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Abstract

Facial action unit (AU) detection from video has been a long-standing problem in automated facial 

expression analysis. While progress has been made, accurate detection of facial AUs remains 

challenging due to ubiquitous sources of errors, such as inter-personal variability, pose, and low-

intensity AUs. In this paper, we refer to samples causing such errors as hard samples, and the 

remaining as easy samples. To address learning with the hard samples, we propose the Confidence 

Preserving Machine (CPM), a novel two-stage learning framework that combines multiple 

classifiers following an “easy-to-hard” strategy. During the training stage, CPM learns two 

confident classifiers. Each classifier focuses on separating easy samples of one class from all else, 

and thus preserves confidence on predicting each class. During the testing stage, the confident 

classifiers provide “virtual labels” for easy test samples. Given the virtual labels, we propose a 

quasi-semi-supervised (QSS) learning strategy to learn a person-specific (PS) classifier. The QSS 

strategy employs a spatio-temporal smoothness that encourages similar predictions for samples 

within a spatio-temporal neighborhood. In addition, to further improve detection performance, we 

introduce two CPM extensions: iCPM that iteratively augments training samples to train the 

confident classifiers, and kCPM that kernelizes the original CPM model to promote nonlinearity. 

Experiments on four spontaneous datasets GFT [15], BP4D [56], DISFA [42], and RU-FACS [3] 

illustrate the benefits of the proposed CPM models over baseline methods and state-of-the-art 

semisupervised learning and transfer learning methods.
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Index Terms

Transfer learning; semi-supervised learning; support vector machine (SVM); confident classifiers; 
self-paced learning; easy-to-hard; facial action unit (AU) detection

I. Introduction

Facial expressions convey varied and nuanced meanings. Small variations in the timing and 

packaging of smiles, for instance, can communicate a polite greeting, felt enjoyment, 

embarrassment, or social discomfort. To analyze information afforded by facial expressions, 

the most widely used approach is the Facial Action Coding System (FACS) [24]. FACS 

describes facial activities in terms of anatomically based Action Units (AUs). AUs can occur 

alone or in combinations to represent nearly all possible facial expressions. AUs have a 

temporal envelope that minimally includes an onset (or start) and an offset (or stop), and 

may include changes in intensity. There has been an encouraging progress on automated 

facial AU detection during the past decades, especially for posed facial actions [14], [20], 

[47], [52], [59].

Accurate detection of facial AUs remains challenging due to numerous sources of errors, 

including quality and quantity of annotations [40], head yaw [28], low intensity [29], and 

individual differences [1], [13], [48], [54]. To address these variabilities, one typical option 

is a nonlinear model, which, yet, often leads to overfitting and thus impairs generalizability. 

Standard supervised methods, such as a linear SVM [25] or AdaBoosting [27], aim to 

separate positive and negative samples using a single classifier. Single-classifier approaches 

may perform well on AUs with high intensities and frontal faces. However, they often fail on 

subtle AUs or AUs with appearance changes caused by head poses or illumination.

Single-classifier approaches are limited due to the lack of a hyperplane with confident 

separation. Fig. 1(a) illustrates a linear SVM separating samples from two overlapped 

classes. Most samples within the SVM margin consist of false positives (FP) and false 

negatives (FN), which result in undesirable ambiguities for training a reliable classifier. 

Throughout this paper, we refer to these ambiguous samples as hard samples, and the 

remaining as easy samples. To address the learning with the hard samples, we propose to 

train two confident classifiers. Fig. 1(b) depicts the confident classifiers learned on the two 

overlapped classes. Unlike standard single-classifier approaches, each confident classifier 

separates easy samples of one class from all else, and thus is able to focus on predicting one 

class with high confidence.

With the confident classifiers, this paper proposes the Confidence Preserving Machine 

(CPM), a novel two-stage learning framework that combines multiple classifiers following 

an “easy-to-hard” strategy. Fig. 1(c) illustrates the CPM framework. During the training 

stage, CPM learns two confident classifiers, which identify hard samples as the ones lying 

between the two hyperplanes and easy samples as the ones that both classifiers give the same 

prediction. Given a test video in the second stage, CPM learns a person-specific (PS) 

classifier using a quasi-semi-supervised (QSS) learning strategy. We term this classifier a 

PS-QSS classifier. Specifically, CPM first uses confident classifiers to assign “virtual” labels 
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to easy test samples. Then, CPM learns the PS-QSS classifier by propagating from the 

virtual labels to hard test samples based on an assumption of spatio-temporal smoothness. 

That is, frames that are closer in both the feature space and the temporal space should share 

similar predictions.

In addition, we show that the proposed CPM can be further extended to improve the 

detection performance. Specifically, we propose two extensions of CPM: (1) iCPM learns 

the confident and PS-QSS classifiers by iteratively adding easy test samples into the training 

set. Confident classifiers retrained on this augmented set can potentially yield improvement 

due to extra information from the test domain. (2) kCPM learns the classifiers in a 

kernelized manner. Unlike standard kernel methods with complexity quadratic in the number 

of samples, we develop a sample selection strategy that effectively reduces the sample size 

for training confident classifiers. Evaluation was performed on four benchmark datasets, 

namely GFT [15], BP4D [56], DISFA [42], and RU-FACS [3]. Comprehensive experiments 

show that both iCPM and kCPM outperformed the regular CPM, baseline methods (e.g., 
SVM and AdaBoosting) and state-of-the-art methods based on supervised learning, semi-

supervised learning, and transfer learning.

A preliminary version of this work appeared as [55]. In this paper, we provide technical 

details in solving the PS-QSS classifier, present extended results with more comparisons and 

datasets, and offer an in-depth analysis of the hard samples discovered by CPM. The rest of 

the paper is organized as follows. We review the related work in Sec. II. Sec. III introduces 

the framework of CPM and each of its components. In Sec. IV, we present the two methods 

of iCPM and kCPM, and provide detailed comparisons between CPM and other related 

learning techniques. Sec. V experimentally evaluates and compares CPM with alternative 

approaches. In Sec. VI, we conclude and describe future direction.

II. Related Work

Facial expression analysis is known challenging for numerous sources of errors. Below we 

review previous efforts to reduce such errors, and semi-supervised learning and transfer 

learning that motivate the proposed CPM.

Errors reduction

There have been several efforts in facial expression analysis to address previously identified 

or suspected sources of error. To recognize subtle expressions, prior studies have 

investigated various combinations of features and classifiers, such as spatio-temporal 

directional features extracted by robust PCA [51], and a temporal interpolation 

{SVM,MKL,RF} classifiers [45]. Another source of error involves head pose. For such 

cases, previous work sought to model head pose and expression simultaneously, e.g., using a 

particle filter with multi-class dynamics [19] or a variable-intensity template [38]. Individual 

differences also cause errors, and can be approached using domain adaption methods [13], 

[48]. Other works seek to jointly recognize face identity and facial expression using a 

dictionary-based component separation algorithm [50]. However, other sources of error, 

such as human aging [35], are possible, and others may be unknown. Addressing specific 
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sources of error individually may impair generalizability and fails to address unknown 

sources of error, which can further impair generalizability.

