the prefrontal cortex and hippocampus, which figure
prominently in model explanations, carry out multiple
functions (see section ‘Clinical relevance of BDNF). The
model only attempts to explain how an interacting subset
of these mechanisms contribute to conditioning and mem-
ory consolidation. Not considered, for example, are
sequence-dependent learning, which depends on prefron-
tal working memories and list chunking dynamics (cf.
compatible models for such processes in Grossberg &
Kazerounian, 2016; Grossberg & Pearson, 2008; and
Silver et al., 2011), or spatial navigation, which depends
upon entorhinal grid cells and hippocampal place cells (cf.
compatible models in Grossberg & Pilly, 2014; Pilly &
Grossberg, 2012). In addition, the model does not attempt
to simulate properties such as hippocampal replay, which
require an analysis of sequence-dependent learning, in-
cluding spatial navigation, for their consideration, or finer
neurophysiological properties such the role of sleep, sharp
wave ripples, and spindles in memory consolidation (see
Albouy, King, Maquet, & Doyon, 2013, for a review).

Data about brain activity during sleep provide further evidence
about learning processes that support memory consolidation.
These processes begin with awake experience and may continue
during sleep where there are no external stimuli that support
learning (Kali & Dayan, 2004; Wilson, 2002). The activity gen-
erated during waking in the hippocampus is reproduced in se-
quence during rapid eye movement (REM) sleep with the same
time scale as the original experiences, lasting tens of seconds to

minutes (Louie & Wilson, 2001), or is compressed during slow-
wave sleep (Nádasdy et al. 1999). During sleep, slow waves
appear to be initiated in hippocampal CA3 (Siapas, Lubenov, &
Wilson, 2005; Wilson & McNaughton, 1994), and hippocampal
place cells tend to fire as though neuronal stateswere being played
back in their previously experienced sequence as part of themem-
ory consolidation process (Ji &Wilson, 2007; Qin,McNaughton,
Skaggs,&Barnes, 1997; Skaggs&McNaughton, 1996; Steriade,
1999; Wilson & McNaughton, 1994). Relevant to the nSTART
analysis are the facts that, during sleep, the interaction of hippo-
campal cells with cortex leads to neurotrophic expression
(Hobson & Pace-Schott, 2002; Monteggia et al., 2004), and that
similar sequential, self-organizing ensembles that are based on
experience may also exist in various areas of the neocortex (Ji
& Wilson, 2007; Maquet et al., 2000; cf. Deadwyler, West, &
Robinson, 1981; Schoenbaum & Eichenbaum, 1995). With the
nSTART analyses of neurotrophically-modulated memory con-
solidation as a function, these sleep- and sequence-dependent
processes, which require substantial additional model develop-
ment, can be more easily understood.

Unifying three basic competences

The model reconciles three basic behavioral competences. Its
explanatory power is illustrated by the fact that these basic
competences are self-evident, but the above data properties
are not. All three competences involve the brain’s ability to
adaptively time its learning processes in a task-appropriate
manner.

First, the brain needs to pay attention quickly to salient
events, both positive and negative. However, such a rapid
attention shift to focus on a salient event creates the risk of
prematurely responding to that event, or of prematurely reset-
ting and shifting the attentional focus to a different event be-
fore the response to that event could be fully executed. As
explained below, this fast motivated attention pathway in-
cludes the amygdala. These potential problems of a fast mo-
tivated attention shift are alleviated by the second and third
competences.

Second, the brain needs to be able to adaptively time and
maintain motivated attention on a salient event until an appro-
priate response is executed. The ability to maintain motivated
attention for an adaptively timed interval on the salient event
involves the hippocampus, notably its dentate-CA3 region
(Berger, Clark, & Thompson, 1980). Recent data have further
developed this theme through the discovery of hippocampal
“time cells” (Kraus et al., 2013; MacDonald et al., 2011).

Third, the brain needs to be able to adaptively time and
execute an appropriate response to the salient event. The abil-
ity to execute an adaptively timed behavioral response always
involves the cerebellum (Christian & Thompson, 2003; Fiala,
Grossberg, & Bullock, 1996; Green & Woodruff-Pak, 2000;
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Ito, 1984). When the timing contingencies involve a relatively
long trace conditioning ISI, or the onset of the US in delay
conditioning is sufficiently delayed, then the hippocampus
may also be required due to higher cognitive demand
(Beylin, Gandhi, Wood, Talk, Matzel, & Shors, 2001).

How the brain may realize these three competences, along
with data supporting these hypotheses, has been described in
articles about the Spectrally Timed Adaptive Resonance
Theory (START) model of Grossberg & Merrill (1992,
1996). A variation of the START model in which several of
its mechanisms are out of balance is called the Imbalanced
START, or iSTART, model that has been used to describe
possible neural mechanisms of autism (Grossberg &
Seidman, 2006). START mechanisms have also been used to
offer mechanistic explanations of various symptoms of
schizophrenia (Grossberg, 2000b). The current neurotrophic
START, or nSTART, model builds upon this foundation. The
nSTART model further develops the START model to refine
the anatomical interactions that are described in START, to
clarify how adaptively timed learning and memory consolida-
tion depend upon neurotrophins acting within several of these
anatomical interactions, and to explain using this expanded
model how various brain lesions to areas involved in eyeblink
conditioning may cause abnormal learning and memory.

nSTART model of adaptively timed eyeblink
conditioning

Neural pathways that support the conditioned eyeblink re-
sponse involve various hierarchical and parallel circuits
(Thompson, 1988; Woodruff-Pak & Steinmetz, 2000a,
2000b). The nSTARTmacrocircuit (Fig. 2) simulates key pro-
cesses that exist within the wider network that supports the
eyeblink response in vivo and highlights circuitry required for
adaptively timed trace conditioning. Thalamus and sensory
cortex are lumped into one sensory cortical representation
for representational simplicity. However, the exposition of
the model and its output pathways will require discussion of
independent thalamocortical and corticocortical pathways.
Different experimental manipulations affect brain regions like
the thalamus, cortex, amygdala, and hippocampus in different
ways. Our model computer simulations illustrate these differ-
ences. In addition, it is important to explain how these several
individual responses of different brain regions contribute to a
final common path the activity of which covaries with ob-
served conditioned responses. Outputs from these brain re-
gions meet directly or indirectly at the pontine nucleus, the
final common bridge to the cerebellum which generates the
CR (Freeman & Muckler, 2003; Kalmbach et al. 2009a, b;
Siegel et al., 2012; Woodruff-Pak & Disterhoft, 2007).
Simulations of how the model pontine nucleus responds to
the aggregate effect of all the other brain regions are thus also

provided. The internal dynamics of the cerebellum are not,
however, simulated in the nSTART model; but see Fiala,
Grossberg, and Bullock (1996) for a detailed cerebellar learn-
ing model that simulates how Ca++ can modulate mGluR dy-
namics to adaptively time responses across long ISIs.

Normal and amnesic delay conditioning and trace
conditioning

The ability to associatively learn what subset of earlier events
predicts, or causes, later consequences, and what event combina-
tions are not predictive, is a critical survival competence in normal
adaptive behavior. In this section, data are highlighted that de-
scribe the differences between the normal and abnormal acquisi-
tion and retention of associative learning relative to the specific
role of interactions among the processing areas in nSTART’s
functional anatomy; notably, interactions between sensory cortex
and thalamus, prefrontal cortex, amygdala, and hippocampus. See
‘Methods,’ for an exposition of design principles and heuristic
modeling concepts that go into the nSTART model; ‘Model
description,’ for a non-technical exposition of themodel processes
and their interactions; ‘Results,’ for model simulations of data;
‘Discussion,’ for a general summary; and ‘Mathematical
Equations and Parameters,’ for a complete summary of the mod-
el mechanisms.

Lesion data show that delay conditioning requires the cere-
bellum but does not need the hippocampus to acquire an adap-
tively timed conditioned response. Studies of hippocampal le-
sions in rats, rabbits, and humans reveal that, if a lesion occurs
before delay conditioning (Daum, Schugens, Breitenstein,
Topka, & Spieker, 1996; Ivkovich & Thompson, 1997;
Schmaltz & Theios, 1972; Solomon & Moore, 1975;
Weiskrantz & Warrington, 1979;), or any time after delay con-
ditioning (Akase, Alkon, & Disterhoft, 1989; Orr & Berger,
1985; Port et al., 1986), the subject can still acquire or retain
a CR. Depending on the performance criteria, sometimes the
acquisition is reported as facilitated (Berger, 1984; Chen, 1995;
Lee & Kim, 2004; Port, 1985; Shors, 1992).

Lee and Kim (2004) presented electromyography (EMG)
data showing that amygdala lesions in rats decelerated delay
conditioning if made prior to training, but not if made post-
training, while hippocampal lesions accelerated delay condi-
tioning if made prior to training. They found a time-limited
role of the amygdala similar to the time-limited role of the
hippocampus: The amygdala is more active during early ac-
quisition than later. In addition, they found that the amygdala
without the hippocampus is not sufficient for trace condition-
ing. During functional magnetic resonance imaging (fMRI)
studies of human trace conditioning, Büchel et al. (1999) also
found decreases in amygdala responses over time. They cited
other fMRI studies that found robust hippocampal activity in
trace conditioning, but not delay conditioning, to underscore
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their hypothesis that, while the amygdala may contribute to
trace conditioning, the hippocampus is required. Chau and
Galvez (2012) discussed the likelihood of the same time-
limited involvement of the amygdala in trace eyeblink
conditioning.

Holland and Gallagher (1999) reviewed literature describing
the role of the amygdala as either modulatory or required, de-
pending on specific connections with other brain systems, for
normal “functions often characterized as attention, reinforcement
and representation” (p. 66). Aggleton and Saunders (2000) de-
scribed the amygdala in terms of four functional systems (acces-
sory olfactory, main olfactory, autonomic, and frontotemporal).
In the macaque monkey, ten interconnected cytotonic areas were
defined within the amygdala, with 15 types of cortical inputs and
17 types of cortical projections, and 22 types of subcortical inputs
from the amygdala and 15 types of subcortical projections to the
amygdala (their Figs. 1.2–1.7, pp. 4–9). Given this complexity,
the data are mixed about whether the amygdala is required for
acquisition, or retention after consolidation, depending on the
cause (cytotoxin, acid or electronic burning, cutting), target area,
and degree of lesion, as well as the strength of the US, learning
paradigm, and specific task (Blair, Sotres-Bayon, Moiya, &
LeDoux, 2005; Cahill & McGaugh, 1990; Everitt, Cardinal,
Hall, Parkinson, & Robbins, 2000; Kapp, Wilson, Pascoe,
Supple, & Whalen, 1990; Killcross, Everitt, & Robbins, 1997;
Lehmann, Treit, & Parent, 2000; Medina, Repa, Mauk, &
LeDoux, 2002; Neufeld & Mintz, 2001; Oswald, Maddox,
Tisdale, & Powell, 2010; Vazdarjanova & McGaugh, 1998). In
fact, "…aversive eyeblink conditioning…survives lesions of ei-
ther the central or basolateral parts of the amygdala" (Thompson
et al. 1987). Additionally, such lesions have been found not to
prevent Pavlovian appetitive conditioning or other types of
appetitively-based learning (McGaugh, 2002, p.456).

These inconsistencies among the data may exist due to the
contributions from multiple pathways that support emotion.
For example, within the MOTIVATOR model extension of
the CogEM model (see below), hypothalamic and related in-
ternal homeostatic and drive circuits may function without
amygdala (Dranias et al., 2008). The nSTART model only
incorporates an afferent cortical connection from the amygda-
la to represent incentive motivational learning signals. Within
the cortex, however, the excitatory inputs from both the amyg-
dala and hippocampus are modulated by the strength of
thalamocortical signals.

A clear pattern emerges from comparing various data that
disclose essential functions of the hippocampus, functions that
are qualititatively simulated in nSTART. The hippocampus has
been studied with regard to the acquisition of trace eyeblink
conditioning, and the adaptive timing of conditioned responses
(Berger, Laham, & Thompson, 1980; Mauk & Ruiz, 1992;
Schmaltz & Theios, 1972; Sears & Steinmetz, 1990;
Woodruff-Pak, 1993; Woodruff-Pak & Disterhoft, 2007). If a
hippocampal lesion or other system disruption occurs before

trace conditioning acquisition (Ivkovich & Thompson, 1997;
Kaneko & Thompson, 1997; Weiss & Thompson, 1991b;
Woodruff-Pak, 2001), or shortly thereafter (Kim et al., 1995;
Moyer, Deyo, & Disterhoft, 1990; Takehara et al., 2003), the
CR is not obtained or retained. Trace conditioning is impaired
by pre-acquisition hippocampal lesions created during labora-
tory experimentation on animals (Anagnostaras, Maren, &
Fanselow, 1999; Berry & Thompson, 1979; Garrud et al.,
1984; James, Hardiman, & Yeo, 1987; Kim et al., 1995; Orr
& Berger, 1985; Schmajuk, Lam, & Christiansen, 1994;
Schmaltz & Theios, 1972; Solomon & Moore, 1975), and in
humans with amnesia (Clark & Squire, 1998; Gabrieli et al.,
1995; McGlinchey-Berroth, Carrillo, Gabrieli, Brawn, &
Disterhoft, 1997), Alzheimer’s disease, or age-related deficits
(Little, Lipsitt, & Rovee-Collier, 1984; Solomon et al., 1990;
Weiss & Thompson, 1991a; Woodruff-Pak 2001).

The data show that, during trace conditioning, there is suc-
cessful post-acquisition performance of the CR only if the
hippocampal lesion occurs after a critical period of hippocam-
pal support of memory consolidation within the neocortex
(Kim et al., 1995; Takashima et al., 2009; Takehara et al.,
2003). Data from in vitro cell preparations also support the
time-limited role of the hippocampus in new learning that is
simulated in nSTART: activity in hippocampal CA1 and CA3
pyramidal neurons peaked 24 h after conditioning was com-
pleted and decayed back to baseline within 14 days
(Thompson, Moyer, & Disterhoft, 1996). The effect of early
versus late hippocampal lesions is challenging to explain since
no overt training occurs after conditioning during the period
before hippocampal ablation.

After consolidation due to hippocampal involvement is ac-
complished, thalamocortical signals in conjunction with the
cerebellum determine the timed execution of the CR during
performance (Gabreil, Sparenborg, & Stolar, 1987; Sosina,
1992). Indeed, “…there are two memory circuitries for trace
conditioning. One involves the hippocampus and the cerebel-
lum and mediates recently acquired memory; the other in-
volves the mPFC and the cerebellum and mediates remotely
acquired memory” (Takehara et al., 2003, p. 9904; see also
Berger, Weikart, Basset, & Orr, 1986; O'Reilly et al., 2010).
nSTART qualitatively models these data as follows: after the
consolidation of memory, when there is no need for hippo-
campus, nSTART models the cortical connections to the pon-
tine nuclei that serve to elicit conditioned responses by way of
the cerebellum (Siegel, Kalmback, Chitwood, & Mauk, 2012;
Woodruff-Pak & Disterhoft, 2007).

Based on the extent and timing of hippocampal damage,
learning impairments range from needing more training trials
than normal in order to learn successfully, through persistent
response-timing difficulties, to the inability to learn and form
new memories. The nSTART model explains the need for the
hippocampus during trace conditioning in terms of how the
hippocampus supports strengthening of partially conditioned
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thalamocortical and cortiocortical connections during memo-
ry consolidation (see Fig. 2). The hippocampus has this ability
because it includes circuits that can bridge the temporal gaps
between CS and US during trace conditioning, unlike the
amygdala, and can learn to adaptively time these temporal
gaps in its responses, as originally simulated in the START
model (Grossberg & Merrill, 1992, 1996; Grossberg &
Schmajuk, 1989). The current nSTART model extends this
analysis using mechanisms of endogenous hippocampal acti-
vation and BDNFmodulation (see below) to explain the time-
limited role of the hippocampus in terms of its support of the
consolidation of new learning into long-term memories. This
hypothesis is elaborated and contrasted with alternative
models of memory consolidation below (‘Multiple hippocam-
pal functions: Space, time, novelty, consolidation, and episod-
ic learning’).

Conditioning and consciousness

Several studies of humans have described a link between con-
sciousness and conditioning. Early work interpreted conscious
awareness as another class of conditioned responses (Grant,
1973; Hilgard, Campbell, & Sears, 1937; Kimble, 1962;
McAllister & McAllister, 1958). More recently, it was found
that, while amnesic patients with hippocampal damage ac-
quired delay conditioning at a normal rate, they failed to ac-
quire trace conditioning (Clark & Squire, 1998). These exper-
imenters postulated that normal humans acquire trace condi-
tioning because they have intact declarative or episodic mem-
ory and, therefore, can demonstrate conscious knowledge of a
temporal relationship between CS and US: “trace conditioning
requires the acquisition and retention of conscious knowl-
edge” (p. 79). They did not, however, discuss mechanisms
underlying this ability, save mentioning that the neocortex
probably represents temporal relationships between stimuli
and “would require the hippocampus and related structures
to work conjointly with the neocortex” (p.79).

Other studies have also demonstrated a link between con-
sciousness and conditioning (Gabrieli et al., 1995; McGlinchey-
Berroth, Brawn, & Disterhoft, 1999; McGlinchey-Berroth et al.,
1997) and described an essential role for awareness in declarative
learning, but no necessary role in non-declarative or procedural
learning, as illustrated by experimental findings related to trace
and delay conditioning, respectively (Manns, Clark, & Squire,
2000; Papka, Ivry, & Woodruff-Pak, 1997). For example, trace
conditioning is facilitated by conscious awareness in normal con-
trol subjects while delay conditioning is not, whereas amnesics
with bilateral hippocampal lesions perform at a success rate sim-
ilar to unaware controls for both delay and trace conditioning
(Clark, Manns, & Squire, 2001). Amnesics were found to be
unaware of experimental contingencies, and poor performers on
trace conditioning (Clark& Squire, 1998). Thus, the link between

adaptive timing, attention, awareness, and consciousness has been
experimentally established within the trace conditioning para-
digm. The nSTARTmodel traces the link between consciousness
and conditioning to the role of hippocampus in supporting a
sustained cognitive-emotional resonance that underlies motivated
attention, consolidation of long-term memory, core conscious-
ness, and "the feeling of what happens" (Damasio, 1999).

Brain-derived neurotrophic factor (BDNF)
in memory formation and consolidation

Memory consolidation, a process that supports an enduringmem-
ory of new learning, has been extensively studied: (McGaugh,
2000, 2002; Mehta, 2007; Nadel & Bohbot, 2001; Takehara,
Kawahara, & Krino, 2003; Squire & Alverez, 1995; Takashima,
2009; Thompson, Moyer, & Disterhoft, 1996; Tyler, et al. 2002).
These data show time-limited involvement of the limbic system,
and long-term involvement of the neocortex. The question of
what sort of process occurs during the period that actively
strengthens memory, even when there is no explicit practice, has
been linked to the action of neurotrophins (Zang, et al., 2007),
especially BDNF, a complex class of proteins that have important
effects on learning and memory (Heldt, Stanek, Chhatwal, &
Ressler, 2007; Hu & Russek, 2008; Monteggia et al., 2004;
Purves, 1988; Rattiner, Davis, & Ressler, 2005; Schuman,
1999; Thoenen, 1995; Tyler, Alonso, Bramham, & Pozzo-
Miller, 2002). Postsynaptically, neurotrophins enhance respon-
siveness of target synapses (Kang & Schuman, 1995; Kohara,
Kitamura, Morishima, & Tsumoto, 2001) and allow for quicker
processing (Knipper et al., 1993; Lessman, 1998).
Presynaptically, they act as retrograde messengers (Davis &
Murphy, 1994; Ganguly, Koss, & Poo, 2000) coming from a
target cell population back to excitatory source cells and increas-
ing the flow of transmitter from the source cell population to
generate a positive feedback loop between the source and the
target cells (Schinder, Berninger, & Poo, 2000), as also occurs
in some neural models of learning and memory search (e.g.,
Carpenter & Grossberg, 1990). BDNF has also been interpreted
as an essential component of long-term potentiation (LTP) in
normal cell processing (Chen, Kolbeck, Barde, Bonhoeffer, &
Kossel, 1999; Korte et al., 1995; Phillips et al., 1990). The func-
tional involvement of existing BDNF receptors is critical in early
LTP (up to 1 h) during the acquisition phase of learning the CR,
whereas continued activation of the slowly decaying late phase
LTP signal (3+ h) requires new protein synthesis and gene
expression. Rossato et al. (2009) have shown that hippocampal
dopamine and the ventral tegmental area provide a temporally
sensitive trigger for the expression of BDNF that is essential for
long-term consolidation of memory related to reinforcement
learning.

The BDNF response to a particular stimulus event may vary
from microseconds (initial acquisition) to several days or weeks
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(long-term memory consolidation); thus, neurotrophins have a
role whether the phase of learning is one of initial synaptic en-
hancement or long-term memory consolidation (Kang, Welcher,
Shelton, & Schuman, 1997; Schuman, 1999; Singer, 1999).
Furthermore, BDNF blockade shows that BDNF is essential for
memory development at different phases of memory formation
(Kang et al., 1997), and during all ages of an individual (Cabelli,
Hohn, & Shatz, 1995; Tokuka, Saito, Yorifugi, Kishimoto, &
Hisanaga, 2000). As nSTART qualitatively simulates,
neurotrophins are thus required for both the initial acquisition of
a memory and for its ongoing maintenance as memory
consolidates.

BDNF is heavily expressed in the hippocampus as well as
in the neocortex, where neurotrophins figure largely in
activity-dependent development and plasticity, not only to
build new bridges as needed, but also to inhibit and dismantle
old synaptic bridges. A process of competition among axons
during the development of nerve connections (Bonhoffer,
1996; Tucker, Meyer, & Barde, 2001; van Ooyen &
Willshaw, 1999; see review in Tyler et al., 2002), exists both
in young and mature animals (Phillips, Hains, Laramee,
Rosenthal, & Winslow, 1990). BDNF also maintains cortical
circuitry for long-term memory that may be shaped by various
BDNF-independent factors during and after consolidation
(Gorski, Zeiler, Tamowski, & Jones, 2003).