Instead of dealing with specific factors, CPM is a nonspecific method that copes with 

sources of error both recognizable and not. Regardless of the type of error, CPM is able to 

automatically identify easy samples from hard ones, preserve confident knowledge using 

confident classifiers, and then transfer to a person-specific classifier.

Semi-supervised learning (SSL)

SSL has emerged as a promising approach to incorporate unlabeled data for training. This 

approach makes one or more assumptions on relationships between input and label space 

[9]. The smoothness assumption enforces samples within a neighborhood to share similar 

labels, and can be typically modeled by a graph-based method [41]. The cluster assumption 

encourages clusters of samples to obtain same labels. This assumption has been shown to be 

equivalent to low-density separation [10], and can be extended to entropy minimization [32]. 

The manifold assumption considers that samples lie on a low-dimensional manifold. As the 

closest approach to CPM, Laplacian SVM (Lap-SVM) [5], [43] incorporated this 

assumption as a regularization for learning an SVM. Other work explored the combination 

of the three assumptions using a boosting framework [12]. Interested readers are referred to 

[9], [58] for a more extensive review.

Notwithstanding the progress that has been made by pursuing these assumptions, they could 

be insufficient. As noted, many sources of error may not be modeled or even known. In the 

AU detection scenario where feature distribution across subjects could change significantly 

[13], [48], the smoothness and manifold assumptions in standard SSL could be violated 

because closer data may contain different labels. CPM utilizes a quasi-semi-supervised 

approach that preserves spatial-temporal smoothness on unlabeled test samples.

Transfer learning

Transfer learning considers discrepancy caused by domain differences. Presuming that each 

domain can be represented as a linear subspace, several studies proposed to find 

intermediate spaces so that the domain mismatch can be reduced. Techniques include 

subspace alignment [26], and geodesic distances on a Grassmann manifold [30], [31]. The 

discrepancy between raw features can be alleviated by learning a transformation [36], [44]. 

Some explore the idea of importance re-weighting to adapt one or multiple training 

domain(s) to a test domain [7], [34], [49]. Following this direction, Selective Transfer 

Machine (STM) [13] was proposed to personalize classifiers for facial AU detection by 

selecting a subset of training samples that form a distribution close to the test subject. 

Recently, there have been several studies that describe a training domain as classifier 

parameters, and assume that an ideal classifier for the test domain can be represented as a 

combination of the learned classifiers [1], [21], [22], [53].

CPM differs from transfer learning in three ways. One, most transfer learning methods 

emphasize errors caused by individual differences, head pose or AU intensity; CPM has no 

such assumption. Two, most transfer learning methods are frame-based; CPM considers a 

spatial-temporal smoothness for video data. Three, most transfer learning methods seek 
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multiple sources domains [21], [22], [48] or importance re-weighting [13], [49], which could 

be computationally expensive; CPM avoids so using a sample selection strategy.

III. Confidence Preserving Machine (CPM)

A. Overview of CPM for AU detection

Facial AU detection typically deals with data in the form of videos, i.e., each subject has at 

least a clip of video instead of a single image. Among these videos, some frames are easier 

to tell an AU presence than others. Fig. 2 shows the easy and hard frames from a particular 

video. Because hard samples are intrinsically inseparable, treating easy and hard samples 

equally would degrade the performance of a standard single-hyperplane classifier (e.g., 
SVM [25]).

To address these issues, we propose the CPM, a two-stage framework that exploits multiple 

classifiers with an easy-to-hard strategy. Fig. 3 illustrates the CPM framework. The first 

stage, training confident classifiers, aims to find a pair of classifiers that distinguish easy and 

hard samples in training subjects. We define the easy samples as the ones on which the 

predictions of the confident classifiers agree with each other, and the hard samples 

otherwise. Compared to the standard approaches that use a single classifier, each confident 

classifier focuses on predicting one class. The confident classifiers, therefore, are able to 

identify whether an unseen sample is easy or not, and predict confidently on it. In the second 

stage, training a person-specific classifier, we first identify easy test samples by applying the 

trained confident classifiers. With confident predictions on easy test samples, we introduce a 

quasi-semi-supervised approach to train a person-specific classifier, which we term as a PS-

QSS classifier. The PS-QSS classifier determines the label of the hard samples by 

propagating consistently the predictions in space and time.

B. Train confident classifiers

The first stage in CPM is to train the confident classifiers, a pair of classifiers that aim to 

cooperatively identify and separate easy and hard samples in the training set {xi, yi}i = 1
n  with 

index  = {1, 2, . . . , n}, where yi∈{+1,−1} denotes a label and n is the size of the training 

set.

In this paper, we cast the AU detection problem as a binary classification problem, although 

multi-label formulations have been proposed (e.g.., [57]). We formulate CPM in the context 

of maximum margin learning extending the support vector machine (SVM), but it can be 

applicable to any other supervised learning paradigm. The intuition behind the confident 

classifiers is to learn two classifiers, one for the positive class, represented by a hyperplane 

w+, and will predict confidently positive samples; similarly, w− is for the negative class. We 

consider the easy samples ℰ as the subset of training samples where both classifiers make 

the same prediction and hard samples ℋ otherwise. It is important to note that w+ and w− 

classify the easy positive and negative samples respectively and they are not necessarily 

parallel. Mathematically speaking,
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ℰ = {i ∈ 𝒟 ∣ yiwy
⊤xi > 0, ∀yi ∈ { + , − }},

ℋ = 𝒟\ℰ,
(1)

where ℰ and ℋ denote the index sets of easy samples and hard samples, and we denote the 

confident classifiers (w+,w−), or wy. Learning the confident classifiers can be done 

iteratively by maximizing the margin as:

minwy, ℰ ‖wy‖
2 + ∑

i, j
(ξi

2 + ξ j
2)

s.t. yiwy
⊤xi ≥ 1 − ξi, ∀i ∈ ℰ,

η j
ywy

⊤x j ≥ 1 − ξ j, ∀ j ∈ ℋ,

(2)

where yi is the ground truth label, η j
y is a relabel of a hard training sample xj that will be 

explained below. ξi and ξj are non-negative slack variables for easy samples and hard 

samples respectively, to take into account misclassification. The easy samples will preserve 

the original labels yi, whereas we will relabel the hard samples as η j
+ for w+ and as η j

− for w

−, to make the classifiers as confident as possible.

Alg. 1 summarizes the alternating procedure of solving (2), which involves the easy samples 

ℰ, the hard samples ℋ, and the confident classifiers (w+,w−). Given ℰ and ℋ, the confident 

classifiers (w+,w−) are solved as standard SVMs [25]. Given (w+,w−), ℰ and ℋ are inferred 

using Eq. (1).