The nSTART model hypothesizes how BDNF may ampli-
fy and temporally extend activity-based signals within the
hippocampus and the neocortex that facilitate endogenous
strengthening of memory without further explicit learning.
In particular, memory consolidation may be mechanistically
achieved by means of a sustained cascade of BDNF expres-
sion beginning in the hippocampus and spreading to the cortex
(Buzsáki & Chrobak, 2005; Cousens&Otto, 1998; Hobson &
Pace-Schott, 2002; Monteggia, et al., 2004; Nádasdy, Hirase,
Czurkó, Csicsvari, & Buzsáki, 1999; Smythe, Colom, &
Bland, 1992; Staubli & Lynch, 1987; Vertes, Hoover, & Di
Prisco, 2004), which is modeled in nSTART by the main-
tained activity level of hippocampal and cortical BDNF after
conditioning trials end (see Fig. 2).

Hippocampal bursting activity is not the only bursting activ-
ity that drives consolidation. Long-term activity-dependent
consolidation of new learning is also supported by the synchro-
nization of thalamocortical interactions in response to thalamic
or cortical inputs (Llinas, Ribary, Joliot, & Wang, 1994;
Steriade, 1999). Thalamic bursting neurons may lead to synap-
tic modifications in cortex, and cortex can in turn influence
thalamic oscillations (Sherman & Guillery, 2003; Steriade,
1999). Thalamocortical resonance has been described as a basis
for temporal binding and consciousness in increasingly specific
models over the years. These models simulate how specific and
nonspecific thalamic nuclei interact with the reticular nucleus
and multiple stages of laminar cortical circuitry (Buzsáki,
Llinás, Singer, Berthoz, & Christen, 1994; Engel, Fries, &

Singer, 2001; Grossberg, 1980, 2003, 2007; Grossberg &
Versace, 2008; Pollen, 1999; Yazdanbakhsh & Grossberg,
2004). nSTART qualitatively explains consolidation without
including bursting phenomena, although oscillatory dynamics
of this kind arise naturally in finer spiking versions of rate-
based models such as nSTART (Grossberg & Versace, 2008;
Palma, Grossberg, & Versace, 2012a, 2012b).

The nSTART model focuses on amygdala and hippocam-
pal interactions with thalamus and neocortex during condi-
tioning (Fig. 2). The model proposes that the hippocampus
supports thalamo-cortical and cortico-cortical category learn-
ing that becomes well established during memory consolida-
tion through its endogenous (bursting) activity (Siapas,
Lubenov, & Wilson, 2005; Sosina, 1992) that is supported
by neurotrophin mediators (Destexhe, Contreras & Steriade,
1998). nSTART proposes that thalamo-cortical sustained ac-
tivity is maintained through the combination of two mecha-
nisms: the level of cortical BDNF activity, and the strength of
the learned thalamo-cortical adaptive weights, or long-term
memory (LTM) traces that were strengthened by the memory
consolidation process. This proposal is consistent with trace
conditioning data showing that, after consolidation, when the
hippocampus is no longer required for performance of CRs,
the medial prefrontal cortex takes on a critical role for perfor-
mance of the CR in reaction to the associated thalamic sensory
input, Here, the etiology of retrograde amnesia is understood
as a failure to retain memory, rather than as a failure of adap-
tive timing (Takehara et al., 2003).

Methods

From CogEM to nSTART

The nSTART model synthesizes and extends key principles,
mechanisms, and properties of three previously published
brain models of conditioning and behavior. These three
models describe aspects of:

1) How the brain learns to categorize objects and events in
the world (Carpenter & Grossberg, 1987, 1991, 1993;
Grossberg, 1976a, 1976b, 1980, 1982, 1984, 1987,
1999, 2013; Raizada & Grossberg, 2003); this is de-
scribed within Adaptive Resonance Theory, or ART;

2) How the brain learns the emotional meanings of
such events through cognitive-emotional interac-
tions, notably rewarding and punishing experiences,
and how the brain determines which events are mo-
tivationally predictive, as during attentional blocking
and unblocking (Dranias, Grossberg, & Bullock,
2008; Grossberg, 1971, 1972a, 1972b, 1980, 1982,
1984, 2000b; Grossberg, Bullock, & Dranias, 2008;
Grossberg & Gutowski, 1987; Grossberg & Levine,
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1987; Grossberg & Schmajuk, 1987); this is de-
scribed within the Cognitive-Emotional-Motor, or
CogEM, model; and

3) How the brain learns to adaptively time the attention that
is paid to motivationally important events, and when to
respond to these events, in a context-appropriate manner
(Fiala, Grossberg, & Bullock, 1996; Grossberg &Merrill,
1992, 1996; Grossberg & Paine, 2000; Grossberg &
Schmajuk, 1989); this is described within the START
model.

All three component models have been mathematical-
ly and computationally characterized elsewhere in order
to explain behavioral and brain data about normal and
abnormal behaviors. The principles and mechanisms that
these models employ have thus been independently val-
idated through their ability to explain a wide range of
data. nSTART builds on this foundation to explain data
about conditioning and memory consolidation, as it is
affected by early and late amygdala, hippocampal, and
cortical lesions, as well as BDNF expression in the hip-
pocampus and cortex. The exposition in this section
heuristically states the main modeling concepts and
mechanisms before building upon them to mathematical-
ly realize the current model advances and synthesis.

The simulated data properties emerge from interac-
tions of several brain regions for which processes
evolve on multiple time scales, interacting in multiple
nonlinear feedback loops. In order to simulate these
data, the model incorporates only those network interac-
tions that are rate-limiting in generating the targeted
data. More detailed models of the relevant brain re-
gions, that are consistent with the model interactions
simulated herein, are described below, and provide a
guide to future studies aimed at incorporating a broader
range of functional competences.

Adaptive resonance theory

The first model upon which nSTART builds is called
Adaptive Resonance Theory, or ART. ART is reviewed
because a key process in nSTART is a form of category
learning, and also because nSTART simulates a cognitive-
emotional resonance that is essential for explaining its
targeted data. ART proposes how the brain can rapidly
learn to attend, recognize, and predict new objects and
events without catastrophically forgetting memories of
previously learned objects and events. This is accom-
plished through an attentive matching process between
the feature patterns that are created by stimulus-driven
bottom-up adaptive filters, and learned top-down expecta-
tions (Fig. 3). The top-down expectations, acting by them-
selves, can also prime the brain to anticipate future

bottom-up feature patterns with which they will be
matched.

In nSTART, it is assumed that each CS and US is
familiar and has already undergone category learning be-
fore the current simulations begin. The CS and US inputs
to sensory cortex in the nSTART macrocircuit are as-
sumed to be processed as learned object categories
(Fig. 2). nSTART models a second stage of category
learning from an object category in sensory cortex to an
object-value category in orbitofrontal cortex. In general,
each object category can become associated with more
than one object-value category, so the same sensory cue
can learn to generate different conditioned responses in
response to learning with different reinforcers. It does this
by learning to generate different responses when different
value categories are active. These adaptive connections
are thus, in general, one-to-many. Conceptually, the two
stages of learning, at the object category stage and the
object-value category stage, can be interpreted as a coor-
dinated category learning process through which the
orbitofrontal cortex categorizes objects and their motiva-
tional significance (Barbas, 1995, 2007; Rolls, 1998,
2000). The current model simulates such conditioning
with only a single type of reinforcer. Strengthening the
connection from object category to object-value category
represents a simplified form of this category learning pro-
cess in the current model simulations. One-to-many learn-
ing from an object category to multiple object-value cat-
egories is simulated in Chang, Grossberg, and Cao
(2014).

As in other ART models, a top-down expectation path-
way also exists from the orbitofrontal cortex to the sen-
sory cortex. It provides top-down attentive modulation of
sensory cortical activity, and is part of the cortico-cortico-
amygdalar-hippocampal resonance that develops in the
model during learning. This cognitive-emotional reso-
nance, which plays a key role in the current model and
its simulations, as well as its precursors in the START and
iSTART models, is the main reason that nSTART is
considered to be part of the family of ART models.
Indeed, Grossberg (2016) summarizes an emerging classi-
fication of brain resonances that support conscious seeing,
hearing, feeling, and knowing that includes this cognitive-
emotional resonance.

nSTART explains how this cognitive-emotional reso-
nance is sustained through time by adaptively-timed
hippocampal feedback signals (Fig. 2). This hippocam-
pal feedback plays a critical role in the model’s expla-
nation of data about memory consolidation, and its abil-
ity to explain how the brain bridges the temporal gap
between stimuli that occur in experimental paradigms
like trace conditioning. Consolidation is complete within
nSTART when the hippocampus is no longer needed to
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further strengthen the category memory that is activated
by the CS. Finally, the role of the hippocampus in sus-
taining the cognitive-emotional resonances helps to ex-
plain the experimentally reported link between condi-
tioning and consciousness (Clark & Squire, 1998).

In a complete ART model, when a sufficiently good
match occurs between a bottom-up input pattern and an
active top-down expectation, the system locks into a res-
onant state that focuses attention on the matched features
and drives learning to incorporate them into the learned

Fig. 3 How ART searches for and learns a new recognition category
using cycles of match-induced resonance and mismatch-induced reset.
Active cells are shaded gray; inhibited cells are not shaded. (a) Input
pattern I is instated across feature detectors at level F1 as an activity
pattern X, at the same time that it generates excitatory signals to the
orienting system A with a gain ρ that is called the vigilance parameter.
Activity pattern X generates inhibitory signals to the orienting systemA as
it generates a bottom-up input pattern S to the category level F2. A
dynamic balance within A between excitatory inputs from I and
inhibitory inputs from S keeps A quiet. The bottom-up signals in S are
multiplied by learned adaptive weights to form the input pattern T to F2.
The inputs Tare contrast-enhanced and normalized within F2 by recurrent
lateral inhibitory signals that obey the membrane equations of
neurophysiology, otherwise called shunting interactions. This
competition leads to selection and activation of a small number of cells
within F2 that receive the largest inputs. In this figure, a winner-take-all
category is chosen, represented by a single cell (population). The chosen
cells represent the category Y that codes for the feature pattern at F1. (b)
The category activity Y generates top-down signals U that are multiplied
by adaptive weights to form a prototype, or critical feature pattern, V that
encodes the expectation that the active F2 category has learned for what

feature pattern to expect atF1. This top-down expectation inputV is added
at F1 cells. If V mismatches I at F1, then a new STM activity pattern X*
(the gray pattern), is selected at cells where the patterns match well
enough. In other words, X* is active at I features that are confirmed by
V. Mismatched features (white area) are inhibited.When X changes to X*,
total inhibition decreases from F1 to A. (c) If inhibition decreases
sufficiently, A releases a nonspecific arousal burst to F2; that is, “novel
events are arousing”.Within the orienting systemA, a vigilance parameter
ρ determines how bad a match will be tolerated before a burst of
nonspecific arousal is triggered. This arousal burst triggers a memory
search for a better-matching category, as follows: Arousal resets F2 by
inhibiting Y. (d) After Y is inhibited,X is reinstated and Y stays inhibited as
X activates a different category, that is represented by a different activity
winner-take-all category Y*, at F2.. Search continues until a better
matching, or novel, category is selected. When search ends, an attentive
resonance triggers learning of the attended data in adaptive weights
within both the bottom-up and top-down pathways. As learning
stabilizes, inputs I can activate their globally best-matching categories
directly through the adaptive filter, without activating the orienting
system [Adapted with permission from Carpenter and Grossberg (1987)]
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category; hence the term adaptive resonance. ART also
predicts that all conscious states are resonant states, and
the Grossberg (2016) classification of resonances contrib-
utes to clarifying their diverse functions throughout the
brain. Such an adaptive resonance is one of the key mech-
anisms whereby ART ensures that memories are dynami-
cally buffered against catastrophic forgetting. As noted
above, a simplified form of this attentive matching pro-
cess is included in nSTART in order to explain the
cognitive-emotional resonances that support memory con-
solidation and the link between conditioning and
consciousness.

In addition to the attentive resonant state itself, a
hypothesis testing, or memory search, process in re-
sponse to unexpected events helps to discover predictive
recognition categories with which to learn about novel
environments, and to switch attention to new inputs
within a known environment. This hypothesis testing
process is not simulated herein because the object cate-
gories that are activated in response to the CS and US
stimuli are assumed to already have been learned, and
unexpected events are minimized in the kinds of highly
controlled delay and trace conditioning experiments that
are the focus of the current study.

For the same reason, another mechanism that is im-
portant during hypothesis testing is not included in
nSTART. The degree of match between bottom-up and
top-down signal patterns that is required for resonance,
sustained attention, and learning to occur is set by a
vigilance parameter (Carpenter & Grossberg, 1987)
(see ρ in Fig. 3a). Vigilance may be increased by pre-
dictive errors, and controls whether a particular learned
category will represent concrete information, such as a
particular view of a particular face, or abstract informa-
tion, such as the fact that everyone has a face. Low
vigilance allows the learning of general and abstract
recognition categories, whereas high vigilance forces
the learning of specific and concrete categories. The
current simulations do not need to vary the degree of
abstractness of the categories to be learned, so vigilance
control has been omitted for simplicity.

A big enough mismatch designates that the selected
category does not represent the input data well enough,
and drives a memory search, or hypothesis testing, for a
category that can better represent the input data. In a
more complete nSTART model, hypothesis testing
would enable the learning and stable memory of large
numbers of thalamo-cortical and cortico-cortical recog-
nition categories. Such a hypothesis testing process in-
cludes a novelty-sensitive orienting system A, which is
predicted to include both the nonspecific thalamus and
the hippocampus (Fig. 3c; Carpenter & Grossberg,
1987, 1993; Grossberg, 2013; Grossberg & Versace,

2008). In nSTART, the model hippocampus does in-
clude the crucial process of adaptively timed learning
that can bridge temporal gaps of hundreds of millisec-
onds to support trace conditioning and memory consol-
idation. In a more general nSTART model that is capa-
ble of self-stabilizing its learned memories, the hippo-
campus would also be involved in the memory search
process.

In an ART model that includes memory search, when
a mismatch occurs, the orienting system is activated and
generates nonspecific arousal signals to the attentional
system that rapidly reset the active recognition catego-
ries that have been reading out the poorly matching top-
down expectations (Fig. 3c). The cause of the mismatch
is hereby removed, thereby freeing the bottom-up filter
to activate a different recognition category (Fig. 3d).
This cycle of mismatch, arousal, and reset can repeat,
thereby initiating a memory search, or hypothesis testing
cycle, for a better-matching category. If no adequate
match with a recognition category exists, say because
the bottom-up input represents an unfamiliar experience,
then the search process automatically activates an as yet
uncommitted population of cells, with which to learn a
new recognition category to represent the novel
information.

All the learning and search processes that ART predict-
ed have received support from behavioral, ERP, anatomi-
cal, neurophysiological, and/or neuropharmacological da-
ta, which are reviewed in the ART articles listed above;
see, in particular, Grossberg (2013). Indeed, the role of
the hippocampus in novelty detection has been known
for many years (Deadwyler, West, & Lynch, 1979;
Deadwyler et al., 1981; Vinogradova, 1975). In particular,
the hippocampal CA1 and CA3 regions have been shown
to be involved in a process of comparison between a prior
conditioned stimulus and a current stimulus by rats in a
non-spatial auditory task, the continuous non-matching-
to-sample task (Sakurai, 1990). During performance of
the task, single unit activity was recorded from several
areas: CA1 and CA3, dentate gyrus (DG), entorhinal cor-
tex, subicular complex, motor cortex (MC), prefrontal
cortex, and dorsomedial thalamus. Go and No-Go re-
sponses indicated, respectively, whether the current tone
was perceived as the same as (match) or different from
(non-match) the preceding tone. Since about half of the
units from the MC, CA1, CA3, and DG had increments of
activity immediately prior to a Go response, these regions
were implicated in motor or decisional aspects of making
a match response. On non-match trials, units were also
found in CA1 and CA3 with activity correlated to a cor-
rect No-Go response. Corroborating the function of the
hippocampus in recognition memory, but not in storing
the memories themselves, Otto and Eichenbaum (1992)
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reported that CA1 cells compare cortical representations
of current perceptual processes to previous representations
stored in parahippocampal and neocortical structures to
detect mismatch in an odor-guided task. They noted that
“the hippocampus maintains neither active nor passive
memory representations” (p. 332).

Grossberg and Versace (2008) have proposed how the
nonspecific thalamus can also be activated by novel
events and t r igger hypothes is tes t ing. In the i r
Synchronous Matching ART (SMART) model, a predic-
tive error can lead to a mismatch within the nucleus
basalis of Meynert, which releases acetylcholine broadly
in the neocortex, leading to an increase in vigilance and a
memory search for a better matching category. Palma,
Grossberg, and Versace (2012a) and Palma, Versace, and
Grossberg (2012b) further model how acetylcholine-
modulated processes work, and explain a wide range of
data using their modeling synthesis.

CogEM and MOTIVATOR models

Recognition categories can be activated when objects
are experienced, but do not reflect the emotional or
motivational value of these objects. Such a recognition
category can, however, be associated through reinforce-
ment learning with one or more drive representations,
which are brain sites that represent internal drive states
and emotions. Activation of a drive representation by a
recognition category can trigger emotional reactions and
incentive motivational feedback to recognition catego-
ries, thereby amplifying valued recognition categories
with motivated attention as part of a cognitive-
emotional resonance between the inferotemporal cortex,
amygdala, and orbitofrontal cortex. When a recognition
category is chosen in this way, it can trigger choice and
release of actions that realize valued goals in a context-
sensitive way.

Such internal drive states and motivational decisions
are incorporated into nSTART using mechanisms from
the second model, called the Cognitive-Emotional-
Motor, or CogEM, model. CogEM simulates the learn-
ing of cognitive-emotional associations, notably associa-
tions that link external objects and events in the world
to internal feelings and emotions that give these objects
and events value (Fig. 3a and b). These emotions also
activate the motivational pathways that energize actions
aimed at acquiring or manipulating objects or events to
satisfy them.

The CogEM model clarifies interactions between two
types of homologous circuits: one circuit includes inter-
actions between the thalamus, sensory cortex, and
amygdala; the other circuit includes interactions between
the sensory cortex, orbitofrontal cortex, and amygdala.

The nSTART model (Fig. 2) simulates cortico-cortico-
amygdalar interactions. At the present level of simplifi-
cation, the same activation and learning dynamics could
also simulate interactions between thalamus, sensory
cortices, and the amygdala. In particular, the CogEM
model proposes how emotional centers of the brain,
such as the amygdala, interact with sensory and prefron-
tal cortices – notably the orbitofrontal cortex – to gen-
erate affective states, attend to motivationally salient
sensory events, and elicit motivated behaviors.
Neurophysiological data provide increasing support for
the predicted role of interactions between the amygdala
and orbitofrontal cortex in focusing motivated attention
on cell populations that can select learned responses
which have previously succeeded in acquiring valued
goal objects (Baxter et al., 2000; Rolls, 1998, 2000;
Schoenbaum, Setlow, Saddoris, & Gallagher, 2003).

In ART, resonant states can develop within sensory and
cognitive feedback loops. Resonance can also occur with-
in CogEM circuits between sensory and cognitive repre-
sentations of the external world and emotional represen-
tations of what is valued by the individual. Activating the
(sensory cortex)-(amygdala)-(prefrontal cortex) feedback
loop between cognitive and emotional centers is predicted
to generate a cognitive-emotional resonance that can sup-
port conscious awareness of events happening in the
world and how we feel about them. This resonance tends
to focus attention selectively upon objects and events that
promise to satisfy emotional needs. Such a resonance,
when it is temporally extended to also include the hippo-
campus, as described below, helps to explain how trace
conditioning occurs, as well as the link between condi-
tioning and consciousness that has been experimentally
reported.

Figure 4a and b summarize the CogEM hypothesis
that (at least) three types of internal representation in-
teract during classical conditioning and other reinforce-
ment learning paradigms: sensory cortical representa-
tions S, drive representations D, and motor representa-
tions M. These representations, and the learning that
they support, are incorporated into the nSTART circuit
(Fig. 2).

Sensory representations S temporarily store internal repre-
sentations of sensory events in short-term and working mem-
ory. Drive representations D are sites where reinforcing and
homeostatic, or drive, cues converge to activate emotional
responses. Motor representations M control the read-out of
actions. In particular, the S representations are thalamo-
cortical or cortico-cortical representations of external events,
including the object recognition categories that are learned by
inferotemporal and prefrontal cortical interactions (Desimone,
1991, 1998; Gochin, Miller, Gross, & Gerstein, 1991; Harries
& Perrett, 1991; Mishkin, Ungerleider, & Macko, 1983;
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Ungerleider & Mishkin, 1982), and that are modeled by ART.
Sensory representations temporarily store internal representa-
tions of sensory events, such as conditioned stimuli (CS) and
unconditioned stimuli (US), in short-term memory via recur-
rent on-center off-surround networks that tend to conserve
their total activity while they contrast-normalize, contrast-en-
hance, and store their input patterns in short-term memory
(Fig. 4a and b).