Note that the convergence of this alternating procedure is not guaranteed; instead we set a 

maximum iteration. The set of hard samples is initialized as empty. In the later iterations, 

hard samples are updated as those misclassified by both w+ and w−. The relabeling strategy 

enables w+ and w− to preserve confident predictions in each class by adjusting the labels for 

hard samples. Here, we explore two relabeling strategies:

1. Holistic relabeling: The most straightforward strategy is to relabel all hard 

samples as +1 when training w−, and −1 when training w+, i.e., η j
y = − y, ∀xj ∈ 

ℋ. We term this strategy holistic relabeling. The main advantage of holistic 

relabeling is its low computational complexity.

2. Localized relabeling: Holistic relabeling may result in some unnecessary hard 

samples if signal noise exists. To gain more robustness against signal noise, we 

relabel an hard sample xj as +1 only when there exists a neighboring support 

instance xk with positive ground truth label, and similarly for relabeling xj as −1. 

We term this localized relabeling. Denote the set of samples with support 

instances as y = {j ∈ ℋ|∃k ∈ ℋ : d(xj, xk) ≤ r, yk = y}, where r is a threshold 

and d(xj, xk) is the distance between xj and xk. The relabeling is formulated as
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η j
+ =

−1 x j ∈ 𝒮−
y j otherwise, η j

− =
+1 x j ∈ 𝒮+
y j otherwise . (3)

For simplicity, both strategies use binary labels. Note that other relabeling strategies are 

directly applicable, e.g., weighting the relabels similar to those in DA-SVM [7], or 

introducing the concepts of bags as in MIL [2]. Fig. 4 illustrates the two relabeling strategies 

on synthetic examples. (a) and (b) illustrate the confident classifiers learned using holistic 

relabeling on A and B, respectively. As can be seen, the confident classifiers move toward 

the noisy instances in (b), showing that the holistic relabeling is improper for the presence of 

noise. Fig. 4(c) illustrates the result using localized relabeling, which is more robust to noisy 

instances.

Algorithm 1

Train confident classifiers

Input: Data {(xi, yi)}i = 1
n  and its index set  = {1, 2, . . . , n}

Output: Confident classifiers (w+,w−), easy samples ℰ and hard samples ℋ

1: Init: ℰ ← ; ℋ←∅;

2: repeat

3:  (w+,w−) ← solve (2) with fixed ℰ and ℋ;

4:  Update easy and hard samples (ℰ,ℋ) using (1);

5:
 Update relabels η j

+, η j
−∀ j ∈ ℋ;

6: until convergence or exceed max iteration

C. Train a person-specific (PS) classifier using a quasi-semisupervised (QSS) strategy

In the previous section, we have discussed how to train the confident classifiers. As pointed 

out first by Chu et al. [13], a generic classifier trained on many subjects is unlikely to 

generalize well to an unseen subject because of the domain discrepancy between the training 

and the test distributions that vary according to camera model, intra-personal variability, 

illumination, etc. Chu et al. [13] showed that person-specific (PS) and a personalized model 

outperformed existing methods. The distinction between PS and personalized models are as 

follows. PS classifiers are referred to the ones trained in only one subject. Personalized 

classifiers are generic classifiers that are adapted to a particular subject.

Recall our goal is to train a PS classifier f t(x) = wt
⊤x for a test subject. To obtain such a 

classifier, CPM first collects “virtual labels” from the predictions of confident classifiers w+ 

and w−. Since the confident classifiers are trained with many subjects, they are likely to 

generalize well to easy samples. However, there remain hard samples that CPM finds 

difficult to identify. To disambiguate the hard samples, CPM adopts a person-specific 
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classifier using a quasi-semi-supervised (QSS) strategy. In particular, we adopt a Laplacian 

to enforce label smoothness on spatially and temporally neighboring samples.

Let us assume that we have a m-frame test video denoted by Xte = [x1, x2, . . . , xm]⊤ with 

index te = {1, 2, . . . , m}. CPM first identifies the easy test samples ℰt as the ones on 

which the confident classifiers predict consistently, i.e., 

ℰt = {i ∈ 𝒟te ∣ sign(w+
⊤xi) = sign(w−

⊤xi)}, and yi = sign(wy
⊤xi) is a virtual label for an easy test 

sample. Once these virtual labels are obtained, CPM propagates labels to the hard samples 

with a semi-supervised strategy minimizing:

minwt
∑

i ∈ ℰt

ℓ(yi, wt
⊤xi) + γs‖wt‖

2 + γIS(wt, Xte), (4)

where γs and γI control the importance of regularizations.

S(wt,Xte) is defined as the smoothness term. The intuition behind S is to preserve spatial-

temporal relations in the label space, and we propose the smoothness regularizer as:

S(wt, Xte) = ∑
i ∈ 𝒟te

f t(xi) − 1
Zi

∑
j = i − T ,

j ≠ i

i + T
λi jei j f t(x j)

2

, (5)

where f t(x) = wt
⊤x is the PS classifier prediction on sample x, Xte are the test samples, T 

controls the window size for which frames to include in the smoothing, and λij is a weight 

parameter that emphasizes closer temporal neighbors than further ones (i.e., the closer in 

time two frames are the more similar their decision values are). We determine λij using a 

Gaussian distribution centered at the frame of interest, as illustrated in Fig. 5(a) where T = 5. 

We define a selection parameter ei j =
1, di j < ε

0, otherwise
, excluding the frames that are far away in 

feature space. dij is the distance of frame i and j in feature space. Zi is the normalization term 

such that 1
Zi

∑ j = i − T , j ≠ i
i + T λi jei j = 1. After some linear algebra, we can rewrite Eq. (5) in 

matrix form as

S(wt, Xte) = (Xtewt)
⊤D⊤DXtewt, (6)

where D ∈ ℝm×m, Di j =

1, i = j

− 1
Zi

λi jei j, 0 < ∣ i − j ∣ ≤ T

0, otherwise

.
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The sums of D’s rows equal zeros, i.e., Σj Dij = 0. Therefore, the smoothness matrix D 
enforces the neighboring samples in both the feature space and the temporal space to have 

similar predictions. Please refer details for solving wt to Appendix A.

Relations to Laplacian Matrix—Denote C = D⊤D for notational convenience. Both C 
and Laplacian matrix L imposing smoothness on neighboring samples. They share several 

properties, e.g., they are positive semidefinite, sum of each row and column are zero. 

However, C considers both temporal and spatial constrains while L only consider spatial 

constrains. Consequently, they have mathematically differences in formulation. D assembles 

the incidence matrix ∇ where L = ∇⊤∇. Both D and ∇ can be interpreted by a directed 

graph, but in different ways. Let’s denote their corresponding graphs as D = {ℰD, D} and 

∇ = {ℰ∇, ∇}, respectively. The i-th row of ∇ ∈ ℤ|ℰ∇|×| ∇| denotes a directed edge 〈j, k〉, 
with non-zero entries ∇ij = −1 and ∇ik = +1. While D ∈ ℝ| D|×| D|, a non-zero element Dij 

< 0, i ≠ j corresponds to a directed edge 〈j, i〉 in . The absolute value of Dij is the weight of 

edge 〈j, i〉. Note that if there exists an edge 〈j, i〉, then edge 〈i, j〉 exists. But their weights are 

not necessary the same, thus D is not symmetric. Differences can also be found if we regard 

L and C as two operators. Taking an operation on f = [f(x1), . . . , f(xm)]⊤, f⊤ Lf =Σi>j wij 

(f(xi) – f(xj))2, where wij denotes the weight. While, f⊤ Cf = S(wt,Xte), as Eq. (5) shown, has 

a form of f⊤Cf =Σi>j aij (f(xi) – f(xj))2+Σi>j bijf(xi)f(xj)+ c, where aij, bij, and c are 

coefficients. The extra item of f(xi)f(xj) ascribes to the temporal constrain.

Fig. 5 shows the effectiveness of the smoothness term S on 3 AUs in the BP4D dataset [56]. 

To start the label propagation, 2.5% frames were randomly selected from each video as the 

estimated labels of easy instances. We compare the prediction on the rest 97.5% frames by 

training a linear SVM only using the labeled frames, and one with the smoothness term S 
over all the labeled and unlabeled data. As can be seen, compared to the ground truth, the 

prediction with the smoothness term performs more consistent result across three AUs.

In some cases, easy test samples are unavailable, and thus cause Eq. (4) failing to learn wt. 

Most singular cases occur in unbalanced AUs with few positive samples. For instance, the 

appearance of AU1 in a test subject is relatively rare. In such cases, the confident classifiers 

are unlikely to discover easy positive samples from the test subject. We are unable to learn 

wt by Eq. (4) because none easy positive samples are detected. To address these cases, we 

found heuristically that wt = 1
2(w+ + w−) provides good predictions.

IV. Extensions of CPM

While CPM has reported good results, this section describes two extensions: (1) Iterative 

CPM (iCPM) incorporates a progressive labeling strategy by gradually including test data in 

the training set. (2) Kernel CPM (kCPM) extends CPM to incorporate non-linear decision 

boundaries.

A. Iterative CPM (iCPM)

CPM learns in sequential fashion the confident classifiers (Sec. III-B) and the PS-QSS 

classifier (Sec. III-C). So, the PS-QSS classifier depends indirectly on the training data 
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through confident classifiers. However, it is likely that there is mismatch between the 

training and test data [13], [48], and the confident classifiers might not generalize well even 

in the easy samples. To address this issue, we propose iterative CPM (iCPM) that jointly 

learns the confident and PS classifiers.

Algorithm 2

Iterative Confidence Preserving Machine

Input: labeled training data {xi, yi}i = 1
n  with index set  = {1, 2, . . . , n}, unlabeled test data {xi

te}
i = 1
m

 with index 

set te = {1, 2, . . . , m}

Output: person-specific classifier wt

1: ℰ ← , ℋ←∅;

2: (w+,w−) ← solve (2);

3: (ℰ,ℋ) using (1);

4: repeat

5:
 Update relabels η j

+, η j
−, ∀j ∈ ℋ;

6:  (w+,w−) ← solve (2) with fixed ℰ and ℋ;

7:
 Estimate virtual labels {yi}i = 1

m ,

yi =

1 wy
⊤xi

te > 0, ∀y ∈ { − 1, + 1},

−1 wy
⊤xi

te < 0, ∀y ∈ { − 1, + 1},

0 otherwise.

8:
  ℰt = {i ∈ 𝒟te ∣ sign(w+

⊤xi
te) = sign(w−

⊤xi
te)};

9:  if ∃i, j ∈ ℰt, s.t. ŷi = −1, ŷj = 1 then

10:
  wt ← solve (4) given Xte and {yi}i = 1

m ;

11:  else

12:
   wt = 1

2(w+ + w−);

13:  end if

14:
 Update ℰt = {i ∈ 𝒟te ∣ yi = sign(wt

⊤xi
te)};

15:  Update (ℰ,ℋ) ← (1);

16:  ℰ ←ℰ ∪ℰt;

17: until convergence

In iCPM, at each iteration, the easy test samples are selected to be part of the training for the 

confident classifiers, so the confident classifiers is trained with test data (but no labels of test 

data are provided). Alg. 2 summarizes the steps for iCPM algorithm. Fig. 6 illustrates a 
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synthetic example. In Fig. 6, the training and test distributions are different. In the initialized 

step, all the training data are labeled as easy-samples, so the confident classifiers are 

basically a standard SVM, and the two confident classifiers are the same. This classifier 

achieves 97% accuracy on test data. In the first iteration, we update the hard-samples (green 

triangles) and re-train the confident classifiers. The confident classifiers identify easy 

samples (blue and red diamonds) in test data, and the PS-QSS classifier labels the hard-

samples (green diamonds), and learns the PS-QSS classifier (the black line), achieving 99% 

of accuracy. Finally, in the second iteration, the easy and hard samples are again updated to 

train the confident classifiers and the PS-QSS classifier achieving 100% of classification 

accuracy.

Complexity—As in standard transfer learning methods [21], [49], iCPM incorporates all 

the training data to compute a PS-QSS classifier. In every iteration, iCPM learns each of the 

two confident classifier from the union of training samples and easy test samples, and learns 

a PS-QSS classifier from the test samples. Despite the fact that every iteration involves 

learning two confident classifiers and a PS-QSS classifier, iCPM is relatively efficient in 

training due to the learning of linear classifiers. In Alg. 2, solving (2) with fixed ℰ and ℋ 
and solving (4) are both linear with complexity (max(n, d)min(n, d)2) [8], where d is the 

dimension of features; n is the number of samples in ℰ ∪ℋ in (2), or the number of test 

samples in (4).

B. Kernel CPM (kCPM)

CPM and iCPM are efficient to learn because they assume a linear decision boundary. 

However, most practical cases would require a non-linear decision boundary to separate real 

data. Non-linear boundaries are likely to lead a better separation between easy and hard 

samples. A simple approach to extend our proposed CPM model is to directly apply kernel 

tricks in (2) and (4). However, the directly kernelization of CPM is time and memory 

consuming since the training of confident classifiers (2) involves around 100,000 samples. 

To reduce the computational burden, we design a strategy to select samples in the training of 

the confident classifiers. Below, we present the details to kernelize the two steps of kCPM, 

i.e., training confident classifiers and training PS-QSS classifier.

Algorithm 3

Sample selection for kCPM

Input: Positive training samples +, negative training samples −, distance threshold r, order flag positive_first.