The D representations include hypothalamic and amyg-
dala circuits (Figs. 2 and 5) at which reinforcing and ho-
meostatic, or drive, cues converge to generate emotional
reactions and motivational decisions (Aggleton, 1993;
Bower, 1981; Davis, 1994; Gloor et al., 1982; Halgren,
Walter, Cherlow, & Crandall, 1978; LeDoux, 1993). The
M representations include cortical and cerebellar circuits
that control discrete adaptive responses (Evarts, 1973; Ito,

Fig. 4 (a) The simplest Cognitive-Emotional-Motor (CogEM) model:
Three types of interacting representations (sensory, S; drive, D; and
motor, M) that control three types of learning (conditioned reinforcer,
incentive motivational, and motor) help to explain many reinforcement
learning data. (b) In order to work well, a sensory representation S must
have (at least) two successive stages, S(1) and S(2), so that sensory events
cannot release actions that are motivationally inappropriate. The two
successive stages of a sensory representation S are interpreted to be in
the appropriate sensory cortex (corresponds to S(1)) and the prefrontal
cortex, notably the orbitofrontal cortex (corresponds to S(2)). The
prefrontal stage requires motivational support from a drive
representation D such as amygdala, to be fully effective, in the form of
feedback from the incentive motivational learning pathway. Amydgala
inputs to prefrontal cortex cause feedback from prefrontal cortex to
sensory cortex that selectively amplifies and focuses attention upon

motivationally relevant sensory events, and thereby “attentionally
blocks” irrelevant cues. [Reprinted with permission from Grossberg and
Seidman (2006).] (c) The amygdala and basal ganglia work together,
embodying complementary functions, to provide motivational support,
focus attention, and release contextually appropriate actions to achieve
valued goals. For example, the basal ganglia substantia nigra pars
compacta (SNc) releases Now Print learning signals in response to
unexpected rewards or punishments, whereas the amygdala generates
incentive motivational signals that support the attainment of expected
valued goal objects. The MOTIVATOR model circuit diagram shows
cognitive-emotional interactions between higher-order sensory cortices
and an evaluative neuraxis composed of the hypothalamus, amygdala,
basal ganglia, and orbitofrontal cortex [Reprinted with permission from
Dranias et al. (2008)]
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1984; Kalaska, Cohen, Hyde, & Prud’homme, 1989;
Thompson, 1988). More complete models of the internal
structure of these several types of representations have
been presented elsewhere (e.g., Brown, Bullock, &
Grossberg, 2004; Bullock, Cisek, & Grossberg, 1998;
Carpenter & Grossberg, 1991; Contreras-Vidal ,
Grossberg, & Bullock, 1997; Dranias, Grossberg, &
Bullock, 2008; Fiala, Grossberg, & Bullock, 1996;
Gnadt & Grossberg, 2008; Grossberg, 1987; Grossberg,
Bullock & Dranias, 2008; Grossberg & Merrill, 1996;
Grossberg & Schmajuk, 1987; Raizada & Grossberg,
2003), and can be incorporated into future elaborations
of nSTART without undermining any of the current
model's conclusions.

nSTART does not incorporate the basal ganglia to sim-
ulate its targeted data, even though the basal ganglia and
amygdala work together to provide motivational support,
focus attention, and release contextually appropriate ac-
tions to achieve valued goals (Flores & Diserhoft, 2009).
The MOTIVATOR model (Dranias et al., 2008; Grossberg
et al., 2008) begins to explain how this interaction hap-
pens (Fig. 4c), notably how the amygdala and basal gan-
glia may play complementary roles during cognitive-
emotional learning and motivated goal-oriented behaviors
(Grossberg, 2000a). MOTIVATOR describes cognitive-
emotional interactions between higher-order sensory cor-
tices and an evaluative neuraxis composed of the hypo-
thalamus, amygdala, basal ganglia, and orbitofrontal cor-
tex. Given a conditioned stimulus (CS), the model amyg-
dala and lateral hypothalamus interact to calculate the ex-
pected current value of the subjective outcome that the CS
predicts, constrained by the current state of deprivation or
satiation. As in the CogEM model, the amygdala relays
the expected value information to orbitofrontal cells that

receive inputs from anterior inferotemporal cells, and me-
dial orbitofrontal cells that receive inputs from rhinal cor-
tex. The activations of these orbitofrontal cells code the
subjective values of objects. These values guide behavior-
al choices.

The model basal ganglia detect errors in CS-specific
predictions of the value and timing of rewards.
Excitatory inputs from the pedunculopontine nucleus in-
teract with timed inhibitory inputs from model
striosomes in the ventral striatum to regulate dopamine
burst and dip responses from cells in the substantia
nigra pars compacta and ventral tegmental area.
Learning in cortical and striatal regions is strongly mod-
ulated by dopamine. The MOTIVATOR model is used
to address tasks that examine food-specific satiety,
Pavlovian conditioning, reinforcer devaluation, and si-
multaneous visual discrimination. Model simulations
successfully reproduce discharge dynamics of known
cell types, including signals that predict saccadic reac-
tion times and CS-dependent changes in systolic blood
pressure. In the nSTART model, these basal ganglia
interactions are not needed to simulate the targeted data,
hence will not be further discussed.

Even without basal ganglia dynamics, the CogEM
model has successfully learned to control motivated be-
haviors in mobile robots (e.g., Baloch & Waxman,
1991; Chang & Gaudiano, 1998; Gaudiano & Chang,
1997; Gaudiano, Zalama, Chang, & Lopez-Coronado,
1996).

Three types of learning take place among the CogEM sen-
sory, drive, and motor representations (Fig. 4a). Conditioned
reinforcer learning enables sensory events to activate emo-
tional reactions at drive representations. Incentive motivation-
al learning enables emotions to generate a motivational set
that biases the system to process cognitive information con-
sistent with that emotion. Motor learning allows sensory and
cognitive representations to generate actions. nSTART simu-
lates both conditioned reinforcer learning, from thalamus to
amygdala, or from sensory cortex to amygdala, as well as
incentive motivational learning, from amygdala to sensory
cortex, or from amygdala, to orbitofrontal cortex (Fig. 2).
Instead of explicitly modeling motor learning circuits in the
cerebellum, nSTART uses CR cortical and amygdala inputs to
the pontine nucleus as indicators of the timing and strength of
conditioned motor outputs (Freeman & Muckler, 2003;
Kalmbach et al., 2009; Siegel et al., 2012; Woodruff-Pak &
Disterhoft, 2007).

During classical conditioning, a CS activates its sen-
sory representation S before the drive representation D
is activated by an unconditioned simulus (US), or other
previously conditioned reinforcer CSs. If it is appropri-
ately timed, such pairing causes learning at the adaptive
weights within the S → D pathway. The ability of the

Fig. 5 Orbital prefrontal cortex receives projections from the sensory
cortices (visual, somatosensory, auditory, gustatory, and olfactory) and
from the amygdala, which also receives inputs from the same sensory
cortices. These anatomical stages correspond to the model CogEM stages
in Fig. 4 [Reprinted with permission from Barbas (1995)]
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CS to subsequently activate D via this learned pathway
is one of its key properties as a conditioned reinforcer.
As these S → D associations are being formed, incen-
tive motivational learning within the D → S incentive
motivational pathway also occurs, due to the same
pairing of CS and US. Incentive motivational learning
enables an activated drive representation D to prime, or
modulate, the sensory representations S of all cues, in-
cluding the CSs, that have consistently been correlated
with it. That is how activating D generates a “motiva-
tional set”: it primes all of the sensory and cognitive
representations that have been associated with that drive
in the past. These incentive motivational signals are a
type of motivationally-biased attention. The S → M
motor, or habit, learning enables the sensorimotor maps,
vectors, and gains that are involved in sensory-motor
control to be adaptively calibrated, thereby enabling a
CS to read-out correctly calibrated movements as a CR.

Taken together, these processes control aspects of the learn-
ing and recognition of sensory and cognitive memories, which
are often classified as part of the declarative memory system
(Mishkin, 1982, 1993; Squire & Cohen, 1984); and the per-
formance of learned motor skills, which are often classified as
part of the procedural memory system (Gilbert & Thatch,
1977; Ito, 1984; Thompson, 1988).

Once both conditioned reinforcer and incentive motiva-
tional learning have taken place, a CS can activate a (sensory
cortex)-(amygdala)-(orbitofrontal cortex)-(sensory cortex)
feedback circuit (Figs. 2 and 4c). This circuit supports a
cognitive-emotional resonance that leads to core con-
sciousness and “the feeling of what happens” (Damasio,
1999), while it enables the brain to rapidly focus motivat-
ed attention on motivationally salient objects and events.
This is the first behavioral competence that was men-
tioned above in the Overview and scopesection. This
feedback circuit could also, however, without further pro-
cessing, immediately activate motor responses, thereby
leading to premature responding in many situations.

We show below that this amygdala-based process is
effective during delay conditioning, where the CS and
US overlap in time, but not during trace conditioning,
where the CS terminates before the US begins, at least
not without the benefit of the adaptively timed learning
mechanisms that are described in the next section. Thus,
although the CogEM model can realize the first behav-
ioral competence that is summarized above, it cannot
realize the second and third competences, which involve
bridging temporal gaps between CS, US, and condi-
tioned responses (as discussed above). Mechanisms that
realize the second and third behavioral competences en-
able the brain to learn during trace conditioning.

It is also important to acknowledge that, as reviewed
above, the amygdala may have a time-limited role during

aversive conditioning (Lee & Kim, 2004). As the associ-
ation of eyeblink CS-US becomes more consolidated
through the strengthening of direct thalamo-cortical and
cortico-cortical learned associations, the role of the amyg-
dala may become less critical.

Spectral Timing model and hippocampal time cells

The third model, called the Spectral Timing model, clarifies
how the brain learns adaptively timed responses in order to
acquire rewards and other goal objects that are delayed in
time, as occurs during trace conditioning. Spectral timing en-
ables the model to bridge an ISI, or temporal gap, of hundreds
of milliseconds, or even seconds, between the CS offset and
US onset. This learning mechanism has been called spectral
timing because a “spectrum” of cells respond at different, but
overlapping, times and can together generate a population
response for which adaptively timed cell responses become
maximal at, or near, the time when the US is expected
(Grossberg & Merrill, 1992, 1996; Grossberg & Schmajuk,
1989), as has been shown in neurophysiological experiments
about adaptively timed conditioning in the hippocampus
(Berger & Thompson, 1978; Nowak & Berger, 1992; see
also Tieu et al., 1999).

Each cell in such a spectrum reaches its maximum activity
at different times. If the cell responds later, then its activity
duration is broader in time, a property that is called a Weber
law, or scalar timing, property (Gibbon, 1977). Recent neuro-
physiological data about “time cells” in the hippocampus have
supported the Spectral Timing model prediction of a spectrum
of cells with different peak activity times that obey a Weber
law. Indeed, such a Weber law property was salient in the data
of MacDonald et al. (2011), who wrote: “…the mean peak
firing rate for each time cell occurred at sequential moments,
and the overlap among firing periods from even these small
ensembles of time cells bridges the entire delay. Notably, the
spread of the firing period for each neuron increased with the
peak firing time…” (p. 3). MacDonald et al. (2011) have here-
by provided direct neurophysiological support for the predic-
tion of spectral timing model cells (“small ensembles of time
cells”) that obey the Weber law property (“spread of the firing
period…increased with the peak firing time”).

To generate the adaptively timed population response, each
cell's activity is multiplied, or gated, by an adaptive weight
before the memory-gated activity adds to the population re-
sponse. During conditioning, each weight is amplified or sup-
pressed to the extent to which its activity does, or does not,
overlap times at which the US occurs; that is, times around the
ISI between CS and US. Learning has the effect of amplifying
signals from cells for which timing matches the ISI, at least
partially. Most cell activity intervals do not match the ISI
perfectly. However, after such learning, the sum of the gated
signals from all the cells – that is, its population response – is
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well-timed to the ISI, and typically peaks at or near the ex-
pected time of US onset. This sort of adaptive timing endows
the nSTART model with the ability to learn associations be-
tween events that are separated in time, notably between a CS
and US during trace conditioning.

Evidence for adaptive timing has been found during many
different types of reinforcement learning. For example, classi-
cal conditioning is optimal at a range of inter-stimulus inter-
vals between the CS and US that are characteristic of the task,
species, and age, and is typically attenuated at zero ISI and
long ISIs. Within an operative range, learned responses are
timed to match the statistics of the learning environment
(e.g., Smith, 1968).

Although the amygdala has been identified as a primary
site in the expression of emotion and stimulus-reward associ-
ations (Aggleton, 1993), as summarized in Figs. 2 and 5, the
hippocampal formation has been implicated in the adaptively
timed processing of cognitive-emotional interactions. For ex-
ample, Thompson et al. (1987) distinguished two types of
learning that go on during conditioning of the rabbit
Nictitating Membrane Response: adaptively timed “condi-
tioned fear” learning that is linked to the hippocampus, and
adaptively timed “learning of the discrete adaptive response”
that is linked to the cerebellum. In particular, neurophysiolog-
ical evidence has been reported for adaptive timing in ento-
rhinal cortex activation of hippocampal dentate and CA3 py-
ramidal cells (Berger & Thompson, 1978; Nowak & Berger,
1992) to which the more recently reported “time cells” pre-
sumably contribute.

Spectral timing has been used to model challenging behav-
ioral, neurophysiological, and anatomical data about several
parts of the brain: the hippocampus to maintain motivated
attention on goals for an adaptively timed interval
(Grossberg & Merrill, 1992, 1996; cf. Friedman, Bressler,
Garner, & Ziv, 2000), the cerebellum to read out adaptively
timed movements (Fiala, Grossberg, & Bullock, 1996; Ito,
1984), and the basal ganglia to release dopamine bursts and
dips that drive new associative learning in multiple brain re-
gions in response to unexpectedly timed rewards and non-
rewards (Brown, Bullock, & Grossberg, 1999, 2004;
Schultz, 1998; Schultz et al., 1992).

Distinguishing expected and unexpected disconfirmations

Adaptive timing is essential for animals that actively explore
and learn about their environment, since rewards and other
goals are often delayed in time relative to the actions that are
aimed at acquiring them. The brain needs to be dynamically
buffered, or protected against, reacting prematurely before a
delayed reward can be received. The Spectral Timing model
accomplishes this by predicting how the brain distinguishes
expected non-occurrences , also cal led expected
disconfirmations, of reward, which should not be allowed to

interfere with acquiring a delayed reward, from unexpected
non-occurrences, also called unexpected disconfirmations, of
reward, which can trigger the usual consequences of predic-
tive failure, including reset of working memory, attention
shifts, emotional rebounds, and the release of exploratory be-
haviors. In the nSTART model, and the START model before
it, spectral timing circuits generate adaptively timed hippo-
campal responses that can bridge temporal gaps between CS
and US and provide motivated attention to maintain activation
of the hippocampus and neocortex between those temporal
gaps (Figs. 2 and 6).

What spares an animal from erroneously reacting to expect-
ed non-occurrences of reward as predictive failures? Why
does an animal not immediately become so frustrated by the
non-occurrence of such a reward that it prematurely shifts its
attentional focus and releases exploratory behavior aimed at
finding the desired reward somewhere else, leading to relent-
less exploration for immediate gratification? Alternatively, if
the animal does wait, but the reward does not appear at the
expected time, then how does the animal then react to the
unexpected non-occurrence of the reward by becoming frus-
trated, resetting its working memory, shifting its attention, and
releasing exploratory behavior?

Any solution to this problem needs to account for the
fact that the process of registering ART-like sensory
matches or mismatches is not itself inhibited (Fig. 3): if

Fig. 6 In the START model, conditioning, attention, and timing are
integrated. Adaptively timed hippocampal signals R maintain motivated
attention via a cortico-hippocampal-cortical feedback pathway, at the
same time that they inhibit activation of orienting system circuits A via
an amygdala drive representationD. The orienting system is also assumed
to occur in the hippocampus. The adaptively timed signal is learned at a
spectrum of cells whose activities respond at different rates rj and are
gated by different adaptive weights zij. A transient Now Print learning
signalN drives learned changes in these adaptive weights. In the nSTART
model, the hippocampal feedback circuit operates in parallel to the
amygdala, rather than through it [Reprinted with permission from
Grossberg and Merrill (1992)]
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the reward happened to appear earlier than expected, the
animal could still perceive it and release consummatory
responses. Instead, the effects of these sensory mismatches
upon reinforcement, attention, and exploration are some-
how inhibited, or gated off. That is, a primary role of such
an adaptive timing mechanism seems to be to inhibit, or
gate, the mismatch-mediated arousal process whereby a
disconfirmed expectation would otherwise activate wide-
spread signals that could activate negatively reinforcing
frustrating emotional responses that drive extinction of pre-
vious consummatory behavior, reset working memory, shift
attention, and release exploratory behavior.

The START model unifies networks for spectrally timed
learning and the differential processing of expected versus un-
expected non-occurrences, or disconfirmations (Fig. 6). In
START, learning from sensory cortex to amygdala in Si → D
pathways is supplemented by a parallel Si → H hippocampal
pathway. This parallel pathway embodies a spectral timing cir-
cuit. The spectral timing circuit supports adaptively timed learn-
ing that can bridge temporal gaps between cues and reinforcers,
as occurs during trace conditioning. As shown in Fig. 6, both of
these learned pathways can generate an inhibitory output signal
to the orienting system A. As described within ART (Fig. 3c),
the orienting system is activated by novelty-sensitive mismatch
events. Such a mismatch can trigger a burst of nonspecific
arousal that is capable of resetting the currently active recogni-
tion categories that caused the mismatch, while triggering op-
ponent emotional reactions, attention shifts, and exploratory
behavioral responses. The inhibitory pathway from D to A in
Fig. 6 prevents the orienting system from causing these conse-
quences in response to expected disconfirmations, but not to
unexpected disconfirmations (Grossberg & Merrill, 1992,
1996). In particular, read-out from the hippocampal adaptive
timing circuit activates Dwhich, in turn, inhibits A. At the same
time, adaptively timed incentive motivational signals to the
prefrontal cortex (pathway D → Si

(2) in Fig. 6) are supported
by adaptively timed output signals from the hippocampus that
help to maintain motivated attention, and a cognitive-emotional
resonance for a task-appropriate duration.

Thus, in the START model, two complementary pathways
are proposed to control spectrally-timed behavior: one excites
adaptively-timed motivated attention and responding, and the
other inhibits orienting responses in response to expected
disconfirmations. Adaptively-timed motivated attention is
mediated through an inferotemporal-amygdala-orbitofrontal
positive feedback loop in which conditioned reinforcer learn-
ing and incentive motivational learning work together to rap-
idly focus attention upon the most salient cues, while blocking
recognition of other cues via lateral inhibition (see Figs. 5 and
6). The hippocampal adaptive timing circuit works in parallel
to maintain activity in this positive feedback loop and thereby
focus motivated attention on salient cues for a duration that
matches environmental contingences.

nSTART model

The nSTART model builds upon, extends, and unifies the
ART, CogEM, and START models in several ways to explain
data about normal and abnormal learning and memory. First,
nSTART incorporates a simplified model hippocampus and
adaptively timed learning within the model's thalamo-
hippocampal and cortico-hippocampal connections (Fig. 2).
Second, nSTART incorporates a simplified version of ART
category learning in its bottom-up cortico-cortical connec-
tions. Third, learning in these connections, and in the model's
hippocampo-cortical connections, is modulated by a simple
embodiment of BDNF. Fourth, the sensory cortical and
orbitofrontal cortical processing stages habituate in an
activity-dependent way, a property that has previously been
used to model other cortical development and learning pro-
cesses, such as the development of visual cortical area V1
(e.g., Grossberg & Seitz, 2003; Olson & Grossberg, 1998).

The nSTART model focuses on amygdala and hippocam-
pal interactions with the sensory cortex and orbitofrontal cor-
tex during conditioning (Figs. 2 and 6), with the hippocampus
required to support learning and memory consolidation, espe-
cially during learning experiences such as trace conditioning
wherein a temporal gap between the associated stimuli needs
to be bridged, as described above. Consolidation is enabled, in
the brain and in the model, by a self-organizing process
whereby active neurons and specific neural connections are
reinforced and strengthened through positive feedback.

BDNF-mediated hippocampal activation is proposed to
maintain and enhance cortico-cortical resonances that
strengthen and stabilize partial learning based on previously
experienced bottom-up sensory inputs. This partial learning
occurs during conditioning trials within the bottom-up adap-
tive filters that activate learned recognition categories, and
within the corresponding top-down expectations. After the
consolidation process strengthens these pathways, the hippo-
campus is no longer required for performance of CRs, but
rather the prefrontal cortex takes on a critical role in generating
successful performance of the CR in concert with the associ-
ated thalamic sensory input (Takehara et al., 2003) and
amygdala-driven motivational support. Since amygdala and
prefrontal cortex provide input to the pontine nuclei, their
collective activity there reflects the salience of the CS in gen-
erating a trace CR (Siegel et al., 2012; Siegel et al., 2015). The
prefrontal cortex interacts with the cerebellum via the pontine
nucleus to directly mediate adaptively timed conditioned re-
sponses (Weiss & Disterhoft, 2011; Woodruff-Pak &
Disterhoft, 2007). A detailed biochemical model of how the
cerebellum learns to control adaptively timed conditioned re-
sponses is developed in Fiala, Grossberg, and Bullock (1996),
with the Ca++-modulated metabotropic glutamate receptor
(mGluR) system playing a critical role in enabling temporal
gaps to be bridged via a spectral timing circuit.
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Linking consciousness, conditioning, and consolidation

The nSTART model traces the link between consciousness
and conditioning to cognitive-emotional resonances that are
sustained long enough to support consciousness. Such
cognitive-emotional resonances maintain core consciousness
(Damasio, 1999) and the ability to make responses, somato-
sensory responses in the case of eyeblink conditioning, that
depend on interactions between the sensory cortex and
orbitofrontal cortex, or thalamus and medial prefrontal cortex
(Powell & Churchwell, 2002). The nSTART model proposes
that, when the hippocampus is removed, and with it the
capacity to sustain a temporally prolonged cognitive-
emotional resonance and adaptively timed focusing of moti-
vated attention upon cognitively relevant information, then
core consciousness and performance may be impaired. The
model hereby explains how interactions among the thalamus,
hippocampus, amygdala, and cortex may support the con-
scious awareness that is needed for trace conditioning, but
not delay conditioning (Clark & Squire, 1998).

As explained by the model, memory consolidation during
trace conditioning builds upon cooperative interactions
among several different neural pathways in which learning
takes place during trace conditioning trials. Consider the case
of the circuits in Figs. 4 and 5, for example. A property of the
CogEMmodel, which is supported by neurophysiological da-
ta, as summarized below, is that the (sensory cortex)→
(orbitofrontal cortex) pathway, by itself, is not able to initiate
efficient conditioning. Motivational support is needed as well.
How this is proposed to occur is illustrated by considering
what would happen if the sensory cortex and prefrontal cortex
were lumped together, as in Fig. 4a. Then, after a reinforcing
cue activated a sensory representation S, it could activate a
motor representation M at the same time that it also sent con-
ditioned reinforcer signals to a drive representation D such as
the amygdala. As a result, a motor response could be initiated
before the sensory representation received incentive motiva-
tional feedback to determine whether the sensory cue should
generate a response at that time. For example, eating behavior
might be initiated before the network could determine if it was
hungry.