Output: Selected points set 

1:  ←∅;

2: if positive_first then

3:   = + ∪ −, where + occur first.

4: else

5:   = − ∪ +, where − occur first.

6: end if

7: for all xi in  in order do
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8:  if minxj∈  d(xi, xj) > r then

9:   Add xi into ;

10:  end if

11: end for

Train confident classifiers—Unlike the linear CPM mentioned in Sec. III, training 

nonlinear confident classifiers involves an n × n kernel matrix that is expensive to store and 

compute. Instead, we propose a sample selection strategy to reduce the size of training 

samples.

Alg. 3 describes the sample selection algorithm. The intuition is to reduce the training size 

by selecting only one representative sample in a region with radius r. That is, a sample is 

selected if and only if none of its r-radius neighbors are selected. This process proceeds until 

all samples are examined. The resulting distribution tends to be uniform, and contains much 

less samples than the original distribution. Denote the desired size of training samples as n′, 

we determined the radius r according to an empirical distance estimation. Specifically, we 

first randomly select n′ samples, compute for each sample the distance to its nearest 

neighbor, and then assign r as the average over n′ distances. The ordering of sample 

selection varies for training the confident classifiers (f+, f−). To get f+, we perform the 

sample selection process for negative samples before positive samples. This ensures that 

each selected positive sample has a neighborhood of only positive samples in the original 

distribution. Thus, f+ trained on such selected samples is confident on its positive 

predictions. To get f−, we apply the same strategy with a reversed order (positive samples 

first).

Fig. 7 illustrates an example of the sample selection strategy. As seen in Fig. 7(b), negative 

samples are selected in the middle region where original positive and negative samples are 

messed up. As a result, the learned f+ lies to the right side of a typical kernel SVM (black 

line in Fig. 7(a)). Similarly, in Fig. 7(c), f− lies to the left side. The selected samples in Fig. 

7(b)–(c) distribute uniformly, and are much less than those in original dataset as shown in 

Fig. 7(a).

The sample selection algorithm shows its advantages on two-folds. First, it is feasible to 

train kernel machines on the selected samples, which are much smaller in size than the 

original dataset while well represent the kernel space. Although other instance selecting 

algorithms can also reduce the size of original dataset (e.g., sparse modeling representative 

selection [18], multi-class instance selection [11]), they lack the mechanisms to train two 

biased classifiers. The second advantage of the proposed sample selection strategy is that 

confident classifiers trained on the two sets of points are able to predict confidently on 

opposite sides of the margin. Specifically, the classifier is confident in its negative 

predictions if it is trained on the samples selected under a positive-first order. And similar is 

the other one.
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Train the PS-QSS classifier—Using Alg. 3, we are able to select a set of positive-first 

samples { x1
+, …, x

n+
+ }, a set of negative-first samples { x1

−, …, x
n−
− }, and learn the nonlinear 

confident classifiers (f+, f−). For notational convenience, we use the notation y ∈ {+, −} in 

Sec. III-B to denote the selected samples as {xi
y}

i = 1
ny

, and the confident classifiers as fy. 

Given fy, the prediction on a test sample xte becomes f y(xte) = ∑i = 1
ny

αyi
⊤〈xi

y, xte〉ℋ, where αy 

= [αy1, . . . , αyny ]⊤ ∈ ℝny
 are the parameters of fy, and 〈., .〉ℋ denotes the inner product in 

a reproducing kernel Hilbert space. In this paper, we use 〈xi, x j〉ℋ = exp −
‖xi − x j‖

2

2σ2 . 

Similar to the regular linear CPM, test samples with consistent predictions from the 

confident classifiers are identified as easy test samples, i.e., ℰt = {i ∈ te|f+(xi)f−(xi) > 0}. 

Then, we train a nonlinear person-specific (PS) classifier in a quasisemi-supervised (QSS) 

manner as discussed in Sec. III-C using the nonlinear form of Eq. (4):

min
αt ∑

i ∈ ℰt

ℓ(yi, αt⊤Ki
t) + γsα

t⊤Ktαt + γIS(αt, Kt), (7)

where Kt ∈ ℝm×m is a kernel matrix computed from m test samples, and S(αt,Kt) is the 

nonlinear smoothness term defined as:

S(αt, Kt) = (Ktαt)⊤D⊤DKtαt . (8)

The prediction of a test sample x is then computed as f t(x) = ∑i = 1
m αi

t〈xi, x〉ℋ, where αi
t is the 

i-th element of αt.

C. Discussion on related work

The proposed CPM and its extensions (referred as CPMs) are related to existing methods 

that use multiple classifiers [27], [37], methods that follow an “easy-to-hard” strategy [4], 

[33], [39], semi-supervised learning [6], [43], [46], and transfer learning [23]. Table I 

compares CPMs against related methods in terms of their properties.

A crucial property of CPMs is the use of multiple classifiers, which are also exploited in 

boosting methods [27] and Twin SVMs (TW-SVMs) [37]. The goal of using multiple 

classifiers is to generate multiple non-parallel hyperplanes that yield better separation than 

standard methods with a single hyperplane. Boosting methods train a set of weak classifiers 

and sequentially combine them into a strong classifier. In TW-SVMs, each hyperplane of the 

twin classifiers is close to one class and far from the other. Similarly, CPM uses the 

confident classifiers that form two non-parallel hyperplanes to preserve confident 

predictions.
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Other methods also employ the mechanism of identify easy and hard samples, such as self-

paced learning [39] and SVM with reject options (RO-SVM) [4], [33]. Self-paced learning 

models the “easiness” as latent variables, and assigns less weights to samples that are 

potentially hard to classify. RO-SVM designs new loss functions for hard samples in the 

“rejection region”. However, all these methods focus on classification without using 

unlabeled data.

Semi-supervised learning (SSL) is a technique known for the use of unlabeled data. 

Examples include self-training [46], co-training [6] and Laplacian SVM (Lap-SVM) [43]. 

Self-training progressively adds unlabeled data with high confidence to retrain the classifier. 

Co-training adopts unlabeled data by training two or more classifiers so that the most 

confident samples from one classifier are used to train another. Lap-SVM utilizes unlabeled 

data by propagating labeled samples to unlabeled ones through a smoothness assumption. 

However, common to these methods is the assumption that labeled and unlabeled data are 

drawn from the same distribution.

Mismatches in data distribution can be addressed by transfer learning approaches. Closest to 

CPM is DAM [23] due to their common properties such as the use of multiple classifiers, 

smoothness assumptions, the use of unlabeled test data, and progressively labeling. One 

major difference between CPM and DAM is how a test sample is identified as easy or hard. 

DAM used a manually-determined threshold to reject a hard test sample. On the contrary, 

CPM automatically identifies easy and hard samples using a principled easy-to-hard 

strategy. Compared to the aforementioned methods, CPMs possess all properties as 

summarized in Table I.

V. Experiments

In this section, we experimentally validate the proposed CPM and its extensions. First, we 

describe the datasets and settings used in the experiments. Then, we provide an objective 

evaluation on CPM components, and compare CPM with alternative methods, including a 

baseline SVM, semi-supervised learning methods, transfer learning methods, and boosting 

methods. Finally, we provide hard sample analysis in terms of AU intensities, head poses, 

and individual differences.

A. Datasets and settings

This section describes datasets and settings used throughout the experiments. We chose to 

use four largest spontaneous facial expressions datasets:

1. GFT [15] are recorded when three unacquainted young adults sat around a 

circular table for a 30-minute conversation with drinks. Moderate out-of-plane 

head motion and occlusion are presented in the videos which makes the AU 

detection challenging. In our experiments, 50 subjects are selected and each 

video is about 5000 frames.

2. BP4D [56] is a spontaneous facial expression dataset in both 2D and 3D videos. 

The dataset includes 41 participants aging from 18 to 29 associating with 8 tasks, 

which are covered with an interview process and a series of activities to elicit 
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eight emotions. Frame-level ground-truth for facial actions are obtained using 

FACS. In our experiments, we only use the 2D videos.

3. DISFA [42] recorded 27 subjects’ spontaneous expressions when they were 

watching video clips. DISFA not only codes the AUs, but also labels the 

intensities. In our experiments, we use the frames with intensities equal or 

greater than A-level as positive, the rest as negative. The dataset consist of 27 

videos with 4845 frames each.

4. RU FACS [3] consists of 100 subjects participating in a “false opinion” paradigm 

that shows a wide rage of emotional expressions. 33 subjects have been FACS-

coded. Like the other three, it includes spontaneous behavior such as speech. We 

selected 28 of the coded 33 participants with sequence length of about 7000 

frames.

All experiments were conducted under a same protocol where each dataset was reorganized 

in 10 disjoint splits. Each split designated numerous (5 in GFT, 4 or 5 in BP4D, 2 or 3 in 

DISFA and RU FACS) subjects as test data and the rest as training data, i.e., each subject 

was treated as the test data in turns during the 10 splits. For each frame, we tracked 49 facial 

landmarks using IntraFace [16], and registered faces onto a 200×200 template. Then, SIFT 

descriptors were extracted on 32×32 regions centered at each facial landmark.

For evaluation, we reported both conventional frame-based F1 score (F1-frame) and event-

based F1 score (F1-event) [17]. The former is prevalent in binary classification problems, 

while the latter can evaluate detection performance at event-level. An “event” is defined as a 

max continuous period with an AU presence. In this sense, F1-event captures the agreement 

between the ground truth events and the predicted events, by measuring the event-based 

recall ER as the fraction of true events being correctly predicted, and the event-based 

precision EP as the fraction of predicted events being true. An event-level agreement holds 

true if an overlap score between a ground truth event and a predicted event is above a certain 

threshold. F1-event was computed as the area under the 2 · ER · EP
ER + EP  curve by adjusting the 

overlapping threshold in [0,1].

B. Objective evaluation on CPM components

Recall that two major components in CPM are the confident classifiers and the person-

specific (PS) classifier learned with quasi-semi-supervised (QSS) learning strategy. To 

validate their effectiveness, we conducted comparisons with a baseline linear SVM [25], 

confident classifiers only (Conf), and CPM (i.e., Conf+QSS). In Conf, we trained confident 

classifiers using Alg. 1, and then passed them to train a PS classifier without a smoothness 

assumption. Conf checks whether the confident classifiers are effective when compared with 

a standard single-hyperplane SVM. CPM differs from Conf by learning the PS classifier 

with the spatial-temporal smoothness as discussed in Sec. III-C. In this way, CPM verifies 

the effectiveness of the PS-QSS classifier on propagating labels with smoothness 

assumptions. We also conducted iCPM to validate the iterative integration in CPM, and 

kCPM see how a non-linear boundary would influence the performance.
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Fig. 8 reports the results of the above four experiments on GFT, BP4D, DISFA, and RU-

FACS datasets, respectively. The values of F1-frame and F1-event were reported as the 

average over all AUs. Comparing the results between SVM and Conf, confident classifiers 

showed positive affects on the performance. The effectiveness of applying smoothness 

assumptions was indicated by the results between Conf and CPM. Out of the results, iCPM 

outperformed CPM in most cases, validating the effectiveness of the proposed iterative 

integration. kCPM shows its advantages over CPM because non-linear boundaries are more 

accurate than linear ones. When compared with iCPM, kCPM only has a better F1-frame 

performance. An explanation is that iCPM has an iterative mechanism, which iteratively 

strengthens the spatiotemporal smoothness. Thus, a better F1-event is achieved.

C. Comparisons with alternative methods

This section compares the proposed CPM with alternative methods discussed in Sec. IV-C, 

including baseline methods, semi-supervised learning (SSL), and transfer learning. Note that 

typical transfer learning methods treat each dataset as a domain, while this subject treats 

each subject as a domain. For baselines, we used LibLinear [25] and Matlab toolbox for 

Adaboost [27]. For SSL, we implemented a linear version of Laplacian SVM (Lap) [43]. Its 

kernel version is computationally prohibitive because our experiments contain more than 

100,000 samples. For transfer learning, we compared to state-of-the-art methods including 

Geodesic Flow Kernel (GFK) [30], Domain Adaption Machine (DAM) [21], and Multi-

source Domain Adaptation (MDA) [49]. GFK computed the geodesic flow kernel from 

training to test sample, and then used it as a kernel in SVM. DAM fitted a classifier for test 

subject as a linear combination of classifiers of training subjects. Note that DAM is able to 

tackle with unlabeled test data. We did not use its extended version DSM [22] because DSM 

requires to enumerate all the possible selections of source domains, which are as much as 

245 in our experiment. MDA performed unsupervised domain adaptation by re-weighting 

both source domains and training instances. All methods, except for SVM and Ada, learned 

a specific classifier for each test subject. Codes of other competitive methods were either 

downloaded from author’s web page or provided by the authors. To show a more fair 

comparison, we also implemented Hidden Markov Model (HMM) as a post-processing for 

smoothing the prediction of SVM, Lap, and Ada. Note that HMM was not directly 

applicable for DAM, MDA, and GFK because their scores of the frame-level labeling output 

were available only for test data.

Table II~V show the results reported with the best parameters. SVM and Ada outperformed 

well in some AUs. Despite this, the overall performances of Ada were worse than iCPM, 

because Adaboost is a supervised method without investigating unlabeled test data. Overall, 

Lap had the worst performance due to its unsuitable assumption for spontaneous facial 

expression detection, which enforced the data to have similar decision values with their 

neighbors. Such assumption was not guaranteed across training and test subjects drawn from 

different distributions. Lap achieved better results on one or two AUs in BP4D. This is 

because most frames in BP4D dataset were frontal and thus had less appearance differences.