This deficiency is corrected by interactions between a sen-
sory cortex and its prefrontal, notably orbitofrontal, cortical
projection, as in Fig. 4b and its anatomical interpretation in
Fig. 5. Here, the various sensory cortices play the role of the
first cortical stage SCS

(1) of the sensory representations, the
orbitofrontal cortex plays the role of the second cortical stage
SCS
(2) of the sensory representations, and the amygdala and re-

lated structures play the role of the drive representations D.
This two-stage sensory representation overcomes the problem
just mentioned by assuming that each orbitofrontal cell obeys
a polyvalent constraint whereby it can fire vigorously only if it
receives input from its sensory cortex and from a motivational

source such as a drive representation. This polyvalent con-
straint on the model prefrontal cortex prevents this region
from triggering an action until it gets incentive feedback from
a motivationally-consistent drive representation (Grossberg,
1971, 1982). More specifically, presentation of a given cue,
or CS, activates the first stage SCS

(1) of its sensory representation
(in sensory cortex) in Fig. 4b. This activation is stored in short-
term memory using positive feedback pathways from the sen-
sory representation to itself. The stored activity generates out-
put signals to all the drive representations with which the
sensory representation is linked, as well as to the second stage
SCS
(2) of the sensory representation (in prefrontal cortex). The

second stage SCS
(2) obeys the polyvalent constraint: It cannot

fire while the CS is stored in short-term memory unless it
receives converging signals from the first sensory stage (via
the SCS

(1)→SCS
(2) pathway) and from a drive representation (via

the SCS
(1)→D→SCS

(2) pathway).
Early in conditioning, a CS can activate its representation

SCS
(1) in the sensory cortex, but cannot vigorously activate its

representation SCS
(2) in the orbitofrontal cortex, or a drive rep-

resentation D in the amygdala. A US can, however, activate D.
When the CS and US are paired appropriately through time,
the conditioned reinforcer adaptive weights in the SCS

(1)→D
pathway can be strengthened. The converging CS-activated
inputs from SCS

(1) and US-activated inputs from D at SCS
(2) also

enable the adaptive weights in the incentivemotivational path-
way D→SCS

(2) to be strengthened. After conditioning, during
retention testing when only the CS is presented, the two path-
ways SCS

(1)→SCS
(2) and SCS

(1)→D→SCS
(2) can supply enough con-

verging input to fire the orbitofrontal representation SCS
(2) with-

out the help of the US.
These properties are consistent with the following an-

atomical interpretation. The amygdala and related struc-
tures have been identified in both animals and humans to
be a brain region that is involved in learning and eliciting
memories of experiences with strong emotional signifi-
cance (Aggleton, 1993; Davis, 1994; Gloor et al., 1982;
Halgren, Walter, Cherlow, & Crandall, 1978; LeDoux,
1993). The orbitofrontal cortex is known to be a major
projection area of the ventral or object-processing cortical
visual stream (Barbas, 1995, 2007; Fulton, 1950; Fuster,
1989; Rolls, 1998; Wilson, Scalaidhem, & Goldman-
Rakic, 1993). Cells in the orbitofrontal cortex are sensi-
tive to the reward associations of sensory cues, as well as
to how satiated the corresponding drive is at any time
(e.g., Mishkin & Aggleton, 1981; Rolls, 1998, 2000).
The feedback between the prefrontal and sensory cortical
stages may be interpreted as an example of the ubiquitous
positive feedback that occurs between cortical regions in-
cluding prefrontal and sensory cortices (Felleman & Van
Essen, 1991; Höistad & Barbas, 2008; Macchi & Rinvik,
1976; Sillito, Jones, Gerstein, & West, 1994; Tsumoto,
Creutzfeldt, & Legéndy, 1978; van Essen & Maunsell,
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1983). In CogEM, it provides a top-down ART attentional
priming signal that obeys the ART Matching Rule.
Finally, the CogEM, and nSTART, models are consistent
with data suggesting that the ventral prefrontal cortex and
the amygdala are involved in the process by which re-
sponses are selected on the basis of their emotional va-
lence and success in achieving rewards (Damasio, Tranel,
& Damasio, 1991; Passingham, 1997). In particular,
Fuster (1989) has concluded from studies of monkeys that
the orbitofrontal cortex helps to suppress inappropriate
responses. These monkey data are consistent with clinical
evidence that patients with injury to orbitofrontal cortex
tend to behave in an inappropriate manner (Blumer &
Benson, 1975; Liddle, 1994).

Bridging the temporal gap: The hippocampus does this,
not the amygdala

The need to regulate orbitofrontal outputs using drive in-
formation puts into sharp relief the problem that the brain
needs to solve in order to be capable of trace condition-
ing, or indeed of any learning wherein there is a temporal
gap between the stimuli that need to be associated: If the
amygdala cannot bridge the temporal gap between CS and
US during trace conditioning, what can? If there were no
structure capable of bridging that gap, then either the mo-
tivational appropriateness of responding would be
sacrificed, or the ability to learn across temporal gaps.
As briefly noted above, the nSTART model proposes
how the brain solves this problem by using the hippocam-
pus to bridge the temporal gap, using spectrally timed
learning and BDNF processes in connections from thala-
mus and sensory cortex to the hippocampus, combined
with learned incentive motivational processes and BDNF
in connections from the hippocampus to the neocortex
(Fig. 2).

Initially, during trace conditioning, the ISI between the CS
and US is too large to be bridged by either the direct (sensory
cortex)→(orbitofrontal cortex) pathway or by the indirect
(sensory cortex)→(amygdala)→(orbitofrontal cortex) path-
way. In other words, by the time the US becomes active,
CS-activated signals from the sensory cortex to the amygdala
and the orbitofrontal cortex have significantly decayed, so that
they cannot strongly drive associative learning between simul-
taneously active CS and US representations. In contrast, in the
manner explicated by the model, the greater persistence
afforded by hippocampal adaptive timing enables CS-
activated signals via the hippocampus to bridge this ISI.
Then, when paired with the US, which can activate its own
sensory cortical and orbitofrontal cortical representations, CS-
activated associations can begin to form in the (sensory cor-
tex)→(hippocampus)→(orbitofrontal cortex) pathway, and
can support feedback from orbitofrontal cortex to the CS

representation in sensory cortex, thereby enabling a sustained
cognitive-emotional resonance that can support conscious
awareness. Model hippocampal neurotrophins extend this
temporal interval and enhance the strength of these effects.
Once both the sensory cortex and orbitofrontal cortex are si-
multaneously active, associations can also start to form direct-
ly from the CS-activated object category representation in the
sensory cortex to the orbitofrontal cortex, thereby consolidat-
ing the learned categorical memory that associates an object
category with an object-value category. As these direct con-
nections consolidate, the hippocampus becomes less impor-
tant in controlling behaviors that are read out from
orbitofrontal cortical sites.

After partial conditioning gets learning started in associated
thalamo-cortical and cortico-cortical pathways, during the
memory consolidation process, hippocampal adaptively timed
circuits, and even beyond that, BDNF activity, persist and
support resonating cortico-cortical and cortico-hippocampo-
cortical activity. The polyvalent constraint on the firing of
orbitofrontal cells is therefore achieved even after learning
trials cease. Without hippocampal support after partial condi-
tioning, this cannot occur. The model suggests that this is why
early, but not late, hippocampal lesions interfere with the for-
mation and consolidation of conditioned responses.

Model description

nSTART model overview

The nSTART model is here described in terms of the process-
ing stages that are activated during a conditioning trial, and the
functional role of each stage is explained. Fig. 2 illustrates the
model as a macrocircuit. Figure 7 shows a set of diagrams that
summarize the processing steps and relationships among the
model variables. Below they are combined to form a complete
circuit diagram (Fig. 18) for which mathematical equations
and parameters are also specified. Model parameters have
the same values for all simulations except where modifications
have been made to simulate lesions or different US levels.

For each trial, conditioning variables are simulated from 1
to 2,000 ms. Three types of trials simulate the learning of
conditioning contingencies: acquisition or training (CS-US
pairing), retention or testing (CS only), and no stimulus (nei-
ther CS nor US) in order to extend the time between the last
training trial and the testing trial. Between any two trials,
process variables are either reset to initial values, or not, de-
pending on their functional role. There are two types of pro-
cess variables: one for intra-trial process dynamics (these var-
iables are reset for each trial), and one for inter-trial cumula-
tive learning (these variables are not reset for each trial).
Cumulative learning variables are identified below in the dis-
cussion of the functional role of each process. See Table 2 for
a list of all variables.
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Sensory cortex and thalamus

Sensory cortical dynamics The dynamics of sensory cortex
were simulated (Fig. 2). Thalamic activity was set equal to the
resultant sensory cortical activity, for computational simplici-
ty. CS and US inputs are labeled I1 and I0, respectively. Input Ii
activates the ithsensory cortical cell, i = 0 or 1. The inputs are
turned on and off through time by presentation and termina-
tion of a CS input (I1) or US input (I0), and are defined by a
saturating function I = f(σ) = 16σ/(1+3σ) of an external stim-
ulus intensity σ.

Sensory cortex cell activities Si compete for a limited ca-
pacity of activation via a recurrent on-center off-surround net-
work of cells that obey membrane, or shunting equations. (see
Eqs. 1 and 2 below). These recurrent interactions use a non-
linear signal function (see Eq. 4) that contrast-enhances

network activity patterns and sustains the contrast-enhanced
activities in short-term memory after the input pattern ends. In
addition to the bottom-up input Ii and the recurrent on-center
interactions, excitatory inputs include a top-down attentional
signalOi from object-value categories in the orbitofrontal cor-
tex. This feedback pathway closes a bottom-up/top-down
feedback loop between sensory cortex and orbitofrontal cortex
and gain-amplifies cortico-cortical activity (see Eq. 7).

A habituative transmitter gate Smimultiplies the total excit-
atory input and is inactivated by it in an activity-dependent
way, thereby preventing unlimited perseverative activation of
the cortico-cortical excitatory feedback loop (see Eq. 6). This
gate can be realized in several ways, one being a presynaptic
chemical transmitter that is released by axonal signals, and the
other a postsynaptic membrane current. The orbitofrontal cor-
tical cells have an analogous habituative process (see Eq. 13).

Fig. 7 The processing steps for a conditioning trial in the nSTARTmodel
are illustrated. Conditioned variables that represent learning are not reset
to zero between trials in order to simulate inter-trial learning. These
include adaptive weights wSi, wAi, wHi, Fi, and zij; and hippocampal and
orbitofrontal brain-derived neurotrophic factor (BDNF) BH and BOi,
respectively. (a) External stimuli, Ii, activate sensory representations in
the sensory cortex Si via the thalamus Ti. Orbitofrontal cortical activityOi

generates a top-down excitatory feedback signal back to Si. The total
excitatory signal, including this positive feedback, is gated by the
habituative transmitter gate Smi. (b) Excitatory inputs to orbitofrontal
cortex from sensory cortex (Si), amygdala (A), and hippocampus (H)
are gated by learned presynaptic weights (wSi, wAi, and wHi,
respectively). An example of this processing is shown in Fig. 7c.
Orbitofrontal BDNF (BOi) extends the duration of Oi activity. The total
excitatory signal, including positive feedback, is gated by the
habituative transmitter gate Omi. (c) The learned weight wSi from
sensory cortex to orbitofrontal cortex is modulated by orbitofrontal and
BDNF signals. (d) Amygdala (A) receives inputs from sensory cortex (Si)
that are gated by conditioned reinforcer adaptive weights (Fi). The
transient Now Print signal (N) that drives the learning of adaptively
timed hippocampal responses is the difference between the excitatory

signal from amygdala (A) and an inhibitory signal from a feedforward
amygdala-activated inhibitory interneuron (E), which time-averages
amygdala activity. (e) Sensory cortical (Si) inputs to hippocampus (H)
learn to adaptively time (zij) the inter-stimulus interval (ISI) using the
Now Print signal (N) to drive learning within a spectral timing circuit.
The cells in the spectral timing circuit react to sensory cortical (Si) inputs
at 20 different rates that are subscripted with j. The resulting activations
(xij) generate sigmoidal output signals (f(xij)). These outputs are
multiplied by their habituative transmitter gates (yij) to produce an
activation spectrum (gij) which determines the rate at which the
adaptive weights (zij) learn from N. The zij multiply the gij to generate
net outputs hij that are added to generate an adaptively timed population
input (R) to hippocampus (H). R also regulates hippocampal BDNF (BH),
which further extends hippocampal activity through time.H also supports
production of orbitofronal BDNF (BOi). (f) Hippocampal BDNF (BH) is
an indirect promoter of the production of cortical BDNF (BCi) through its
excitatory effect on the activity H. (g) Pontine nuclei (P) are excited by
amygdala (A) and orbitofrontal cortex (O) and are the model’s final
common pathway for generating a CR. These processing components
are combined in Fig. 18
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When all these processes interact, a brief input can trigger
sustained cortical activity via the recurrent on-center, modu-
lated by orbitofrontal attentional feedback, until it habituates
in an activity-dependent way, or is reset by recurrent compet-
itive interactions.

Signal functions in the recurrent on-center off-surround
network In order to suppress noise in the system and contrast
enhance cell activity, the signal function fS(Si) in the recurrent
on-center off-surround network is faster-than-linear
(Grossberg, 1973, 1980), with a firing threshold that is larger
than the passive equilibrium point, and grows linearly with
cell activity above threshold (see Eq. 4).

Habituative transmitter gates The habituative transmitter
gate at each sensory cortical cell accumulates at a constant
rate up to a maximum value, and is inactivated at a rate pro-
portional to the size of the excitatory signal that it gates, mul-
tiplied by the amount of available transmitter (see Eq. 6;
Abbott et al., 1997; Grossberg, 1968b, 1972b, 1980).

Orbitofrontal cortex, category learning, and incentive
motivational learning

Orbitofrontal cortical dynamics Sensory cortical activity S1
can generate excitatory signals to cells with orbitofrontal cor-
tical activity O1. As in the sensory cortex, orbitofrontal

Fig. 8 (a) Data showing trace conditioning data at multiple inter-
stimulus intervals (ISIs) for different unconditioned stimulus (US)
levels (Smith, 1968). (b) Simulation of Smith data by nSTART model
is based on 20 acquisition trials per ISI for time = 1 to 2,000 ms, US level
=1 (solid line), 2 (thicker solid line), and 4 (thickest solid line). The
hippocampal output signal R (Eq. 17) is plotted for a retention test trial
in response to the conditioned stimulus (CS) alone. Simulating qualitative
properties of the data, peak amplitude of each curve is near its associated
ISI of 125, 250, 500, and 1,000ms, respectively. The model is sensitive to
US intensity. (c) A comparison of the normal simulation of the Smith data
in (b) using US level =1 (solid line), with simulation of two abnormal
treatments: with no hippocampal brain-derived neurotrophic factor

(BDNF) (dashed-line) and with no hippocampal BDNF and no cortical
BDNF (dotted-line). Short ISIs show an increase in amplitude, longer ISIs
show a decrease. (d) Activity in the pontine nuclei (P) for a retention test
in response to the CS only: ISI = 125 ms (dotted line), ISI = 250 ms
(dotted-dashed line), ISI = 500 ms (dashed line), ISI = 1,000 ms (solid
line). The CS input is shown as a vertical dashed bar starting at a CS onset
at 1 ms. Short ISIs (125 ms and 250 ms) do not exhibit typical pontine
profiles; in vivo, very short ISIs are likely processed directly by the pons
and its connection to the cerebellum. As the ISI becomes longer and a
conditioned response (CR) is more reliant on the timed orbitofrontal
connection to the pons, pontine activity matches the experimental data
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cortical cells compete via a recurrent on-center off-surround
network the cells of which obey the membrane, or shunting,
equations of physiology. These recurrent dynamics enable
orbitofrontal cortical activity to contrast-normalize and
contrast-enhance its inputs, and for cell activities that win
the competition to persist in short-term memory after inputs
terminate. Finally, again as in the model sensory cortex, the
total excitatory input to prefrontal cortical cells can habituate
in an activity-dependent way (see Eq. 13).

Cortical category learning and incentive motivational
learning Adaptive weights wS1 exist in the pathway from
CS-activated sensory cortex to orbitofrontal cortex, and
may be strengthened by the conditioning process. These
adaptive weight changes constitute the model's category
learning process, and are critical events that enable con-
ditioned responding to occur after sufficient memory
consolidation occurs, so that hippocampal support is
no longer required.

Before conditioning occurs, when a CS is presented it can
activate its sensory representation, and sends signals to its
orbitofrontal representation, the amygdala, and the hippocam-
pus. However, before conditioning occurs, these signals can-
not vigorously activate other regions of the model network.
When the US occurs, it can activate its own sensory and
orbitofrontal cortical representations, as well as the amygdala
and hippocampus. Incentive motivational signals from the
amygdala and hippocampus can then be broadcast nonspecif-
ically to many orbitofrontal cortical cells, including those that
receive signals from the CS. The hippocampal incentive mo-
tivational signals last longer than the amygdala signals be-
cause of their capacity for adaptively-timed responding across
long ISIs, as will be noted below. Only those orbitofrontal
cortical cells that receive a simultaneous combination of CS-
activated and US-activated signals can start to vigorously fire.

WhenO1 becomes active at the same time that signals from
S1, are active, the adaptive weight wS1 in the corresponding
category learning pathway to orbitofrontal cortex (see Eq. 9)
can grow. Category learning enables a CS to activate an
orbitofrontal representation that can release conditioned re-
sponses further downstream. As in the START model, the
sensory cortex (see Eq. 2), amygdala (Eq. 14), and hippocam-
pus (Eq. 16) all play a role in this cortico-cortical category
learning process, during which incentive motivational learn-
ing from both the amygdala and the hippocampus to the
orbitofrontal cortex also takes place, with adaptive weights
wAi and wHi in the corresponding pathways.

After being gated by its adaptive weight wS1, a sensory cor-
tical input to an orbitofrontal cell is multiplicatively modulated,
or gated, by the sum of amygdala, hippocampal, and BDNF
incentive motivational signals (A, H and BO, respectively). As
noted above, when these converging signals are sufficiently
large at the beginning of conditioning, O1 can become active,

so all three types of adaptive weights abutting the prefrontal
cortical cell, from sensory cortex, amygdala, and hippocampus
(wSi,wAi,wHi), can be conditioned if their input sources are also
active at these times (see Fig. 7b and c). In situations where the
ISI is large, as during trace conditioning, the incentive motiva-
tional signal from the hippocampus may be large, even if the
signal from the amygdala is not.

As explained below, the hippocampus can maintain its ac-
tivity for an adaptively-timed duration that can span a long
trace interval. In addition, BDNF at the hippocampus BH and
orbitofrontal cortex BOi can sustain prefrontal cortical activity
for an even longer duration. This action of BDNF captures in a
simplified way how BDNF-modulated hippocampal bursting
is maintained during memory consolidation.

These adaptive weights all obey an outstar learning law
(Grossberg, 1968a, 1969, 1980). In the incentive motivational
pathways from amygdala and hippocampus, learning is gated
on and off by a sampling signal that grows with amygdala or
hippocampal activity, plus BDNF activity (see Eqs. 10
and 11). When the sampling signal is on, it determines
the rate at which the corresponding adaptive weight time-
averages activity O1, thereby combining both Hebbian and
anti-Hebbian learning properties.

Orbitofrontal BDNF Orbitofrontal BDNF BOi (see Eq. 12)
slowly time-averages the level of hippocampal activityH, and
thereby extends its duration. Hereby this BDNF process helps
to maintain cortical activity across an extended CS-US tem-
poral gap during trace conditioning, and thus to support the
consolidation of cortico-cortical category learning.

Habituative transmitter gates As described above, the
habituative transmitter gate at each cortical cell prevents un-
limited perseverative activation of orbitofrontal cortical cells
via their positive feedback loops. As before, such a habituative
transmitter gate accumulates at a constant rate up to a maxi-
mum value, and is inactivated at a rate proportional to the size
of the excitatory signal that it gates, multiplied by the amount
of available transmitter (see Eq. 5).

Amygdala and conditioned reinforcer learning

Amygdala drive representation dynamics The amygdala
has a complex cytotonic architecture that represents emotional
states and generates incentive motivational signals (Aggleton
& Saunders, 2000). The amygdala is simplified in nSTART to
enable conditioned reinforcer learning and incentive motiva-
tion learning to occur, as in the CogEM and START models
(see Fig. 6). In the nSTART model, a single drive representa-
tion of amygdala activity A (see Eq. 14) is activated by the
sum of excitatory inputs from sensory cortex Si that are gated
by conditioned reinforcer adaptive weights.
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Conditioned reinforcer learning These adaptive weights de-
termine how well sensory cortex can activate A. Conditioned
reinforcer learning is a key step in converting a conditioned
stimulus into a conditioned reinforcer that can activate the
amygdala. Together with incentive motivational learning in
the pathway from the amygdala to the orbitofrontal cortex, a
sensory cortical input can stimulate the amygdala which, in
turn, can provide motivational support to fire orbitofrontal
cortical cells (Fig. 2).

The CS cannot strongly excite the drive representation ac-
tivity A before conditioning takes place. During conditioning,
the US can directly activate A via its sensory representation.
Pairing of CS-activated signals from the sensory cortex to the
amgydala with those of the US to the amygdala causes condi-
tioned reinforcer learning in the adaptive weights within the
sensory cortex-to-amygdala pathways.

As in the case of incentive motivational learning, the learn-
ing law that is used for conditioned reinforcer learning is an
outstar learning law (see Eq. 15) whereby a sensory cortical
representation can sample and learn a spatial pattern of con-
ditioned reinforcer adaptive weights across multiple drive rep-
resentations. The current model simulations only consider
such learning at a single drive representation.

Hippocampus and adaptive timing

Adaptively-timed hippocampal learning As noted above,
the hippocampus receives adaptively timed inputs that can
maintain its activity for a duration that can span the trace in-
terval. The hippocampus can hereby provide its own incentive
motivational pathway to orbitofrontal cortical cells in cases
when the amygdala cannot. In addition, BDNF at the model
hippocampus and prefrontal cortex can sustain prefrontal cor-
tical activity for an even longer duration. The adaptively timed
“spectral timing” process spans several processing steps.

Adaptively-timed hippocampal activity The adaptively
timed signal R and the hippocampal BDNF signal BH together
maintain activity of the model hippocampus (see Eq. 16)
across trace conditioning intervals, and also during periods
after partial conditioning when no further external inputs are
presented. In these latter periods, sustained hippocampal ac-
tivity provides the incentive motivational signals that support
memory consolidation of cortico-cortical category learning.

Figure 7f shows the functional relationships between hip-
pocampal BDNF (BH), hippocampal activity (H), the
hippocampal-to-orbitofrontal learned weight (wHi), and the
hippocampal-to-orbitofrontal stimulation of cortical BDNF
(BOi) production.

Adaptively-timed population output signal The adaptively
timed input from the sensory cortex to the hippocampus is the
population output R ¼ ∑

i; j
hi j of spectrally-timed and learning-

gated signals hij=8f(xij)yijzij (see Eq. 17). The individual sig-
nals hij are not well timed, but the population response R is, and
its activity peaks around the ISI. Adaptively timed learning is
thus an emergent property of this entire population of cell sites.

Activation spectrum The components of the adaptively
timed signal R are defined as follows: First, a population of
hippocampal cell sites with activities xij (see Eq. 20) reacts to
the excitatory input signal from sensory cortex at a spectrum
of rates, ranging from fast to slow, that span the different ISIs
to be learned. Activity xij generates a sigmoidal output signal
f(xij) to the next processing stage.

Habituative transmitter spectrum Each signal f(xij) is gated
by with a habituative transmitter gate yij (see Eq. 22) that is
similar in structure and function to the habituative transmitter
gates described above. The different rates at which each spec-
tral activity f(xij) responds causes the corresponding
habituative transmitter yij to habituate at a different rate.
Habituative transmitter yijmultiplies, or gates, the correspond-
ing signal f(xij) to generate a net output signal gij (see Eq. 23).

Gated signal spectrum and time cells Multiplication of the
increasing f(xij) with the decreasing yij generates a unimodal
curve gij= f(xij)zij through time. Each gij peaks at a different
time, and curves that peak at later times have broader activa-
tion profiles through time (see Fig. 11c), thereby realizing a
Weber law property. Predicted properties of these cell re-
sponses were reported in neurophysiological data about hip-
pocampal time cells (MacDonald et al., 2011). The Spectral
Timing model predicts how such time cells may be used both
to bridge the long ISIs that occur during trace conditioning,
and to learn adaptively timed output signals that match the
timing of experienced ISIs during delay or trace conditioning.
This learning is proposed to occur in the following way.

Spectral learning law To generate the adaptively-timed re-
sponse R, each signal gij is multiplied, or gated, by a long-
termmemory (LTM) trace zij (see Eq. 24). In addition, gij helps
to control learning by zij: When gij is positive, zij can approach
the value of a Now Print learning signal N at a rate propor-
tional to gij. Each zij thus changes by an amount that reflects
the degree to which the curves gij and N, which represent
sensory and reinforcement values, respectively, are simulta-
neously large. If gij is large while N is large, then zij will
increase. If gij is large while N is small, then zij will decrease.
Thus, adaptively timed learning selectively amplifies those zij
whose sampling signals gij are on when N is on. Since the zij
represent adaptively timed learned traces that persist across
trials, they are not reset to initial values between trials but
rather are cumulative across trials.

Signal N is activated transiently by increments in amygdala
activity, and is thus active at times when the amygdala receives

Cogn Affect Behav Neurosci (2017) 17:24–76 45



either US or conditioned CS inputs. A direct excitatory output
signal from amygdala (see Eq. 14) and an inhibitory signal from
an amygdala-activated inhibitory interneuron E (Eq. 26) com-
bine to compute N (Eq. 25); see also Fig. 7d. In response to
larger inputsA,N increases in amplitude, but not significantly in
duration. Thus, learning rate can change without undermining
learned timing.

Doubly-gated signal spectrum The adaptive weight zij gates
the sampling signal gij to generate a twice-gated output signal
hij=8f(xij)yijzij from each of the differently timed cell sites
(Eq. 18); see also Fig. 11d. Comparison of hij with gij in
Fig. 11d shows how the population response R ¼ ∑

i; j
hi j learns

to match the ISI.

Hippocampal BDNF R causes production and release of hip-
pocampal BDNF BH (see Eq. 27). Sustained BDNF activity
helps to maintain hippocampal activity even longer than R
can, and thus its incentive motivational support to
orbitofrontal cortex across the CS-US ISI intervals during
trace conditioning and memory consolidation (Fig. 7e).

The pontine nuclei

Final common path for conditioned output Projections
from the amygdala and orbitofrontal cortex input to the pon-
tine nuclei (Fig. 7g). Pontine activity P controls output signals
that generate a CR (Kalmbach et. al., 2009; Siegel et al., 2012;
Woodruff-Pak & Disterhoft, 2007; see Eq. 28).

Results

Summary of six key simulation measures

Using a single set of model parameters, except for a variable US
intensity, the following measurements are used to simulate the
experimental data. Where there is an intact or partial hippocam-
pus in the simulation, the adaptively timed signal within the
hippocampus, R, is used to illustrate how the hippocampus
reflects CR-timed performance, as seen in many experimental
data (Berger, 1984; Schmaltz & Theios, 1972; Smith, 1968;
Thompson, 1988). Orbitofrontal cortical activity, O, is reported
since it is involved in activating downstream conditioned motor
outputs (Kalmbach et al. 2009a, 2009b; Siegel et al., 2012;
Woodruff-Pak & Disterhoft, 2007); and is a critical site of
long-term memory consolidation in the model (see Eq. 7). In
addition, the activity of the pontine nuclei P (see Eq. 28) is
reported in all cases because it serves as a common output path
for CR (Kalmbach et al. 2009a, 2009b; Siegel, et al., 2012;
Woodruff-Pak & Disterhoft, 2007). To understand how CR
activity is generated in the pons, the activity profiles of the
sensory cortex (S), amygdala (A), and hippocampus (H) are also
reported.

Simulation of normal trace conditioning

Figure 8a shows behavioral data for normal trace conditioning
during rabbit nictitating membrane conditioning for multiple
ISIs in response to different US levels (Smith, 1968). These
data exhibit the Weber law property whereby smaller ISIs
generate earlier response peaks with narrower variances. The

Fig. 9 The hippocampus is not required for delay conditioning. (a) To
simulate hippocampal lesions before any delay conditioning trials, the
scalar βH in the hippocampus excitation term in Eq. 16 was
progressively decreased. There were five training trials with US onset at
550 ms, US duration = 50 ms, US offset at 600 ms, and US level = 1. The
results show network activations in response to a CS after training:
sensory cortex (S), orbitofrontal cortex (O), hippocampus (H),

amygdala (A), hippocampal adaptive timing (R), and the pontine nuclei
(P). The CS is represented by vertical solid lines, the US onset during
training by a vertical dashed line (in delay conditioning, the CS offset and
the US offset coincide). Delay conditioning shows little change in pontine
activity in the normal (solid line) versus 50 % (dashed line) and 80 %
(dotted line) lesions. (b) Ten learning trials, instead of the five trials in (a),
yield better learning, including at the orbitofrontal cortex
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data also generally show the typical inverted-U envelope
through time at each US intensity level for each ISI curve, as
well as collectively for different ISI values. Finally, the data
show that, whereas conditioned response timing is only sen-
sitive to the ISI, response amplitude is also sensitive to US
intensity (1, 2, and 4 MA).

Under the learning conditions in the Smith (1968) experi-
ments, where a living animal has much more complex knowl-
edge, motivation, and attentional distractions than in a com-
putational model like nSTART, 110 trials, on each of 10 con-
secutive days, were completed to obtain the given CR data,
which are smoothed averages of the individual trials. Smith
noted that his data of “average topographies present a some-
what distorted picture of individual CRs…the later peak of the
averaged response appeared to be later than the mean of the
individual responses” (Smith, 1968, p.683; see Fig. 8a).

Figure 8b shows how hippocampal adaptive timing R in
nSTARTsimulates these properties of normal conditioning on
a recall trial, in response to the CS alone, after 20 prior learn-
ing trials for each ISI in response to three different US ampli-
tudes. The peak activities and timing of both the cortex and the
pontine nuclei (Fig. 8d) reflect the properties of the adaptively
timed hippocampal output to them.

When orbitofrontal BDNF BO1 is eliminated after acquisi-
tion trials in model simulations, adaptive timing is impacted
more negatively for longer ISIs (Fig. 8c). This learning im-
pairment is due to a weakened cortico-cortico-hippocampal
feedback loop, which is critical in trace conditioning.

nSTART is robust in that, with a single set of parameters, it
can learn long ISIs better under normal conditions with addi-
tional learning trials; for example, the retention test output for
ISI = 1,000 after 20 and 40 acquisition trials shows that peak R
amplitude and timing changed from 0.5616 at 911 ms to
0.5393 at 949 ms, respectively. The activity profiles of the
pontine nuclei are consistent with these results: P peak ampli-
tude and timing changed from 1.311 at 639 ms, at 20 trials, to
1.689 at 601 ms, at 40 trials. These peak timings are within the
effective 400-ms signaling window that has been found ex-
perimentally (Kalmbach et al. 2009a, 2009b; Siegel, et al.,
2012; Woodruff-Pak & Disterhoft, 2007).

Delay conditioning with and without hippocampus

A comparison of simulations of delay conditioning after five
training trials with and without hippocampal lesions (see H in
Fig. 9) and indicates that an intact model hippocampus is not
required for delay conditioning (see P in Fig. 9a), as also
occurs typically in the data (see Table 1). The involvement
of the amygdala in each case (normal, 50 % partial ablation,
and 80 % partial ablation) is apparent when their peak activ-
ities are compared. While in vivo the cerebellum typically is
able to learn delay conditioning without forebrain processing,
the model illustrates how the amygdala may motivationally

support a parallel input channel to the pontine activity found
in normal delay conditioning.

This effect is enhanced after ten training trials (Fig. 9b).
In vivo, output pathways like the pontine pathway are supple-
mented by adaptively timed cerebellar response learning,
which would strengthen these tendencies.

Experimental data when the ISI is relatively long, for exam-
ple 1,500 ms in rats, do show deficits in the initial timing and
amplitude of the CR, and in the time to acquire the CR, when
the hippocampus is damaged. These experimenters (Beylin
et al., 2001) counted any response within 500 ms of US onset
as a CR. We do not simulate this finding due to the variability
of these results. They can, however, be qualitatively explained
if the sensory cortical responses habituate at later times when
the CS is sustained for such long durations. Then an at least
partial temporal gap would be created between internal CS
activations and US onset. This kind of result could then be
explained using the same mechanisms that are used to explain
deficits during trace conditioning after hippocampal damage.

Delay and trace conditioning with and without amygdala

Simulations of amygdala lesions are also consistent with exper-
imental data (graphs labeled A in Fig. 10). Delay conditioning
with partial and complete amygdala lesions demonstrate the
experimental finding (Lee & Kim, 2004) that the amygdala is
required for optimal acquisition and retention of the CR, as
reflected in the simulated hippocampal response amplitude for
adaptive timing (R), the orbitofrontal cortical response ampli-
tude (O), and especially the pontine response amplitude (P). To
simulate partial lesions of the amygdala in delay conditioning,
the gain of the excitatory inputs from the sensory cortex to the
amygdala (Eq. 14, parameter βA) is lowered from the baseline
value of 40 to 30, and then to 20. When the growth rate is thus
attenuated, there is normal timing in delay conditioning but
with a smaller peak amplitude in the amygdala, and also in
the hippocampus, which depends upon amygdala-triggered
Now Print signals to train the temporal distribution of spectrally
timed hippocampal learning (Fig. 10a). The lower peak ampli-
tude reflects the fact that in vivo there is slower and weaker
learning of the adaptively timed response. The experimental
finding that 4–5 more days of training rats with amygdala le-
sions can support learning of the CR (Lee & Kim, 2004) may
also include support from extra-amygdala circuits. Additional
training also improves learning in the model (Fig. 10b).
However, when the amygdala is completely ablated before
training, there is no hippocampal response. The cortical and
pontine peak amplitudes show similar results.

The dynamics of the nSTART cortico-cortico-hippocampal
loop explains how aversive conditioning can occur with partial
amygdala lesions. Activity in the model orbitofrontal cortex,
based in part on hippocampal and amygdala inputs (Eq. 7),
continues to support adaptively timed learning via its input to
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sensory cortex (Eq. 2), and sensory cortical input to the hippo-
campal activation spectrum (Eq. 19) supports adaptively timed
learning (Eq. 17). For this to occur, there has to be enough
amygdala input to generate a Now Print signal that shapes the
adaptively timed response through learning. In vivo, other cir-
cuits are also involved that are outside the scope of the nSTART

model (see Fig. 2), such as cerebellum, hypothalamus, and
basal ganglia, but their responses are not rate-limiting in simu-
lating the main effects above.

The amygdala is required for delay conditioning acquisition,
but not for its expression. The cortico-cortico-cerebellar circuit
can execute the timed response after learning. Simulations of

Fig. 10 Simulations of amygdala lesions demonstrate that the amygdala
is required for optimal acquisition but not for successful retention. (a) To
simulate partial lesions of the amygdala before any training trials occur in
delay conditioning (five training trials; unconditioned stimulus (US)
onset at 550 ms, US duration = 50 ms, US offset at 600 ms, US level =
1), scalar βA in the amygdala excitation term in Eq. 14 was progressively
decreased. The results based on the conditioned stimulus (CS)-only
presentation during retention testing are presented on a single graph of
the variables for sensory cortex (S), orbitofrontal cortex (O),
hippocampus (H), amygdala (A), hippocampal adaptive timing (R), and
pontine nuclei (P): normal (solid line), 25 % decrease (dashed line), and
50 % decrease (dotted line). These graphs show a marker for the US
presented in training for reference only (vertical dashed lines). The CS
is also represented (vertical solid lines). Accurate conditioned response
(CR) peak amplitude timing as measured by R remained consistent in all
cases as in vivo but require additional training for improved responses
(see Fig. 10b). The activity profiles of the pontine nuclei vary with the
strength and timing of cortical activity to effect a CR. In vivo they are
supplemented by learning in the cerebellum, where an adaptively-timed
association is made between signals from the tone CS pathway from
auditory nuclei to the pons, and from the pons via mossy fiber
projections to the cerebellum, where they are trained by signals from

the reflex US pathway from the trigeminal to inferior olive nuclei and
then via climbing fibers to the cerebellum (Christian & Thompson, 2003;
Fiala, Grossberg, & Bullock, 1996). (b) Simulation after ten delay
conditioning training trials after partial lesions of the amygdala. All
other input parameters and output variables are the same as in Fig. 10a.
The CR peak amplitude improved as measured by R. Again, the activity
profiles of the pontine nuclei vary with the strength and timing of cortical
activity. (c) Simulation of partial lesions of the amygdala before any
training trials occur in trace conditioning (20 training trials, US onset at
750 ms, US duration = 50 ms, US level = 1) show that both the CR
amplitude and timing as measured by R and P are negatively impacted:
normal (solid line), 25 % decrease (dashed line), and 50 % decrease
(dotted line). The activity profiles of the pontine nuclei (P) reflect the
experimental data that amygdala is important in trace conditioning. (d)
Trace conditioning with amygdala (A) ablated 100 % after 20 acquisition
trials but just before the retention test. On retention test with CS only,
normal activity profiles for CS and US in sensory cortex (S) and
orbitofrontal cortex (O) support normal adaptively-timed response in
hippocampus (R), indicating a time-limited involvement of the
amygdala during acquisition. The activity profile of the pontine nuclei
(P) also supports the simulation of the data that amygdala involvement is
time-limited
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Table 1 The specific impact to learning andmemory of the conditioned
response by lesions of the hippocampus, cortex, amygdala, and thalamus
is related to the phase of conditioning in which the lesions occur.
Representative studies on rats, rabbits, and humans used various

experimental preparations and performance criteria yet show patterns of
effects on the acquisition and retention of a conditioned response (CR) for
delay and trace paradigms based on the age of the memory (degree of
consolidation)

Lesions of the hippocampus Before conditioning Early after conditioning Late after conditioning

Delay paradigm CR acquisition: YES
Berger 1984
Chen et al. 1995
Daum et al. 1996
Ivkovich & Thompson 1997
Lee & Kim 2004
Port et al. 1986
Schmaltz & Theios 1972
Shors et al. 1992
Solomon & Moore 1975
Weizenkratz & Warrington 1979

CR retention: YES
Akase et al. 1989
Orr & Berger 1985
Port et al. 1986
CR retention: NO
(long ISI)
Beylin et al. 2001

CR retention: YES
Akase et al. 1989

Trace paradigm CR acquisition: NO
Anagnostaras et al. 1999
Berry & Thompson 1979
Clark & Squire 1998
Garrud et al. 1984
Gabrieli et al. 1995
Ivkovich & Thompson 1997
James et al. 1987
Kaneko & Thompson 1997
Kim et al. 1995
Little et al. 1984
McGlinchey-Berroth et al. 1997
Orr & Berger 1985
Flores & Disterhoft 2009
Schmajuk et al. 1994
Schmaltz & Theios 1972
Solomon & Moore 1975
Solomon et al. 1990
Weiss & Thompson 1991a&b
Woodruff-Pak 2001

CR retention: NO
Kim et al. 1995
Moyer et al. 1990
Takehara et al. 2003
CR retention: YES
(short ISI)
Walker & Steinmetz 2008

CR retention: YES
Kim et al. 1995
Takehara et al. 2003

Lesions of the cortex Before conditioning Early after conditioning Late after conditioning

Delay paradigm CR acquisition: YES
Mauk & Thompson 1987
McLaughlin et al. 2002
Oakley & Russell 1972
Takehara et al. 2003
Yeo et al. 1984

CR retention: YES
Oakley & Steele Russell 1972
Takehara et al. 2003
Yeo et al. 1984

CR retention: YES
Oakley & Steele Russell 1972
Takehara et al. 2003
Yeo et al. 1984

Trace paradigm CR acquisition: YES
Frankland & Bobtempi 2005
McLaughlin et al. 2002
(short ISI)
Oakley & Steele Russell 1972
Simon et al. 2005
Takehara et al. 2003
Yeo et al. 1984
CR acquisition: impaired
Kronforst & Disterhoft 1998
McLaughlin et al. 2002
(long ISI)
Weible et al. 2000

CR retention: YES
Frankland & Bobtempi 2005
Oakley & Steele Russell 1972
Simon et al. 2005
Takehara et al. 2003
Yeo et al. 1984

CR retention: NO
Frankland & Bobtempi 2005
Oakley & Steele Russell 1972
Powell et al. 2001
Simon et al. 2005
Takehara et al. 2003
Yeo et al. 1984

Lesions of the amygdala Before conditioning Early after conditioning Late after conditioning

Delay paradigm CR acquisition: YES but decelerated
Bechara et al. 1995
Blankenship et al 2005

CR retention: YES but impaired
Lee & Kim 2004
McGaugh 2002

CR retention: YES
Lee & Kim 2004
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complete amygdala lesions (outputs of Eq. 14 for amygdala
and Eq. 15 for conditioned reinforcement are both zero) show
that there is no CR learned if the lesion is made pre-training, but
an acquired CR is retained if the lesion is made post-training
(Fig. 10d), in agreement with some experimental data (Lee &
Kim, 2004; Sosina, 1992) but not all (McGaugh, 2002; Siegel,
et al., 2015). Furthermore, while Büchel et al. (1999) had re-
ported decelerated trace conditioning when amygdala lesions
were made before training, simulation of a 50 % partial lesion
of the amygdala before trace conditioning followed by a reten-
tion test after 60 training trials (US onset at 750 ms, US level =
1) still shows severe impairments compared with 20 training
trials. Perhaps the lesion is so large that recovery may not be
possible at all (Siegel, et al., 2015).

In particular, the amygdala has been found to be unneces-
sary for fear conditioning acquisition in Pavlovian experimen-
tal paradigms in which the aversive US is so negative that
autonomic reflex pathways may control the learning (Lehman
et al., 2000; Vazdarjanova & McGaugh, 1998). However, in
appetitive learning and instrumental conditioning, the amygda-
la is always required for acquisition (Cahill &McGaugh, 1990;
McGaugh, 2002). This latter property is explained by the mod-
el hypothesis that conditioned reinforcer learning and incentive
motivational learning both involve the amygdala, and provide
positive attentional feedback that supports the rapid category
learning required to enable the CS to elicit a CR via the
orbitofrontal cortex (Fig. 2). Within the dynamics of the
nSTART model, this kind of amygdala-mediated motivated
attention supports the acquisition of delay and trace condition-
ing by strengthening adaptively timed attentional shifts based
on learned cues. After conditioning, both delay and trace CRs
may be mediated more completely by fast cortico-cortical ac-
tivation of recognition categories via learned cortical weights
that serve to activate the adaptively-timed cerebellar motor

response without continued need for involvement of the amyg-
dala or the hippocampus.

The nSTART model predicts that, if both amygdala and
hippocampus are ablated before or after delay conditioning,
then the amygdala lesion most influences delay conditioning,
as above. If both amygdala and hippocampus are ablated be-
fore trace conditioning, then the model proposes how the hip-
pocampal damage prevents the CR from being learned, be-
cause the required cortico-cortical connections that establish
long-term memory trace could not be formed using spectral
timing as a temporal bridge. Finally, if both amygdala and
hippocampus are ablated long enough after trace conditioning
ends, then the model predicts that strong learned cortico-
cortical associations will already have formed.

Such cortico-cortical learning, supported by amygdala and
hippocampus, is a primary form of memory consolidation in
the model, but this form of consolidation does not imply that
the “same information” is transferred from associative links
that involve amygdala and hippocampus to cortico-cortical
associations. In addition, the mechanism for memory consol-
idation that is simulated by nSTART does not propose that
memory engrams are quickly learned by the hippocampus
and then slowly transferred to the neocortex, as some have
proposed, a proposal that seems beset with fundamental diffi-
culties. Rather, nSTART demonstrates how hippocampal en-
dogenous activation capable of bridging the temporal gap can
energize the strengthening and consolidation of cortico-
cortical pathways that are the same pathways that were par-
tially learned before consolidation begins.

For simplicity, the nSTART model lumps amygdala and
hypothalamus together, and thus does not simulate how spared
hypothalamic connections might enable responding after an
amygdala lesion. The MOTIVATOR model (Fig. 4c; Dranias,
Grossberg, & Bullock, 2008; Grossberg, Bullock, & Dranias,

Table 1 (continued)

Lee & Kim 2004
Trace
paradigm

–Data not found
Predict CR acquisition: YES but

decelerated

–Data not found
Predict CR retention: YES
Büchel et al. 1999
Chau & Galvez 2012

–Data not found
Predict CR retention: YES
Büchel et al. 1999
Chau & Galvez 2012

Lesions of the thalamus Before conditioning Early after conditioning Late after conditioning

Delay paradigm CR acquisition: YES but decelerated
Buchanan & Thompson 1990
Halverson & Freeman 2006

–Data not found
Predict CR retention- Yes, but

impaired

–Data not found
Predict CR retention- Yes, but

impaired

Trace paradigm CR acquisition: YES but decelerated
Halverson, Poremba, & Freeman

2008
Powell & Churchwell 2002

–Data not found
Predict CR retention- Yes, but

impaired

–Data not found
Predict CR retention- Yes, but

impaired
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2008) explicitly simulates hypothalamic, amygdala, and basal
ganglia contributions to conditioning and motivated perfor-
mance that are consistent with the current results, and that can
be incorporated without undermining the current results in a
future extended model.