Both DAM and MDA assumed the person-specific classifier is a linear combination of 

multiple source classifiers. When positive and negative data were extremely imbalanced, 
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e.g., AU1 on GFT, DAM performed poorly because each source classifier was unreliable. 

MDA performed better than DAM because MDA learned the weights for training data and 

source-domains instead of using fixed weights, meanwhile, MDA had a smooth assumption 

over test data. GFK performed similarly to SVM, although it did not provide a way to deal 

with multiple sources. GFK regarded all the training videos as a domain and represented 

data on the Grassmann manifold from training data to the test data. Across three datasets, 

iCPM consistently outperformed three transfer learning methods.

With few exceptions, iCPM consistently outperformed the alternative methods in both 

metrics. Because iCPM incorporated the spatial-temporal smoothness term (Sec. III-C), it 

showed an obvious increase on F1-event compared to F1-frame. Recall that AU detection 

aims for detecting temporal events, we believe this spatial-temporal smoothness would 

significantly improve the detection result. Note that the experiments with HMM did not 

show consistent improvements on either F1-frame or F1-event as iCPM did. A possible 

explanation is that a trivial enforcement of temporal consistency is likely to make some 

frames similar to their misclassified neighbors, or over-smooth some short events. It 

indicated that the performance edge of iCPM was given by both separating easy/hard 

samples and its temporal-spatial smoothness.

D. Hard sample analysis

Automated facial AU detector could fail due to various sources of errors. These errors are 

ubiquitous in AU detection, but few existing studies address or systematically identify them. 

In this section, we utilize CPM’s nature to identify the errors as “hard samples”, in hope to 

provide a better understanding in challenges of automated AU detection. Specifically, we 

rigorously investigate the properties of hard samples using the original CPM (Section III). 

The properties for investigation include AU intensity, head pose, and proportions of hard 

samples in different individuals or AUs.

AU intensity—AU intensity measures the strength of an AU, telling if an AU is obvious or 

not. Because annotations of AU intensity is available only in the DISFA dataset, we used 

DISFA for this investigation. Intensity ranges from ‘A’ to ‘E’; ‘E’ reflects the most obvious 

AU. Fig. 9 illustrates the statistic analysis in terms of AU intensity. We consider hard 

samples in two cases. First, we investigate the percentage of hard samples from each of 8 

AUs in every intensity, as shown in the upper row of Fig. 9. As can been seen, in almost all 

cases, the lower the intensity, the more hard samples are discovered. This observation is the 

most clear when we average over all AUs, confirming that low-intensity AUs tend to be hard 

samples with high probability. Second, we investigate the percentage of each intensity 

within positive hard samples, as shown in the lower row. As can be seen, most positive hard 

samples (those with present AUs) have low level intensities, and no E-level AUs were 

identified as hard samples. This finding suggests that AUs in hard samples have relatively 

low intensities, providing a proof that most hard positive samples come from low-intensity 

AUs, while all E-level AUs are identified as easy samples. Note that each figure in lower row 

does not sum to 1, because we have excluded the ones with intensity ‘0’ (negative samples) 

from the statistic.

Zeng et al. Page 17

IEEE Trans Image Process. Author manuscript; available in PMC 2018 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Low-intensity AUs v.s. head poses—Given above AU intensity analysis, our findings 

suggest that subtle AUs (AU with low intensities) are the majority of hard samples. In 

addition, we have known that head pose could influence the performance [19], [38]. Here we 

investigate the effects of AU subtleness and head poses on GFT, BP4D, and DISFA datasets. 

Because intensity annotations were unavailable in these datasets, we measured the 

subtleness of an AU at frame xi by its similarity to onset or offset frames:

s(xi) = 1
z exp −β min

j ∈ ℐ d(xi, x j) , (9)

where ℐ denotes the index set of onset/offset frames, d(xi, xj) is the distance (we used 

Euclidean distance) between frames xi and xj, z and β are parameters that normalize the 

similarity to (0, 1]. The head pose of a frame was measured by its rotation angle to the 

frontal face. In particular, given a rotation matrix R ∈ ℝ3×3, the angle θ(R) between the face 

axis and the optical axis of the camera is calculated as

θ(R) = arccos
R33

‖u(R)‖ , (10)

where u(R) = 0 0 1 R is the projection of rotation on the optical axis of camera (z-axis). 

R33 is the element of R in the third row and third column. Denote sℐ = 1
∣ ℐ ∣ ∑i ∈ ℐs(xi) as 

an averaged similarity over a set of frames ℐ, and θℐ = 1
∣ ℐ ∣ ∑i ∈ ℐθ(xi) as an averaged pose 

angle. Let frames with high similarities with onset/offset frames be ℐh = {s(xi) ≥ τs̄ε, ∀i ∈ 
ℋ}, and frames with low similarity ℐℓ = ℋ\ℐh. τ is a scaling factor controlling the factor, 

which we empirically set τ = 1.5. For each AU, we computed their statistics in AU 

subtleness and head poses as s̄ℐh and θ̄ℐℓ, respectively. Generally, subtle AUs in frontal faces 

lead to large values in similarities, while large head poses could lead to small values in 

similarities. Fig. 10 illustrates the CPM-identified hard and easy training samples in the 

similarity-angle space of (s̄ℐh, θ̄ℐℓ). For three datasets, each AU is represented as two points 

in the 2D space: one for easy samples and the other for hard samples. As can be seen, easy 

samples consistently lie on the bottom-left corner in the similarity-angle space, showing that 

easy sample typically comes from frontal faces with low similarity to onset/offset frames. 

On the other hand, hard samples consistently lie on the right-up of the similarity-angle 

coordinates. This justifies that sources of “sample hardness” can be traced back to subtleness 

of an AU or large head poses.

Biases in individuals and AUs—We validated biases in individual and AUs by 

investigating the proportions of hard samples in different subjects or different AUs. We 

employed GFT dataset for this experiment because it contains the most frames and subjects 

of all considered datasets. Fig. 11 illustrates the proportions of hard samples in GFT dataset. 

The left figure shows an average proportion of hard samples in different subject. As can 

been seen, the proportions vary between different subjects. For instance, some contains 
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about three times more hard samples than others. The right figure shows the average 

proportion for each AU. The dark green bars denote the proportions of hard positive samples 

computed as #hard pos. samples
#all pos. samples , and similarly did the hard negative samples were computed 

(light green bars). As can be seen, the proportion differs across AUs. Note that for all AUs 

except 14, proportion of hard positive samples are higher than those for negative ones. That 

is because only AU14 has more positive samples than negative ones.

VI. Conclusion

In this study, we proposed confidence preserving machine (CPM) for facial AU detection. 