Trace conditioning with and without hippocampus

Data from early, intermediate, and late stages of normal trace
conditioning trace acquisition trials (McEchron & Disterhoft,
1997; Kim et al., 1995; Takehara et al., 2003) were simulated.

In the nSTARTmodel, learning to adaptively time a response to
a stimulus is the result of an adaptively timed spectrum of cells.
Figure 11a–e show the spectral activity and output during the
simulation after the initial acquisition trial. This process unfolds
as follows (see Fig. 7 for diagrams of network processing steps
and Fig. 18 below for a complete circuit diagram).

As described in above, the signals f(xij) are generated by the
activities xij(t) of the j

th spectral cell (or cell population) (i,j) in
response to the ith input Ii (Eqs. 19–21, and Fig. 11a). Each xij
responds at a different rate rj to Ii. In particular, we use i = 1 to
represent the CS and i = 0 to represent the US. Thus, f(x1j)
signals are generated by the CS. They cause the release of
chemical transmitters y1j(t) that habituate, or are inactivated, at
a rate proportional to their driving signals f(x1j) (Eq. 19, and
Fig. 11b). The transmitters interact with, or gate, their respective
signals to generate gated sampling signals g1j that are products
of f(x1j) and y1j (Fig. 11c). These sampling signals g1j are the
differently timed responses of cell sites that together form the
basis for spectrally timed learning.

Learning of the association between CS and US occurs at
each spectral cell site only when its g1j is positive. Thus, each
g1j samples learning of US activity that is correlated with it.
Both the timing and rate of learning by the adaptive timing
weights z1j (Eq. 24) covary with the size of the corresponding
g1j. Due to the fact that the various g1j have their peak activities
at different times, each site is maximally sensitive to learning
correlations with different delays between CS and US.

The signals g1j give rise to adaptively timed outputs hij=8-
g
ij
zij wherein the signals g1j are multiplied, or gated, by their

adaptive weights z1j (Fig. 11d). When the adaptively weighted
signals for all spectral components are added together, they
form a total population output R that is adaptively timed to
peak at, or near, the expected time of US onset. Thus, spectral
timing is a property of an entire population of pathways that
respond at different rates, not one of which, by itself, ade-
quately represents accurate ISI timing. The hippocampal re-
sponse after the initial acquisition trial is shown in Fig. 11e.
Figure 11f shows data ofMcEchron and Disterhoft (1997) that

�Fig. 11 Trace conditioning simulation data from the initial acquisition
trial (a–e) compare well with experimental data in (f) that show average
voltage measure for eyeblink response (closure upward) of excitatory
hippocampal pyramidal cells during trace conditioning (f). (a)
Hippocampal activation spectrum (f(x1j), see Eqs. 19–21). (b)
Habituative transmitter gates (y1j, Eq. 22). (c) Transmitter-Gated
signals. (g1j = f(x1j)y1j, Eq. 23). (d) Adaptively timed gated signals (h1j
= 8g1jz1j, Eq. 18). (e) Population response (R ¼ ∑jh1j; Eq. 17) after one
training trial. This curve compares well with: (f) Experimental data
showing voltage measures for eyeblink responses averaged across
animals for a single day of training, from a study of hippocampal CA1
pyramidal cell activity during trace conditioning. The conditioned
stimulus (CS) duration is marked by the leftmost vertical dashed lines;
the unconditioned stimulus (US) by the rightmost vertical dashed lines.
(g) The hippocampal activation spectrum at retention after 20
conditioning trials [Data in (f) reprinted with permission from
McEchron and Disterhoft (1997)]
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exhibits similar timing from early acquisition trials.
Figure 11g shows simulation output from the retention test
after 20 acquisition trials; cf., Fig. 8.

The simulation of the property that trace conditioning de-
pends on an intact hippocampus is shown in Fig. 12. Themodel

proposes how a neurotrophic cascade from hippocampus to
cortex supports learning of an associative connection between
sensory cortex and orbitofrontal cortex in response to CS and
US pairing during trace conditioning (Eq. 9). Unless there is
enough time to build the cortico-cortical synaptic connections
required to consolidate memory, both the timing and amplitude
of learning rapidly degrade, as in anterograde amnesia.

Figure 12a summarizes simulations of how various levels
of hippocampal ablation (normal: solid line; 50 % ablation:
dashed line; 80 % ablation: dotted line) cause progressively
weaker responses that also become premature after sufficient
ablation. These effects are due to the elimination of many, but
not all, of the adaptively timed hippocampal cell responses
that, taken together, span the ISI, as shown in Figs. 11a–e.
The duration of this spectral activity is also a key to under-
standing the role of the hippocampus in trace conditioning and
consciousness. Even in the case of an 80 % lesion, Fig. 12b
shows that extended training yields some improvement in the
timing and amplitude of response indicators for adaptive
timing within the hippocampus (R) and the pontine nuclei (P).

The nSTART prediction of when and how the hippocam-
pus is involved in cortical learning was described above and is
illustrated by the simulation results in Fig. 13. Figure 13a
simulates the property that the establishment of a long-term
memory as a result of trace conditioning requires a critical
consolidation period with a normally functioning hippocam-
pus. Figure 13a (first row) compares effects of early hippo-
campal ablation with delayed hippocampal ablation on
orbitofrontal peak amplitude, which provides one measure of
the strength of the CR. In the partially trained case with five
acquisition trials (first row, left column), a reduction in cortical
activity results if the hippocampal ablation is made early (dot-
ted line), immediately after acquisition and before the consol-
idation period, during which there are no stimulus (NS) trials
before the CS, as compared with the activity that is attained
after a late ablation (solid line), which is made after the NS
trials and just before CS. In contrast, in the fully trained case
after 20 acquisition trials (first row, right column), no impair-
ment ensues. There is no difference in orbitofrontal activity
between early hippocampal ablation (dotted line) and late hip-
pocampal ablation (solid line) because cortico-cortical con-
nections have already become sufficiently large before the
ablation occurs. These simulations are in agreement with ex-
perimental data (Kim et al., 1995; McEchron & Disterhoft,
1997; Moyer et al., 1990; Takehara et al., 2003).

The adaptive weights from sensory cortex to orbitofrontal
cortex for each of the cases in Fig. 13a (first row) are shown in
Fig. 13a (second row). In particular, the lower two graphs
show cortico-cortical adaptive weights that covary with the
orbitofrontal cortical activity for each scenario. After partial
trainingwith five acquisition trials, early hippocampal ablation
prevents an increase in adaptive weight because a critical
source of incentive motivational support from the

Fig. 12 Optimal trace conditioning depends on adequate hippocampus
function. (a) To simulate partial lesions of the hippocampus before any
training trials occur in trace conditioning, scalar βH in the hippocampal
excitation term in Eq. 16 was progressively decreased. This was followed
by 20 training trials, with unconditioned stimulus (US) onset at 750 ms,
US duration = 50 ms, and US amplitude = 1. The results of retention
testing are shown for the activities of sensory cortex (S), orbitofrontal
cortex (O), hippocampus (H), amygdala (A), hippocampal adaptive
timing (R), and the pontine nuclei (P). These graphs show a marker for
the US presented in training for reference only (vertical dashed lines). The
conditioned stimulus (CS) is also represented (vertical solid lines).
Compared with normal retention testing results after 20 acquisition
trials results (solid line), a 50 % decrease (dashed line) gave a small
reduction in conditioned response (CR) peak amplitude and retained
good timing while an 80 % decrease (dotted line) caused deficits in
both amplitude and timing. (b) While extended training (60 trials rather
than 20) with 80 % ablation shows minor improvement in the amplitude
and timing of R, the amplitude and timing of P remain too small to
support a normal CR. An intact hippocampus is thus required for
efficient trace conditioning
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hippocampus is removed before the weight can reach an as-
ymptote (Fig. 13a, second row, left column, dotted line). Late
hippocampal ablation (Fig. 13a, left column, solid line) en-
ables weight learning to benefit from this support. After 20
trials of training to asymptote, hippocampal support is no lon-
ger needed (Fig. 13a, second row, right column).

It should, however, be emphasized that activation of sen-
sory cortex will continue to activate both the orbitofrontal
cortex and hippocampus after learning is complete. This kind

of memory consolidation does not imply that the “memory
trace” moves from hippocampus to orbitofrontal cortex (cf.,
Nadel & Moscovitch, 1997).

When hippocampal BDNF is eliminated after acquisi-
tion trials (Fig. 13b), the simulation results are largely
unchanged. However, when both hippocampal and
orbitofrontal BDNF are removed after acquisition trials
in the partially trained case (Fig. 13c, left column), there
are the same deleterious effects on orbitofrontal activity
(Fig. 13c, left column, first row) and on cortico-cortical
weights (Fig. 13c, left column, second row) for both the
early and late ablation treatments, due to the lack of
orbitofrontal BDNF support for consolidation. In the fully
trained case (Fig. 13c, right column), removal of hippo-
campal and orbitofrontal BDNF during early and late ab-
lation treatments yield similar orbitofrontal activities
(Fig. 13c, right column, first row) and cortico-cortical
weights (Fig. 13c, right column, second row) because
consolidation has already occurred. Measures of pontine
activity in the model also support this analysis since they
are driven by cortical input.

Delay and trace conditioning with and without thalamus
or sensory cortex

Thalamic lesions negatively affect many types of learning
since the thalamus is the gateway to perception and higher-
levels of emotional and cognitive processing. Experimental
data on thalamic lesions before delay or trace conditioning
slow acquisition to some degree (Buchman & Thompson,
1990; Powell & Churchwell, 2002). However, the deficit is
greater in trace conditioning than in delay conditioning, since
there are then alternate paths available for auditory CS repre-
sentations to the cerebellum.

The model predicts that lesions to the thalamus, with an
equivalent effect on sensory cortex, that are made after delay
or trace conditioning would also impair retention for two

�Fig. 13 Simulations of early versus late hippocampal ablation after trace
conditioning trials with unconditioned stimulus (US) onset at 750 ms, US
duration = 50 ms, and US amplitude = 1. There is a critical period after
learning trials end that is sensitive to hippocampal ablation, as shown in
changes in the peak amplitude of the cortical conditioned response (CR)
when post-acquisition hippocampal ablation follows learning with five
acquisition trials (left column; partially trained) and 20 acquisition trials
(right column; fully trained). Three cases are simulated: (a) the normal
baseline system, (b) with no post-acquisition hippocampal brain-derived
neurotrophic factor (BDNF), and (c) with no post-acquisition
hippocampal BDNF and no post-acquisition cortical BDNF. In each
treatment, training trials are followed by various periods of no stimulus
(NS) trials (durations of inter-trial intervals) with hippocampal ablation
either relatively early or late. A retention test with conditioned stimulus
(CS) presentation follows the NS period. Cortical peak amplitude (first
rows) and CS-activated cortico-cortical adaptiveweights (second rows) in
each simulation are shown for late hippocampal ablation (solid lines) and
early hippocampal ablation (dotted lines) for each treatment
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reasons: (1) disruption of stimulus input processing, and (2)
damage to the pathways that support cortico-cortical learning
of the association between CS and US, which also serve to
control CR performance in the post-consolidation stage of
learning. Figure 14 shows that general CR acquisition is im-
paired in proportion to the extent of the lesion, as reflected in
the simulated hippocampal response amplitude (R),
orbitofrontal cortex (O), and pontine nuclei (P). The simula-
tions show that, as in vivo for thalamic lesions, the disruption
to trace conditioning (Fig. 14b) is more severe than disruption
to delay conditioning (Fig. 14a). Extended training (doubling
the number of training trials) improves performance for delay
conditioning (Fig. 14c) but causes little improvement for trace
conditioning in the lesion cases, although it does cause im-
provement in the no lesion case (Fig. 14d).

Conditioning, consciousness, and amnesia

The link between consciousness and conditioning (Clark,
Manns, & Squire, 2002) is clarified by contrasting what hap-
pens during delay versus trace conditioning in normal and am-
nesic subjects. The nSTART model requires a sustained inter-
action of sensory cortex, orbitofrontal cortex, and hippocampus
to achieve trace conditioning. From his clinical data from brain-
damaged patients, Damasio (1999, pp. 157–158, 195ff, 265)
heuristically derived a CogEM-type model and noted that con-
scious awareness of “the feeling of what happens” relies on a
sustained feedback interaction. The nSTART model (Fig. 2)
builds on the START model (Grossberg and Merrill, 1992,
1996) to explain this sort of data with its prediction that this
sort of conscious awareness is supported by a sustained,

Fig. 14 Simulations of lesions of the thalamus, with equivalent effects on
sensory cortex, demonstrate that the sensory cortex is required for optimal
acquisition and retention in both delay and trace conditioning. To
simulate partial lesions of the sensory cortex before any training trials
occur, scalar βS in the sensory cortex (Eq. 2) was progressively
decreased: normal = solid line, 25 % decrease = dashed line, and 50 %
decrease = dotted line. The results of retention testing by conditioned
stimulus (CS) presentation are shown for sensory cortex (S),
orbitofrontal cortex (O), hippocampus (H), amygdala (A), hippocampal
adaptive timing (R), and the pontine nuclei (P). Vertical dashed linesmark
the time of unconditioned stimulus (US) presentation during training, but

not recall, trials. Vertical solid lines mark the onset and offset of the CS
during training trials. Lesions to the sensory cortex weaken learning as a
function of the conditioning paradigm and the extent of the lesion, with a
special focus on O and P. (a) Recall after five training trials of delay
conditioning in all three cases. (b) Worse trace conditioning was seen in
the lesioned cases, even after 20 training trials, than in the corresponding
delay conditioning cases in (a). (c) Doubling the number of training trials
during delay conditioning to ten training trials improved performance in
all three cases. (d) Doubling the number of training trials during trace
conditioning to 40 trials improved performance in the no-lesion case, but
had a negligible effect in the two lesioned cases
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adaptively timed, cognitive-emotional resonance, which is
mechanized as a temporal-amygdala-orbitofrontal resonance
that is supported by hippocampal feedback. This specific reso-
nance specializes the ART prediction that “all conscious states
are resonant states” (Grossberg, 1999). This explanation clar-
ifies why trace conditioning is facilitated by conscious aware-
ness but delay conditioning is not, why a normal subject may
not be consciously aware of delay conditioning, and why am-
nesics with bilateral hippocampal lesions perform like unaware
controls on delay and trace conditioning.

In particular, the emotional path via amygdala operates more
quickly than the cognitive path of self-awareness via hippocam-
pus. Furthermore, during delay conditioning, adaptively-timed
responding can be controlled through the cerebellum, so the
hippocampus is not a critical component of successful delay
conditioning and, thus, neither is awareness.

Recent experiments have supported the CogEM prediction
(Grossberg, 1975, 1984) that emotional responses are part of
an attentive cognitive-emotional resonance, and that amygda-
la activity may be influenced by factors such as stimulus va-
lence, attentional load, competing cognitive task demands,
and ambiguity (Pessoa, Padmala, & Morland, 2005; Pessoa,
Japee, & Ungerleider, 2000). These experimental results are,
moreover, consistent with the hypothesis that a sustained
cortico-cortico-hippocampal resonance supports conscious-
ness, since parallel hippocampal and amygdala activations
occur during normal conditioning. Indeed, adaptively-timed
hippocampally timed cognitive-emotional resonances are pre-
dicted to help prevent premature reset by the attentional focus
on a valued goal object expected disconfirmations by task-
irrelevant cues (Grossberg & Merrill, 1992, 1996). A hippo-
campal role is also consistent with the facts that lesions to the
amygdala slow acquisition of delay conditioning, but do not
impact already acquired responses (Lee & Kim, 2004) and
that, although amygdala plays a key role in associative learn-
ing, researchers also note that: “circuitry within the amygdala
(AM) or a closely related structure is necessary for some as-
pects of the formation, maintenance, or expression of these
CRs” (Choi & Brown, 2003, p. 8713).

Anterograde and retrograde amnesia

Themodel clarifies data related to the production of retrograde
amnesia due to ablation of the medial prefrontal cortex before,
during, or after completion of the consolidation process.
Whereas the hippocampus is necessary for the acquisition
and consolidation of trace conditioning – the lack thereof
causes anterograde amnesia and recent retrograde amnesia
(Clark, Broadbent, Zola, & Squire, 2002; Clark & Squire,
1998; Gabrieli et al., 1995; McGlinchey-Berroth et al., 1997;
but see also Bayley, Frascino, & Squire, 2005) – the medial
prefrontal cortex is necessary for the retention of a high per-
centage of CRs after trace conditioning occurs in normal

subjects. In agreement with data (Kronforst-Collins &
Disterhoft, 1998), the simulated CR that results when the
orbitofrontal cortex is ablated before or after 20 trace condition-
ing trials shows impaired timing and amplitude in the pontine
nuclei responses (Fig. 15b and d, respectively). Takehara et al.
(2003) analyzed this phenomenon as a failure to retain or re-
trieve memory of the associated adaptive response, and not a
simple failure of adaptive timing, because the ablation in their
experiments did not affect CR timing. In the nSTART model,
the notion that the orbitofrontal cortex provides a critical path-
way that helps to read-out the conditioned response via connec-
tions to the pontine nuclei is consistent with this retrieval inter-
pretation. In addition, since direct damage to motor cortex does
not impair trace eyeblink conditioning (Ivkovich & Thompson,
1997), an alternative interpretation that a motor circuit has
failed is not supported.

In the nSTART model, orbitofrontal cortical ablation also
interferes with the ability of the CS to sustain the learned
cortico-cortical resonance that results in an adaptively timed
response profile of the CR in the hippocampus. Indeed, anter-
ograde amnesia may also result if new memories cannot be
consolidated due to cortical insult that prevents, or greatly
weakens, such a resonance (see Fig. 13c). Figure 15a and c
show that, when the model orbitofrontal cortex is ablated be-
fore or after five delay conditioning trials, the CR is not neg-
atively affected, which fits data showing that delay condition-
ing does not require conscious awareness of the stimulus con-
tingencies (Clark & Squire, 1998; Manns, Clark & Squire,
2001) and that amnesics can learn delay conditioning, but
not trace conditioning (Clark, et al., 2001).

The intact hippocampus may also support sustained con-
scious resonance during normal delay conditioning, but it is
not required for the ISI durations in the cited studies: “…those
conditioning tasks that require the integrity of the hippocampus
are the same tasks that aware participants can acquire and un-
aware participants cannot…” (Clark & Squire, 2004, p. 1467).
In particular, for these ISIs, there may not have been enough
time to generate a fully developed conscious cognitive-
emotional resonance.

These simulation results display the temporal properties of
hippocampal and cortical involvement in normal learning in-
volving declarative memory. Amnesia data properties, such as
the loss of recent memory, the inability to form new memory,
or the loss of remote memory, are consistent with these dynam-
ics in terms of the age of the memory when processing be-
comes abnormal: with hippocampal injury, newmemories rap-
idly perish while old memories persist; with cortical injury
(Fig. 13), new memories might be formed with support from
other structures, depending on what cortical structures were
damaged, while old memories that critically depend on the
cortex perish. Cortical injury may involve the lack of activity
in ablated areas, or hyperactivity in the remaining functioning
cells (Li, Bandrowski, & Prince, 2005). In any case, the
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magnitude of the learning deficit depends on locations and
scope of damage. Specific effects of interruption on learning
and memory – that is, the type of amnesia – are dependent on
the task, the stage of learning, and the specific brain area that is
deficient, among other variables. The current model illustrates
how lesions of several different brain areas, at different times
before, during, or after the course of learning, can differentially
contribute to this complex pattern of behavioral deficits.

In summary, the nSTARTmodel simulates and qualitatively
explains key data patterns concerning how thalamic, prefrontal
cortical, amygdala, and hippocampal lesions may influence
learning and memory. These data patterns are summarized in
Table 1, including, for example, the hallmark hippocampal
activity profiles over time during delay conditioning (Berger
et al., 1980) and trace conditioning (McEchron & Disterhoft,
1997), the role of hippocampal and cortical lesions in

influencing acquisition and retention of recently learned versus
remotely learned eyeblink responses (Kim et al., 1995;
Takehara et al., 2003), and the ability of amnesic individuals
to do delay conditioning, but not trace conditioning, alongwith
corresponding differences in conscious awareness (Clark et al.,
2001).

Additional data support the conclusion that the hippocam-
pus is typically essential during acquisition of trace condition-
ing, while the neocortex is needed for normal retention. In
particular, research in discriminative avoidance conditioning
found that hippocampal control of thalamo-cortical excitatory
volleys determined timing of CR output during acquisition;
otherwise, signals from anterior ventral thalamic nuclei and
feedback from cingulate cortex area 29 determined timing of
CR output during maintenance of learning (Gabreil,
Sparenborg, & Stolar, 1987). These data support the facts that,

Fig. 15 Pre-training orbitofrontal cortical lesions do not impair delay
conditioning as much as trace conditioning. Scalar βO in the
orbitofrontal cortex (Eq. 7) was progressively decreased to simulate a
lesion. In (a) and (b), the unlesioned normal case = solid line, 5 %
lesion = dashed line, and 10 % lesion = dotted line. The conditioned
stimulus (CS) and unconditioned stimulus (US) inputs were chosen as
in Fig. 14. The results of retention testing due to CS presentation are
shown by graphing the activities of sensory cortex (S), orbitofrontal
cortex (O), hippocampus (H), amygdala (A), hippocampal adaptive
timing (R) and pontine nuclei (P): (a) Delay conditioning with five

acquisition trials. (b) Trace conditioning with 20 acquisition trials. (c)
Complete lesions after delay conditioning with five acquisition trials do
not impact the ability to perform the conditioned response (CR) as
reflected in R and P amplitudes, although timing of P is impaired. (d)
Complete orbitofrontal lesions after trace conditioning with 20
acquisition trials greatly reduce the ability to perform the CR as
reflected in collapsed R and P amplitudes, and a failure of P timing.
Thus orbitofrontal cortex is required for performance after trace
conditioning in the data and the model
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while recent Nictitating Membrane Response (NMR) learning
involving the trace conditioning paradigm is severely im-
paired by hippocampal lesions, its acquisition is resistant to
cortical lesions. Conversely, NMR trace conditioning reten-
tion is not impaired by hippocampal lesions, but it is impaired
by cortical lesions (Frankland & Bontempi, 2005; Oakley &
Steele Russell, 1972; Simon, Knuckley, Churchwell, &
Powell, 2005; Takehara et al., 2003; Yeo, Hardiman, Moore,
& Steele Russell, 1984). In cases where the ISI is relatively
short, the hippocampus is not required to support acquisition
of the CR (Beylin et al., 2001), corresponding to nSTART
short-term memory circuits the persistent activities of which
in both sensory cortical and amygdala representations are ca-
pable of bridging short temporal gaps.

The nSTART model proposes how the hippocampus con-
solidates learning of thalamo-cortical and cortico-cortical as-
sociations by using the same adaptively-timed pathways by
which the hippocampus learns to adaptively time the appro-
priate duration of motivated attention in a task-selective man-
ner (Grossberg & Merrill, 1992, 1996). By means of a con-
solidation process that is driven by BDNF-mediated endoge-
nous hippocampal bursting, which in vivo is also driven by
continual periodic septal input (Smythe et al., 1992), and
BDNF modulation of local, activity-dependent circuits
(Schuman, 1999; Thoenen, 1995; Tyler et al., 2002), these
associations are stored and recalled in cortico-hippocampal,
hippocampo-cortical and cortico-cortical pathways (Sakurai,
1990), as demonstrated through nSTART computer simula-
tions of the corresponding model pathways and mechanisms.

The fact that amygdala is not required after consolidation
of Pavlovian conditioning does not contradict the claim of the
CogEM model that amygdala is required for reinforcement
learning for CR acquisition and performance. The polyvalent
constraint on CogEM during learning is not required for per-
formance in the consolidated case of aversive conditioning
because the cortico-cortical connection along with extra-
amygdala circuits, such as those involving volitional signals
from the basal ganglia, would be sufficient to support perfor-
mance. Indeed, Chang, Grossberg, and Cao (2014) have
shown how such a convergence between cortico-cortical and
basal ganglia volitional signals can initiate a directed search
for a desired goal object in a cluttered scene, thereby illustrat-
ing how the Where’s Waldo problem may be solved.

Discussion

Five different types of learning interact
during conditioning and memory consolidation

The nSTART model proposes that at least five different types
of learning typically occur in parallel to ensure that associa-
tions can be formed and consolidated across temporal gaps, as

occurs during trace conditioning (Fig. 2). As described above,
the nSTART model includes: CS category learning via
thalamo-cortical and cortico-cortical circuits, conditioned re-
inforcement learning via thalamo-amygdala and sensory
cortical-amygdala circuits, incentive motivational learning
via amygdala-orbitofrontal cortical circuits, and adaptively-
timed learning of motivated attention via sensory cortical-
hippocampal-orbitofrontal cortical circuits. There is also
adaptively-timed learning of motor responses via the cerebel-
lum (Figure 16), but this is not simulated in the current study.
The key brain structures and processes explicitly represented
in the nSTART model are summarized in Table 2.

Multiple hippocampal functions: Space, time, novelty,
consolidation, and episodic learning

The nSTART model does not presume to summarize all the
functional roles that are played by the hippocampus in vivo.
The hippocampus is known to participate in multiple func-
tions, including spatial navigation, adaptively-timed condi-
tioning, novelty detection, and the consolidation of declarative
(notably, episodic) learning and memory. The hippocampus
hereby raises a general issue that is confronted whenever
one tries to understand how a given brain region works:
Why does each brain region support a particular combination
of processes, rather than a different one? How do these pro-
cesses interact in a way that makes functional sense of their
anatomical propinquity? Related neural models have clarified
how some of these other processes work, and why they are
near one another anatomically. They are briefly reviewed in
this section. The articles that develop these models include
citations of many relevant experimental data.

In particular, these models indicate that more than one hip-
pocampal process may be at work in parallel during memory
consolidation. This expanded view of memory consolidation is
clarified by model explanations of why novelty detection has
been linked to the process of memory consolidation during the
learning of recognition categories, whether or not this learning
needs to bridge a long temporal gap. Adaptive Resonance
Theory, or ART, proposes how a memory search can occur
during the learning of recognition categories, and how a suffi-
ciently big mismatch between learned top-down expectations
and bottom-up feature patterns can activate the novelty-
sensitive orienting system (Fig. 3), which includes the hippo-
campus, to drive a memory search for a better matching cate-
gory. The size of such a mismatch registers how novel the
current stimulus is when calibrated against active top-down
expectations. ART explains how such memory searches lead
to learning of a stable, or consolidated, recognition category that
requires no further searches, and thus to the cessation of hippo-
campal novelty potentials (Figs. 3 and 17). After consolidation
of a category is complete, presentation of a familiar object
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exemplar causes direct access to the globally best-matching
category via thalamo-cortical and cortico-cortical pathways.

Carpenter and Grossberg (1993) and Grossberg (2013)
have noted how these properties can qualitatively explain
quite a few data about medial temporal amnesia when the
model hippocampus is ablated, thereby eliminating memory
search during the consolidation process. These properties in-
clude unlimited anterograde amnesia, limited retrograde am-
nesia, perseveration, difficulties in orienting to novel cues, a
failure of recombinant context-sensitive processing, and dif-
ferential learning by amnesics and normals on easy versus
demanding categorization tasks.

Thus, in addition to the important role of adaptively-timed
hippocampal responses in bridging temporal gaps when
events to be associated are separated in time, the hippocampus
is also part of the novelty-sensitive memory search system for
consolidating thalamo-cortical and cortico-cortical category
learning. Both of these processes are included in STARTmod-
el circuits (Fig. 6), but without the enhancements that have
enabled nSTART to simulate challenging data about early
versus late lesions of amygdala, hippocampus, and
orbitofrontal cortex during delay and trace conditioning.

The adaptively-timed hippocampal circuits are part of a
larger theory about why both spatial and temporal representa-
tions exist within the entorhinal-hippocampal system. Neural
models have provided a unified explanation of how these
spatial representations (Mhatre, Gorchetchnikov, &
Grossberg, 2012; Grossberg & Pilly, 2012, 2014; Pilly &
Grossberg, 2012, 2014) and temporal representations
(Grossberg & Merrill, 1992, 1996; Grossberg & Schmajuk,
1989) may arise in the entorhinal-hippocampal system during
development and adult learning, and how they interact with
other brain regions to control navigational behaviors and ep-
isodic learning and memory. This explanation emphasizes the
fundamental role of brain designs for learning, attention, and
prediction, and along the way articulates a rigorous mechanis-
tic sense in which the hippocampus is indeed a “cognitive
map” (O’Keefe & Nadel, 1978). This learning perspective
also leads to the prediction that the network laws that give rise
to the apparently very different behavioral properties of space
and time are controlled by mechanistically homologous brain

mechanisms, thereby clarifying why these spatial and tempo-
ral representations both occur in the entorhinal-hippocampal
system, and how they can thus more easily interact to control
navigation and episodic memory.

�Fig. 16 (a) START model adaptively timed cerebellar learning circuit:
Adaptively timed learning at at cerebellar Purkinje cells causes Long
Term Depression, or LTD, of transmission from parallel fibers to
Purkinje cells. LTD depresses the level of tonic inhibitory firing of
these cells to cerebellar nuclei, thereby disinhibiting nuclear cells and
allowing them to read-out their learned gains in an adaptively timed
way to control conditioned motor responses. [Reprinted with
permission from Grossberg and Merrill (1996).] (b) Pontine nuclei as a
key output pathway from the conditioned stimulus (CS) to the
cerebellum. Two circuits are presented: delay condioning only needs
the cerebellar circuit; trace conditioning also requires forebrain
preprocessing to bridge the temporal gap [Reprinted with permission
from Woodruff-Pak and Disterhoft (2007)]
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Table 2 nSTART: system
equations, variables, and
parameters

System equation Variable Value

(2) Sensory Cortical Dynamics Si Initial value = 0

βS 25

Conditioned
Stimulus

I1 = 1

Unconditioned
Stimulus

I0 = 1, 2 or 4

fS(Si) See Equation 4

Oi See Equation 7

Smi See Equation 6

(3) Thalamic Dynamics Ti Si; See Equation 2

(4) Signal Functions in the Recurrent
On-Center Off-Surround Network

fS(Si) Initial value = 0

max(Si ─ 0.02)

(5) Habituative Transmitter Gates Nmi Initial value = 1

For sensory cortex (Smi), see
Equation 6.
For prefrontal cortex (Omi), see
Equation 13.

(6) Habituative Transmitter Gates: Sensory
Cortex

Smi Initial value = 1

See Equation 2

(7) Corticocortical Category Learning Oi Initial value = 0

βO 12.5

fS(Si) See Equation 4

wSi, wAi, wHi See Equation 5

A See Equation 14

H See Equation 16

BOi See Equation 12

Omi See Equation 13

(8) Prefrontal Cortical Dynamics:

Conditioned Weights at Cortical Synapse
(M = S (sensory cortex), A (amygdala)
and H (hippocampus))

wMi Initial values = 0.01

No inter-trial reset.

fM(M) If M=S, see Equation 9;

if M=A, see Equation 10;

if M=H, see Equation 11.

BOi See Equation 12

Oi See Equation 7

(9) Prefrontal Cortical Dynamics:

Conditioned Weights at Cortical Synapse
for sensory cortex)

wSi Initial value = 0.01

fS(Si) See Equation 4

BOi See Equation 12

Oi See Equation 7

(10) Prefrontal Cortical Dynamics:

Conditioned Weights at Cortical
Synapse for Amygdala

wAi Initial value = 0.01

A See Equation 14

BOi See Equation 12

Oi See Equation 7

(11) Prefrontal Cortical Dynamics:

Conditioned Weights at Cortical
Synapse for Hippocampus

wHi Initial value = 0.01

H See Equation (16)

BOi See Equation 12

Oi See Equation 7

(12) Cortical BDNF BOi Initial value = 0

No inter-trial reset.

H See Equation 16

wHi See Equation 11
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Table 2 (continued)
System equation Variable Value

(13) Habituative Transmitter Gates:
Prefrontal Cortex

Omi Initial value = 1

See Equation 7

(14) Amygdala Drive Representation
Dynamics

A Initial value = 0

βA 40

fS(Si) See Equation 4

Fi See Equation 15

(15) Conditioned Reinforcer Learning Fi constant value F0 = 0.50,

Initial value F1 = 0.05.

No inter-trial reset.

fS(Si) See Equation 4

A See Equation 8

(16) Adaptively-Timed Hippocampal
Activity

H Initial value = 0

βH 5

R See Equation 19

BH See Equation 27

(17) Adaptively-Timed Population Output
Signal

R

hij See Equation 18

(18) Doubly Gated Signal Spectrum (timed
responses)

hij Initial value = 0

f(xij) See Equation 19

yij See Equation 22

zij See Equation 24

(19) Sigmoidal Signal Processing f(xij) Initial value = 0

(20) Activation Spectrum xij Initial value = 0

rj See Equation 21

fS(Si) See Equation 19

(21) Differential Rates of Spectral Timing rj Range from 0.016 to 0.171

j Vary from 1 to 20

(22) Habituative Transmitter Spectrum yij Initial value = 1

f(xij) See Equation 19

(23) Gated Signal Spectrum gij Initial value = 0

f(xij) See Equation 19

yij See Equation 22

(24) Spectral Learning Law zij Initial value = 0.

No inter-trial reset.

gij See Equation 23

N See Equation 25

(25) Now Print Signal N Initial value = 0

A See Equation 14

E See Equation 26

(26) Inhibitory Interneuron E Initial value = 0

(27) Hippocampal BDNF A See Equation 14

BH Initial value = 0.

No inter-trial reset.

R See Equation 17

(28) Pontine Nuclei P Initial value = 0

A See Equation 14

O 1 See Equation 7
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The timing model in question is the Spectral Timing model
that has been used to explain and simulate data about normal and
abnormal delay and trace conditioning (Grossberg & Merrill,
1992, 1996; Grossberg & Schmajuk, 1989). Due to the compu-
tational homolog between spatial and temporal representations,
the spatial model is called the Spectral Spacing model
(Grossberg & Pilly, 2012, 2014). Both models learn to represent
spatial and temporal properties of the environments that animals
or humans experience (Gorchetchnikov & Grossberg, 2007).

In the case of the Spectral Spacing model, this learning
leads to grid cell receptive fields of multiple spatial scales
along the dorsoventral axis of the medial entorhinal cortex
that cooperate to form hippocampal place cells that can repre-
sent large spaces. In the case of the Spectral Timing model,
this learning enables “time cells” that response at multiple
temporal scales to cooperate to represent large time intervals.
As noted earlier, the Spectral Timing model predicted in the
1980s the properties of time cells that have been reported in
the hippocampus during the past few years, notably their
Weber law properties. In both the Spectral Spacing and
Spectral Timing models, a spectrum of cell rates generates a
spatial gradient of cells with different properties. In the case of
the Spectral Spacing model, grid cells with increasing spatial
scales are learned along the dorsoventral axis of the medial
entorhinal cortex. In the case of the Spectral Timing model,
time cells with increasing onset times and variances are gen-
erated. It has been shown how Spectral Timing can be
achieved using properties of the metabotropic glutamate re-
ceptor (mGluR) system, which proposes a biochemical basis
for the ability of these cells to span such long time intervals

(Fiala, Grossberg, & Bullock, 1996). An open question is
whether the Spectral Spacing model uses a similar mecha-
nism, suitably specialized?

These homologous spatial and temporal mechanisms have
been used to provide a unified theoretical explanation, and
quantitative computer simulations, of a body of challenging
behavioral and neurobiological data about both space and time
that have no other unified explanation at this time, leading to
the name neural relativity for this mechanistic homology. In
particular, the current study proposes how at least some time
cells may participate in memory consolidation that requires
the ability of the hippocampus to bridge across temporal gaps
between stimuli that are associated through conditioning.

The coexistence of spatial and temporal learning in the hip-
pocampus may support its role in episodic learning andmemory,
since episodic memories typically combine both spatial and tem-
poral information about particular autobiographical events
(Eichenbaum & Lipton, 2008; Tulving, 1972). The nSTART
model does not include spatial representations, or the prefrontal
working memory and list chunking networks for temporary and
long-term storage of sequential information, and thus does not
attempt to explain data about episodic learning and memory.
Activation of such spatially-dependent episodic memories may
always require hippocampal spatial representations, so a restrict-
ed gradient of retrograde amnesia may not be expected after
hippocampal lesions that eliminated them. As noted within the
“multiple traces” proposal of how memory consolidation works
(Nadel & Moscovitch, 1997, p. 222): “The most parsimonious
account of the data would be to assume that the hippocampal
complex and neocortex continue to be involved in both the stor-
age and the retrieval of episodic memory traces throughout life.”

Episodic memories may depend upon knowledge of
sequences of correlated object and spatial information, not just
information about individual ones. This kind of sequential in-
formation is also important for carrying out context-sensitive
searches for desired objects in scenes. For example, seeing a
refrigerator and a stove at particular positions in a familiar
kitchen may generate an expectation of seeing a sink at a dif-
ferent position. A large psychophysical database about contex-
tual cueing (e.g., Brockmole et al., 2006; Chun, 2000; Chun &
Jiang, 1998; Jiang & Wagner, 2004; Lleras & von Mühlenen,
2004; Olson & Chun, 2002) describes how both object and
spatial information contribute to such expectations, while they
drive efficient searches to discover and act upon desired goal
objects. The ARTSCENE Search model (Huang & Grossberg,
2010) simulates how computation of spatial and object work-
ing memories, list chunks, and spatial and object priming sig-
nals may be accomplished using interactions between the
perirhinal and parahippocampal cortices (Bar, Aminoff, &
Schacter, 2008; Brown & Aggleton, 2001; Epstein, Parker, &
Feiler, 2007; Murray & Richmond, 2001), prefrontal cortex,
temporal cortex, and parietal cortex to simulate key psycho-
physical data from contextual cueing experiments. The

Fig. 17 In the STARTmodel framework, ARTcategory learning circuits
and Spectral Timing circuits can both inhibit the orienting system: When
a good enough match occurs between a feature pattern at level F1 and the
top-down expectation from the category level F2, inhibition can occur of
the orienting system A, thereby preventing a memory search. If inhibition
from the cognitive-emotional sensory-drive (S −D) resonance that is
supported by hippocampal adaptive timing also inhibits A, then the
orienting system again cannot fire until the adaptively timed signal is
removed. The former mechanism clarifies how hippocampal novelty
potentials fade away as thalamo-cortical and cortico-cortical category
learning consolidates. The latter mechanism clarifies how orienting
responses are inhibited during expected disconfirmations
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nSTART, ARTSCENE Search, and Spectral Spacing models
may in the future be fused to provide a foundation on which to
build amore complete theory of episodic learning andmemory.

Alternative models of memory consolidation

The popular unitary trace transfer hypothesis assumes that
there is a memory representation that is first stored in the
hippocampus and then transferred to the neocortex to be con-
solidated (McClelland, McNaughton, & O’Reilly, 1995;
Squire & Alverez, 1995). McClelland et al. (1995) thus pro-
pose “a separate learning system in the hippocampus and why
knowledge originally stored in this system is incorporated in
the neocortex only gradually” (p. 433). This hypothesis is
justified by the assumption that the hippocampus can learn
quickly, but the neocortex can only learn slowly, so the hip-
pocampus is needed to first capture the memory and then that
same memory representation is transferred to the more slowly
learning neocortex. There are, however, fundamental
conceptual and mechanistic problems with a unitary trace
transfer hypothesis as presented by McClelland et al. (1995)
that persist in more recent expositions (Atallah, Frank, &
O’Reilly, 2004; O’Reilly & Rudy, 2000): a representation
problem, a learning rate problem, and a real-time learning
problem. These problems are illustrated by considering how
the unitary trace hypothesis might explain how a normal per-
son can see a movie once and remember it well enough to
describe it later to a friend in considerable detail, even though
the scenes flash by quickly.

The representation problem concerns the implicit claim
that the hippocampus can represent and store all the remem-
bered visual and auditorymemories in the movie. There seems
to be no experimental evidence, however, that the hippocam-
pus contains such specialized perceptual representations.
Moreover, if the hippocampus did contain all the perceptual
representations that were needed to represent all visual and
auditory memories, then what does the specialized perceptual
circuitry of visual and auditory neocortex do? In this regard,
the unitary trace modelers never simulate the perceptual con-
tents of the memories that are assumed to be stored in hippo-
campus and transferred to neocortex.

The learning rate problem concerns the factual basis for
the claim that the neocortex must learn slowly. In fact, there
are numerous examples that fast perceptual and recognition
learning can occur in the neocortex (e.g., Fahle, Edelman, &
Poggio, 1995; Kraljic & Samuel, (2006); Sireteanu &
Rettenbach, 1995, Stanley & Rubin, 2005; Wagman,
Shockley, Reley, & Tervey, 2001). In addition, no evidence
is presented by unitary trace transfer theorists that there are
slower learning synapses in neocortex than hippocampus.
Even one of the proponents of the slow cortical learning hy-
pothesis has equivocated on this point: “data that appear to
support the limited cortical learning view tend to be based on

larger lesions of the medial temporal lobe…it is becoming
clear that the cortex is capable of quite substantial learning
on its own…” (O’Reilly & Rudy, 2000, p.395).

The real-time learning problem is admitted by the mod-
elers but not solved. A model that has been used in unitary
trace model simulations is back propagation. It is well-known
that this model is not biologically plausible (e.g., Grossberg,
1988, Section 17). Back propagation must carry out slow
learning. Its adaptive weights can change only slightly on
each learning trial, thus requiring large numbers of acquisition
trials to learn every item in its memory. If the learning rate is
sped up, then the model can experience catastrophic forget-
ting. It is incapable of the kind of fast learning that is experi-
enced while watching a movie or other rare but motivationally
engaging series of events. It can only carry out supervised
learning, which means that an explicit teacher provides exter-
nal feedback about the correct response on every learning trial,
unlike the unsupervised learning that is characteristic of many
biological learning experiences, including watching a movie.
Its learned weights are computed using an unrealistic non-
local weight transport mechanism that has no analog in the
brain. Finally, because of its slow learning requirement, it is
important that the data that are being learned have stationary
statistical properties, so that each weight gets enough expo-
sure to these properties over many learning trials to enable
enough weight growth to occur. In other words, the probabil-
ities of sequential events do not change through time, unlike
the world in which we live.

In order to manage these weaknesses of back propagation,
McClelland et al. (1995) developed their model based on a
process of interleaved learning which is said to occur when
memories are slowly transferred from the hippocampus to the
neocortex via incremental adjustments in the neocortical rep-
resentations, while being supervised by hippocampal teaching
signals. Various sets of parameter values were used to fit their
model to each of four data sets with varying degrees of suc-
cess. Nevertheless, the authors state that such “…interleaved
learning systems… are not at all appropriate for the rapid
acquisition of arbitrary associations between inputs and re-
sponses” (McClelland et al., 1995, p. 432); in other words,
their proposed model cannot do learning in real time.

Similar explanatory limitations are faced by connectionist
models such as the one proposed by Moustafa, et al. (2013)
that does not simulate biophysical properties of neurons, does
not use a model that describes the anatomical areas involved in
delay and trace conditioning, and does not consider the con-
solidation process. In addition, this model assumes a non-
existent direct connection from hippocampus to motor output.

Beyond the self-criticism offered by MeClelland et al.
(1995), the unitary trace view of memory consolidation has
come under criticism from various researchers on both
theoretical and experimental grounds. McGaugh (2000)
points to protein synthesis and various neurotransmitters as
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providers of endogenous modulation of consolidation. In his
view, the supposition that the molecular and cellular machin-
ery of consolidation memory works slowly is “clearly wrong”
(p. 248). Rather, consolidation seems slow because on-going
experience modulates memory strength. In McGaugh's view,
the amygdala plays a central role in modulating memories
and, thus, in memory consolidation. Lesions of the amygdala
disrupt the influence of epinephrine and glucocorticoids from
the adrenal gland and, therefore, the consolidation process. In
this view, the time-limited role of the hippocampus is to serve
as a locus in memory processing in a wider consolidation
circuit that includes bidirectional cortico-hippocampal inter-
actions. Nadel and Bohbot (2001) inferred a process of con-
solidation from retrograde amnesia, but do not see consolida-
tion as a transfer of memory from the hippocampus to other
areas. Rather, interactions between systems preserve their re-
spective specializations. All of these heuristic proposals have
points of contact within the nSTART model.