CPM exploits an easy-to-hard strategy that first recognizes easy samples by a pair of 

confident classifiers, and then tackles hard samples by propagating predictions from easy 

samples to hard ones. Considering that the confident classifiers could be influenced by 

different distributions between training and test data, we designed an iterative CPM (iCPM) 

that iteratively adds easy test samples to the training process of confident classifiers. We also 

developed an efficient kernel CPM (kCPM) to capture non-linear boundaries between easy 

and hard samples. Results on four spontaneous facial expression datasets show that our 

methods outperform state-of-the-art semi-supervised learning, transfer learning methods, 

and a boosting method. Current CPM and its extensions are offline AU detectors. Future 

work includes an “online” extension of CPM by incrementally updating the confident 

classifiers and the QSS classifier, e.g., augmenting the easy training samples ε for every t 
frames.
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Appendix A Solution to PS-QSS Classifier wt

This appendix provides details about the derivation of solving the PS-QSS classifier in 

Problem (4), Sec. III-C. Without loss of generality, we multiply Problem (4) by 1
2  to ease a 

multiple of 2 during the derivation:
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minwt

1
2 ∑

i ∈ ℰt

ℓ(yi, wt
⊤xi) +

γs
2 ‖wt‖

2 +
γI
2 wt

⊤(DXte)⊤DXtewt, (11)

where ℰt is the index set of easy test samples, ℓ(y, t) = max(0, 1 − yt)2 is a quadratic loss, ŷi 

is the virtual label that confident classifiers assign to a easy test sample, and 

wt
⊤(DXte)⊤D(Xte)wt is the smooth regularizer detailed in Sec. III-C. We use ŷ ∈ ℝ|ℰt| 

interchangeably to denote a vector of ŷi. To solve Eq. (11), we use the Newton’s method for 

solving the convex optimization problem. We denote the Hessian matrix of Eq. (11) as H 
and the step size as α. A Newton step at iteration (τ + 1) for wt follows the update:

wt
(τ + 1) = wt

(τ) − αH−1∇wt
, (12)

where the first order Jacobian function ∇wt and the second order Hessian matrix H are 

computed as:

∇wt
= XE

⊤EsvXℰwt − EsvXℰy + γI(DXte)⊤DXtewt + γswt (13)

H = Xℰ
⊤EsvXℰ + γI(DXte)⊤DXte + γsId, (14)

where Xℰ ∈ ℝ|ℰt|×d denotes the samples in ℰt, Id is an d × d identity matrix, and Esv ∈ 
ℝ|ℰt|×|ℰt| is a diagonal matrix that indicates support vectors in Xℰ, i.e., Esv,ii = 1 if the i-th 

sample of ℰt is the support vector, and 0 otherwise. Specifically, support vectors are the 

frames with non-zero loss. From Eqs. (13) and (14), we obtain:

∇wt
= Hwt − EsvXℰy . (15)

Substituting Eq. (15) into the Newton step in Eq. (12), we obtain the update for solving wt:

wt
(τ + 1) = (1 − α)wt

(τ) + αH−1EsvXℰy . (16)

Note that the second term in Eq. (16) involves an expensive computation of matrix inverse. 

We avoid such inversion by computing (H−1EsvXℰ ŷ) as the solution to the linear system Hx 
= EsvXℰŷ.
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Fig. 1. 
The main idea of Confidence Preserving Machine (CPM): (a) A standard single-margin 

classifier identifies true positive (TP), true negative (TN), false positive (FP) and false 

negative (FN). Data within the margin (dashed lines) consist of mostly FP and FN, 

producing undesired ambiguities for training a classifier. (b) The proposed confident 
classifiers, two hyperplanes that are not necessarily parallel, reveal easy and hard samples 

for preserving confident predictions in each class. (c) The proposed CPM, consisting of 

confident classifiers and a person-specific (PS) classifier using a quasi-semi-supervised 

(QSS) learning strategy, is trained to propagate predictions from confident test samples (easy 

test samples) to hard ones.
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Fig. 2. 
Illustration of CPM on identifying AU12 from a real video. Dashed lines (light green) 

indicate the hard frames due to low intensities and head pose; solid lines indicate the easy 

samples for positive (light yellow) and negative (dark green) ones.
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Fig. 3. 
The proposed two-stage CPM framework: Given training videos, the confident classifiers are 

first trained, and then are passed to train a PS-QSS classifier, which makes the final 

predictions on the test video. In iterative CPM, easy test samples are selected to iteratively 

expand the training set.
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Fig. 4. 
Illustration of two relabeling strategies. Data A and B are two synthetic data without and 

with noisy instances, respectively. (a)~(c) show the confident classifiers learned on the 

relabeled data using holistic relabeling on A, holistic relabeling on B, and localized 

relabeling on B, respectively.
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Fig. 5. 
(a) an example of λ with T = 5. (b)~(d) show the effectiveness of the smoothness term S on 

AU6 on video 2F01_11, AU12 on video 2F01_09, and AU17 on video 2F01_09, 

respectively. The y-axis denotes AU occurrence (+1: presence, −1: absence).
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Fig. 6. 
A Synthetic example of iCPM. The first column illustrates two training subjects (rectangles 

and circles) and a test subject (diamonds). A same color indicates the same class. The 

second, third, and forth column illustrates the initialization and two iterations in Alg. 2, 

respectively. Points in blue and red colors are easy samples, while those in green are hard 

ones. (This figure is best shown in color copies).
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Fig. 7. 
An illustration of kCPM: Easy negative, easy positive, and hard samples are denoted as blue 

rectangles, red circles, and green triangles, respectively. (a) A standard kernel SVM trained 

on original samples. (b)–(c) Confident classifiers f+ and f− trained on selected points under 

positive-first order and negative-first order, respectively. (d) Confident classifiers 

cooperatively separate easy and hard samples.
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Fig. 8. 
Results of SVM, confident, CPM, iCPM, and kCPM. The values are averaged over different 

AUs. In each dataset, different amounts of AUs are involved: 11 in GFT, 12 in BP4D, 8 in 

DISFA, 7 in RU FACS. Note that the scales in each dataset are different for display purpose.

Zeng et al. Page 32

IEEE Trans Image Process. Author manuscript; available in PMC 2018 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Analysis on CPM-selected hard samples in terms of AU intensities using the DISFA dataset: 

(Upper) the percentage of hard samples within each intensity; (lower) the percentage of each 

AU intensity within positive hard samples.
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Fig. 10. 
Analysis on CPM-selected hard and easy training samples in terms of head pose angle and 

the similarity with onset/offset frames. Triangles and rectangles indicate hard and easy 

samples, respectively. A number indicate an AU; “overall” indicates the average over all 

data.
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Fig. 11. 
A proportion of hard training samples that CPM selected from the GFT dataset. (Left) Each 

bar denotes an averaged portion of hard samples over 11 AUs for a subject. (Right) Each bar 

denotes an averaged proportion over 50 subjects for each AU.
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