Building on the critique of McClelland et al. (1995)
given in Grossberg & Merrill (1996), the nSTART model
embodies a quite different proposal of hippocampal func-
tion than that of the MeClelland et al. (1995) model of
consolidation. The nSTART model avoids the representa-
tion problem because neocortex and hippocampus learn
different things. It avoids the learning rate problem be-
cause neocortex can learn as fast as sensory inputs and
modulatory processes allow. It avoids the real-time learn-
ing problem because the fast real-time incremental learn-
ing that ART, CogEM, and START allow does not require
unrealistic learning mechanisms such as interleaving, and
works well in environments whose statistics can change
unpredictably through time (Carpenter & Grossberg,
1991, 1993; Grossberg, 2003, 2007, 2013; Grossberg &
Levine, 1987; Grossberg & Merrill , 1992, 1996;
Grossberg & Schmajuk, 1987, 1989).

Additionally, the nSTART model proposes how three
basic learning problems are solved: It enables fast moti-
vated attention to be paid to salient objects and events
using pathways to and from the amygdala that support
conditioned reinforcer and incentive motivational learning
(Figs. 2, 4, 5 and 6). It maintains motivated attention for
an appropriate duration on salient objects and events
using an adaptively-timed cortical-hippocampal-cortical
circuit that also inhibits unwanted orienting reactions
(Fig. 6). Finally, it prevents premature responses using
adaptively-timed cerebellar motor learning (Figs. 2 and
16). Thus, the hippocampal influence on cortical learning
is not just a transfer of the same memory trace, but rather
the result of interactions between multiple types of learn-
ing. An enhanced understanding in nSTART of the role of
neurotrophins in the creation and maintenance of memory
and the role of attention in the generation of awareness
and self-consciousness builds upon this analysis.

Clinical relevance of BDNF

In line with recent work on the etiology and treatment of neu-
rological diseases such as Alzheimer’s, Parkinson’s,
Huntington’s, epilepsy, Rett’s syndrome, and neuropsychiatric
disorders such as depression, bipolar, anxiety-related,
schitzophrenia, and addiction (Autry & Monteggia, 2012; Hu
& Russek, 2008), the nSTART model is consistent with clini-
cal treatments for impaired cognitive function that implicate an
important role for BDNF. In clinical applications, the deleteri-
ous effects on synaptic and behavioral plasticity associated
with low-levels of BDNF may be reversed by exercise
(Molteni et al., 2004), a finding with obvious relevance to
educational intervention as well. Treatments that include cog-
nitive and physical exercise have been shown to increase
BDNF levels and to relieve symptoms (Cotman & Berchtold,
2002). In addition, BDNF levels, low in proportion to the se-
verity of mania and depression, increase with clinical improve-
ment using antidepressants and mood stabilizers (Post, 2007).
However, too much excitation can cause problems and require
therapies to down-regulate BDNF and related processes
(Birnbaum et al., 2004; Koyama & Ikegaya, 2005).

Mathematical equations and parameters

nSTART model overview

nSTART is a real-time neural network with multiple
feedforward and feedback connections. On-center off-sur-
round membrane, or shunting, equations with terms for spon-
taneous decay, input-driven excitation and inhibition, and re-
current excitation and inhibition represent a rate-based ap-
proximation to Hodgkin-Huxley dynamics. These equations
were integrated over time using the Runge–Kutta 4 method
for ODE numerical integration written in MatLab 12.1 run-
ning under the Windows 8 operating system on an Intel Quad
Core microprocessor. The equations demonstrated the report-
ed qualitative properties over a wide range of parameter
choices. Final parameter selection was based on the goal of
running all of the simulations using a single set of parameters.
Figure 18 shows the mechanistic circuit diagram of the
interacting nSTART pathways and processes that were illus-
trated in Figs. 2 and 7 and qualitatively described above. The
equations are formally described below. Table 2 presents all
system variables and their initial values as well as the param-
eters with their values.

The model was tested by simulating data from reinforce-
ment learning experiments, notably classical conditioning ex-
periments. To simplify the model, we use two types of input:
Ii, i ≥ 1, which turns on when the ith CS, CSi, occurs, and I0,
which turns on when a US occurs. Ii activates the i

th sensory
representation Si. Another population of cells A represents a
drive representation in the amygdala. It receives a
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combination of sensory, reinforcement, and homeostatic (or
drive) stimuli. Reinforcement learning, emotional reactions,
and motivated attention decisions are controlled by A.
During conditioning, presentation of a CS (I1) before a US
(I0) causes activation of sensory cortical activity Si followed
by activation of A. Such pairing strengthens the adaptive
weight, or long-term memory trace, in the modifiable synap-
ses from Si to A, and converts CSi into a conditioned reinforc-
er. Conditioned reinforcers hereby acquire the power to acti-
vate A via the conditioning process. These and other learning
and performance processes of the nSTART model are defined
by the following equations and parameters.

Sensory cortex and thalamus

Sensory cortical dynamicsCell activity, or voltageV(t), in vivo
can be represented by the membrane, or shunting, equation:

C
d
dt

V ¼ Vþ−Vð Þgþ þ V−−Vð Þg− þ Vp−Vð Þgp; ð1Þ

where C is capacitance; the constants V+, V−, and Vpare excit-
atory, inhibitory, and passive saturation points ofV, respective-
ly; and g+, g−, and gp are conductances that can be changed by
inputs (Grossberg, 1968b; Hodgkin, 1964). In themodel equa-
tions, V is replaced with a symbol that represents the activity
of a particular cell (population) in the network. A basic

processing unit in the model is a network of shunting neurons
that interact within a feedforward and/or feedback on-center
off-surround network whose shunting dynamics contrast-
normalize its cell activities (Grossberg, 1973, 1980). These
networks also have a total activity with an upper bound that
tends to be independent of the number of active cells.

The activity Si of the i
th sensory cortical cell (population)

obeys:

d
dt

Si ¼ −15Si þ βS 1−Sið Þ I i þ f S Sið Þ 1þ Oið Þð ÞSmi−15Si
X
k≠i

f S Skð Þ 1þ Okð Þ:

ð2Þ

The inputs Ii are turned on and off by presentation and
termination of a CS input (I1) or US input (I0) over time.
Term − 15Si describes passive decay of activity Si. Term
βS(1− Si)(Ii+ fS(Si)(1 +Oi))Smi describes excitatory interac-
tions in response to input Ii, notably the recurrent on-center
excitatory feedback signal fS(Si) from population Si to itself
(Eq. 4), the top-down modulatory attentional input Oi from
orbitofrontal cortex, and the habituative transmitter Smi that
depresses these excitatory interactions in an activity-
dependent way (Eq. 6). Excitation is scaled by parameter βS.
Due to the shunting term βS(1−Si) inβS(1−Si)(Ii+ fS(Si)(1+
Oi))Smi, activity Si can continue to grow until it reaches the
excitatory saturation point, which is set to 1 in Eq. 2. Term −

15Si∑
k≠i

f S Skð Þ 1þ Okð Þ describes lateral inhibition of Si by

Fig. 18 Interacting thalamic, prefrontal cortical, amygdala, and
hippocampal processing circuits control adaptively timed responses in
conditioning acquisition and maintenance. The circuit diagram is a

composite of the macrocircuit structure given in Fig. 2 and the
processing detail given in Fig. 7. The text contains the mathematical
definitions of the circuit variables
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competitive feedback signals fS(Sk) from the off-surround
of other sensory cortical activities Sk, k≠ i, modulated by
the corresponding top-down orbitofrontal signal Ok. Due
to the excitatory feedback signals, a brief CS input (I1)
gives rise to a sustained STM activity Si which can remain
sensitive to the balance of signals across the network due
to its shunting off-surround, notably by competition from
activation in response to the US input (I0).

The dynamics of (sensory cortical)-to-(orbitofrontal corti-
cal) circuits are modeled (Fig. 2). For simplicity, activity levels
of thalamus (Ti) and sensory cortex (Si) are lumped into a
single representation:

Ti≡Si: ð3Þ

With this convention in mind, simulation results may inter-
changeably mention thalamo-cortical or cortico-cortical con-
nectivity, as required by a given context.

Signal functions in recurrent on-center off-surround
shunting network The signal function fS(Sk) in Eq. 2 is a
particularly simple faster-than-linear signal function, one that
is half-wave-rectified, and then linear above an output thresh-
old: (Grossberg, 1973):

f S Skð Þ ¼ Si−0:02½ �þ≡ max Si−0:02; 0ð Þ; ð4Þ

where 0.02 is the threshold value that must be exceeded for
the signal to become positive. Faster-than-linear signal func-
tions tend to suppress noise while contrast-enhancing the most
active cell activity and making winner-take-all choices in net-
works such as (Eq. 2), as proved in Grossberg (1973).

Habituative transmitter gates Habituative transmitters such
as Smi in (Eq. 2) tend to obey equations of the following
general form (Grossberg 1968b, 1972, 1980):

d
dt

Nmi ¼ 0:5 1−Nmið Þ−2:5 f N Nið ÞNmi: ð5Þ

The amount of neurotransmitter Nmi in (Eq. 5) accumulates,
scaled by a factor of 0.5, up to a limit of 1 due to the accumu-
lation term 1−Nmi, and is inactivated, or habituates, by the
gated release term −2.5fN(Ni)Nmi, whereby Nmi is inactivated
by mass action at a rate proportional to the product of an excit-
atory signalfN(Ni) from either sensory cortex (Eq. 2) or
orbitofrontal cortex (Eq. 7), and the amount Nmi of available
transmitter. These modulators are similar to those in the
habituative transmitter spectrum for hippocampal cells (Eq. 22).

In particular, Smi in (Eq. 2) obeys:

d
dt

Smi ¼ 0:5 1−Smið Þ−2:5 I i þ f S Sið Þ 1þ Oið Þð ÞSmi: ð6Þ

Smi accumulates up to a limit of 1 due to the accumulation
term 0.5(1−Smi), and is inactivated by mass action at a rate
proportional to the product of (Ii+ fS(Si)(1+Oi), the excitatory
term in Eq. 2 that the transmitter gates, and the amount of
available transmitter Smi. A similar transmitter equation acts
within orbitofrontal cortex (Eq. 13).

Orbitofrontal cortex, category learning, and incentive
motivational learning

Orbitofrontal cortical dynamics The activity Oi of the ith

orbitofrontal cortical cell (population) obeys:

d
dt

Oi ¼ −10Oi þ βO 2−Oið Þ f S Sið Þ þ 0:03ð Þ0:0625wSi AwAi þ 10HwHi þ 800BCið Þ þ 0:75Oið ÞOmi−10Oi

X
k≠i

Ok ð7Þ

In (7), a phasic input from sensory cortex (fS(Si), Eq. 2),
plus a tonic activity of 0.03 (see fS(Si) + 0.03), is modulated by
inputs from the amygdala (A, Eq. 14), hippocampus (H,
Eq. 16), and orbitofrontal BDNF (BOi, Eq. 12). In addition, a
recurrent self-excitatory feedback signal (Oi) supports persis-
tence of orbitofrontal activity after the external sensory input
is turned off and fS(Si) decays to 0. As in Eq. 2, there is a
passive decay term −10Oi, an excitatory shunting on-center
term βO(2 −Oi)((fS(Si) + 0.03)0.0625wSi(AwAi + 10HwHi +
800BOi) + 0.75Oi)Omi that can increase up to 2, its saturation
point, an activity-dependent habituative transmitter gate Omi

of excitatory cortical interactions (Eq. 7), and a shunting off-
surround inhibitory term −10Oi∑

k≠i
ok that enables contrast nor-

malization. Adaptive weights, or LTM traces, wSi, wAi, and
wHi (see Eqs. 8, 9, 10, and 11) gate the inputs fS(Si), A, and
H, respectively. An excitatory gain of 10 multiplies H and of
800 multiplies BOi.

Cortical category learning and incentive motivational
learning The learned adaptive weights to the orbitofrontal
cortex all obey an outstar learning law (Grossberg,
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1980), as described above. The weights from amygdala
and hippocampus (wAi and wHi, respectively) supply in-
centive motivational support for cortico-cortical category
learning by wSi. All weights obey the general form:

d
dt

wMi ¼ 4 f M Mið Þ þ BOið Þ −wMi þ 2Oið Þ; ð8Þ

where M = S, A, or H, depending on the context.
Learned adaptive weights from sensory cortex to

orbitofrontal cortex obey:

d
dt

wSi ¼ 4 f S Sið Þ þ BOið Þ −wSi þ 2Oið Þ; ð9Þ

where learning is gated on and off by a sampling signal
fs(Si) +BOi that is the sum of the sensory cortical signal fS(Si)
(Eq. 4), and the orbitofrontal BDNFBOi (Eq. 12).The sampling
signal’s size determines the rate at which weight wSi ap-
proaches twice the orbitofrontal activity Oi (Eq. 7) via term
−wSi+2Oi.

Learned adaptive weights from amygdala to orbitofrontal
cortex obey:
d
dt

wAi ¼ 4 0:1Aþ BOið Þ −wAi þ 2Oið Þ ð10Þ

and from hippocampus to orbitofrontal cortex obey:

d
dt

wHi ¼ 4 0:5H þ BOið Þ −wHi þ 2Oið Þ: ð11Þ

Orbitofrontal BDNF Orbitofrontal BDNF BOi is time-
averages hippocampal signals H that are gated by learned
weights wHi with an excitatory gain 3.125:

d
dt

BOi ¼ −BOi þ 3:125HwHi: ð12Þ

Habituative transmitter gates in orbitofrontal cortex
Activity-dependent habituative neurotransmitters, or postsyn-
aptic sites, Omi that influence orbitofrontal cortical activity
obey a specialized version of (Eq. 5):

d
dt

Omi ¼ 0:5 1−Omið Þ−2:5 f S Sið Þ þ 0:03ð Þ0:0625wSi AwAi þ 10HwHi þ 800BCið Þ þ 0:75Oið ÞOmi; ð13Þ

that accumulates to a maximum value of 1 at rate 0.5 via term
0.5(1 −Omi), and habituates, or is inactivated, at rate
− 2.5((fS(Si) + 0.03)0.0625wSi(AwAi + 10HwHi + 800BCi) +
0.75Oi) by the on-center input term in (Eq. 7).

Amygdala and conditioned reinforcer learning

Amygdala drive representation dynamics The amygdala
activity A of the drive representation obeys:

d
dt

A ¼ −20Aþ βA 10−Að Þ
X

i

f S Sið ÞFi: ð14Þ

Activity A passively decays via term − 20A. Term βA

10−Að Þ∑
i
f S Sið ÞFi descr ibes the sum of exc i ta tory

signalsfS(Si)from the ith sensory representation to A, gated by
the conditioned reinforcer adaptive weights Fi (Eq. 15). This
sum can increase A until it reaches the saturation term 10 that
is determined by term (10−A). Adaptive weightFi determines
how well Si can activate A, and thus the extent to which the i

th

CS has become a conditioned reinforcer through learning.
Because Fi multipliesfS(Si), a large Si will have a negligible
effect on A if Fi is small, and a large effect on A if Fi is large.
The US LTM trace F0 is fixed at a relatively large value to

enable the US to activate A via S0and to thereby drive condi-
tioned reinforcer learning when a CS is also active. The CS
LTM trace F1 is initially set to one tenth of the US value to
prevent the CS from significantly activating A before condi-
tioning takes place.

Conditioned reinforcer learning Each adaptive weight F1

obeys an outstar learning law:

d
dt

F1 ¼ 0:5 f S Sið Þ −F1 þ 0:2Að Þ: ð15Þ
Learning by F1 is turned on and off by the sampling

signal 0.5fS(Si), whose size determines the rate at whichF1

time-averages 0.2A. Activity F1 can increase or decrease
during learning, hence both long-term potentiation (LTP)
and long-term depression (LTD) can occur. To represent
the non-learned response to the US, F0 is held constant at
0.5.

Hippocampus and adaptively timed learning

Adaptively-timed hippocampal learning As noted above,
the hippocampus delivers adaptively timed signals H to
the orbitofrontal cortex that can maintain its activity for
a duration that can span the trace interval; see Eq. 6. The
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hippocampus hereby activates an adaptively-timed incen-
tive motivational pathway in cases when the amygdala
cannot. The spectral timing process embodies several pro-
cessing steps.

Adaptively-timed hippocampal activity Activity H in the
hippocampus obeys:

d
dt

H ¼ −15H þ βH 2−Hð Þ 0:625Rþ 0:5BHð Þ: ð16Þ

Term −15H represents passive decay. The excitatory term
is scaled by the excitatory gain βH and bounded by 2, due to
the shunting term βH(2−H). The two sources of excitatory
input are the adaptively timed input R (Eq. 17) and the total
BDNF input BH (Eq. 27), each with its own gain term.

Adaptively-timed population output signal The adaptively
timed signal R is a population response:

R ¼
X
i; j

hi j ð17Þ

that sums over multiple individually timed signals

hi j ¼ 8 f xi j
� �

yi jzi j ð18Þ

that are defined below. None of the signals hij individually can
accurately time the ISI between a CS and US. The entire
population response in (Eq. 17) can do so using a “spectrum”
of differently timed cells, leading to the term “spectral timing”
for this kind of learning (Grossberg and Merrill, 1992, 1996;
Grossberg and Schmajuk, 1989).

Activation spectrumModel simulations use the simplest em-
bodiment of spectrally-timed learning. A more detailed bio-
chemical model is given using Ca++-modulated learning by a
spectrum of metabotropic glutamate receptor (mGluR) cell
sites in Fiala, Grossberg, and Bullock (1996), which shows
how mGluR dynamics can span such long time intervals.

Spectrally timed learning can be initiated when an input
signal fS(Si) (Eq. 4) from a sensory cortical representation
(Eq. 2) activates a population of hippocampal cell sites with
activities xij that activate the next processing stage via sigmoi-
dal signals:

f xi j
� � ¼ x8i j

0:018 þ x8i j
: ð19Þ

Activities xij react at a spectrum of rates:

d
dt

xi j ¼ r j −xi j þ 1−xi j
� �

f S Sið Þ� �
; ð20Þ

with rates rj ranging from 0.171 (fast) to 0.016 (slow) defined
by:

r j ¼ 5:125= 0:0125þ 15 jþ 1ð Þð Þ; ð21Þ

for j = 1 to 20.

Habituative transmitter spectrum Each spectral activation
signal f(xij) is gated by a habituative chemical transmitter, or
postsynaptic response, yij that obeys:

d
dt

yi j ¼ 0:5 1−yi j
� �

−10 f xi j
� �

yi j: ð22Þ

As in Eq. 5, yij accumulates to 1 via term (1− yij) at rate 0.5,
and habituates, or inactivates, due to a mass action interaction
with signal f(xij), via the gated release term−10f(xij)yij. The
different rates rj that activate each xij cause the habituative
transmitters yij to become habituated at different rates as well.
The family of curvesyij,j=1,2,…, 20, is called a habituation
spectrum.

Gated signal spectrum and time cells Each signal f(xij)-
interacts with y

ij
via mass action to generate a net output signal

from its population of cell sites that obeys:

gi j≡ f xi j
� �

yi j−0:03
h iþ

≡max f xi j
� �

yi j−0:03; 0
� �

: ð23Þ

Each gated signal gij has a different rate of growth and
decay, thereby generating a unimodal function of time that
achieves its maximum value Mij at time Tij, where Tij is an
increasing function of j, and Mij is a decreasing function of j.
Taken together, all the functions gij define the gated signal
spectrum in Fig. 11c. This timed spectrum is the basis of
adaptively timed learning over an extended time interval that
can range from hundreds of milliseconds to several seconds,
with each gij acting as the sampling signal for its part of the
adaptively timed spectrum.

Spectral learning law Each adaptive weight zij in the spec-
trum obeys an outstar learning law:

d
dt

zi j ¼ 2gi j −zi j þ 2N
� �

: ð24Þ

In Eq. 24, gij is a sampling signal that determines the rate
with which zij samples a transient Now Print signal 2N
(Eq. 25) that is derived from amygdala activity A in Eq. 14.
Each zij changes by an amount that reflects the degree to
which the curves gij and N have simultaneously large values
through time. If gij is large whenN is large, then zij increases in
size. If gij is large when N is small, then zij decreases in size.
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Since the different gij peak at different times, each zij responds
to N to different degrees.

The Now Print signal N obeys:

N ¼ A−E−0:04½ �þ≡max A−E−0:04; 0ð Þ; ð25Þ

where E is a feedforward inhibitory interneuron that obeys:

d
dt

E ¼ 40 −E þ Að Þ: ð26Þ

The inhibitory interneuronal activity E in (26) time-
averages the amygdala activity A at rate 40. Its activity hereby
lags behind that of A. The difference (A−E) in (25) may thus
be activated by any sufficiently rapid increase in A. Either a
US, or a CS that has become a conditioned reinforce, can
cause such a rapid increase, and thereby activate N, and thus
learning of any adaptive weight zijwhose sampling signal gij is
sufficiently large at such a time.

An important property of N is that it increases in am-
plitude, but not significantly in duration, in response to
larger inputs A. Thus learning can be faster in response to
stronger rewards, but the timing of a conditioned response
does not significantly change, as in the data and our sim-
ulations thereof (Fig. 8).

Doubly-gated signal spectrum Each long-term memory
trace zij learns to a different degree. Each zij also gate the
signals gij in order to generate a twice-gated output signal hij
(Eq. 18) from each of the differently timed cell sites.
Comparing the signals hij in Fig. 11d with the gij in Fig. 11c
shows how adaptively timed learning changes the relative
strength of each spectral output. When all the hij are added
together to generate the population output R in (Eq. 17), ac-
curate adaptively timing is achieved.

Hippocampal BDNF Production of hippocampal BDNFBH
is a time average of 25 times its adaptively timed population
signal R (Eq. 17), scaled by a reaction rate of 2:

d
dt

BH ¼ 2 −BH þ 25Rð Þ: ð27Þ

Hippocampal BDNF in the model extends hippocam-
pal activation, and thus the incentive motivational sup-
port that it supplies to cortico-cortical learning during a
memory consolidation period after the CS and US in-
puts terminate.

Pontine nuclei

Final common path for conditioned output Output signals
from the amygdala A (Eq. 14) and the CS-activated
orbitofrontal cortical representation O1 (Eq. 7) to the

pons combine to form a common final path that is used
in the model as a signal that generates a behavioral CR
further downstream:

P ¼ Aþ O1: ð28Þ
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