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Abstract

Facial action unit (AU) detection from video has been a long-standing problem in automated facial
expression analysis. While progress has been made, accurate detection of facial AUs remains
challenging due to ubiquitous sources of errors, such as inter-personal variability, pose, and low-
intensity AUs. In this paper, we refer to samples causing such errors as hard samples, and the
remaining as easy samples. To address learning with the hard samples, we propose the Confidence
Preserving Machine (CPM), a novel two-stage learning framework that combines multiple
classifiers following an “easy-to-hard” strategy. During the training stage, CPM learns two
confident classifiers. Each classifier focuses on separating easy samples of one class from all else,
and thus preserves confidence on predicting each class. During the testing stage, the confident
classifiers provide “virtual labels” for easy test samples. Given the virtual labels, we propose a
quasi-semi-supervised (QSS) learning strategy to learn a person-specific (PS) classifier. The QSS
strategy employs a spatio-temporal smoothness that encourages similar predictions for samples
within a spatio-temporal neighborhood. In addition, to further improve detection performance, we
introduce two CPM extensions: iCPM that iteratively augments training samples to train the
confident classifiers, and KCPM that kernelizes the original CPM model to promote nonlinearity.
Experiments on four spontaneous datasets GFT [15], BP4D [56], DISFA [42], and RU-FACS [3]
illustrate the benefits of the proposed CPM models over baseline methods and state-of-the-art
semisupervised learning and transfer learning methods.
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Index Terms

Transfer learning; semi-supervised learning; support vector machine (SVM); confident classifiers;
self-paced learning; easy-to-hard; facial action unit (AU) detection

l. Introduction

Facial expressions convey varied and nuanced meanings. Small variations in the timing and
packaging of smiles, for instance, can communicate a polite greeting, felt enjoyment,
embarrassment, or social discomfort. To analyze information afforded by facial expressions,
the most widely used approach is the Facial Action Coding System (FACS) [24]. FACS
describes facial activities in terms of anatomically based Action Units (AUs). AUs can occur
alone or in combinations to represent nearly all possible facial expressions. AUs have a
temporal envelope that minimally includes an onset (or start) and an offset (or stop), and
may include changes in intensity. There has been an encouraging progress on automated
facial AU detection during the past decades, especially for posed facial actions [14], [20],
[47], [52], [59].

Accurate detection of facial AUs remains challenging due to numerous sources of errors,
including quality and quantity of annotations [40], head yaw [28], low intensity [29], and
individual differences [1], [13], [48], [54]. To address these variabilities, one typical option
is a nonlinear model, which, yet, often leads to overfitting and thus impairs generalizability.
Standard supervised methods, such as a linear SVM [25] or AdaBoosting [27], aim to
separate positive and negative samples using a single classifier. Single-classifier approaches
may perform well on AUs with high intensities and frontal faces. However, they often fail on
subtle AUs or AUs with appearance changes caused by head poses or illumination.

Single-classifier approaches are limited due to the lack of a hyperplane with confident
separation. Fig. 1(a) illustrates a linear SVM separating samples from two overlapped
classes. Most samples within the SVM margin consist of false positives (FP) and false
negatives (FN), which result in undesirable ambiguities for training a reliable classifier.
Throughout this paper, we refer to these ambiguous samples as hard samples, and the
remaining as easy samples. To address the learning with the hard samples, we propose to
train two confident classifiers. Fig. 1(b) depicts the confident classifiers learned on the two
overlapped classes. Unlike standard single-classifier approaches, each confident classifier
separates easy samples of one class from all else, and thus is able to focus on predicting one
class with high confidence.

With the confident classifiers, this paper proposes the Confidence Preserving Machine
(CPM), a novel two-stage learning framework that combines multiple classifiers following
an “easy-to-hard” strategy. Fig. 1(c) illustrates the CPM framework. During the training
stage, CPM learns two confident classifiers, which identify hard samples as the ones lying
between the two hyperplanes and easy samples as the ones that both classifiers give the same
prediction. Given a test video in the second stage, CPM learns a person-specific (PS)
classifier using a quasi-semi-supervised (QSS) learning strategy. We term this classifier a
PS-QSS classifier. Specifically, CPM first uses confident classifiers to assign “virtual” labels
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to easy test samples. Then, CPM learns the PS-QSS classifier by propagating from the
virtual labels to hard test samples based on an assumption of spatio-temporal smoothness.
That is, frames that are closer in both the feature space and the temporal space should share
similar predictions.

In addition, we show that the proposed CPM can be further extended to improve the
detection performance. Specifically, we propose two extensions of CPM: (1) /CPM learns
the confident and PS-QSS classifiers by iteratively adding easy test samples into the training
set. Confident classifiers retrained on this augmented set can potentially yield improvement
due to extra information from the test domain. (2) A<CPM learns the classifiers in a
kernelized manner. Unlike standard kernel methods with complexity quadratic in the number
of samples, we develop a sample selection strategy that effectively reduces the sample size
for training confident classifiers. Evaluation was performed on four benchmark datasets,
namely GFT [15], BP4D [56], DISFA [42], and RU-FACS [3]. Comprehensive experiments
show that both iCPM and kCPM outperformed the regular CPM, baseline methods (e.g.,
SVM and AdaBoosting) and state-of-the-art methods based on supervised learning, semi-
supervised learning, and transfer learning.

A preliminary version of this work appeared as [55]. In this paper, we provide technical
details in solving the PS-QSS classifier, present extended results with more comparisons and
datasets, and offer an in-depth analysis of the hard samples discovered by CPM. The rest of
the paper is organized as follows. We review the related work in Sec. 1. Sec. 11l introduces
the framework of CPM and each of its components. In Sec. IV, we present the two methods
of /CPM and KCPM, and provide detailed comparisons between CPM and other related
learning techniques. Sec. V experimentally evaluates and compares CPM with alternative
approaches. In Sec. VI, we conclude and describe future direction.

Il. Related Work

Facial expression analysis is known challenging for numerous sources of errors. Below we
review previous efforts to reduce such errors, and semi-supervised learning and transfer
learning that motivate the proposed CPM.

Errors reduction

There have been several efforts in facial expression analysis to address previously identified
or suspected sources of error. To recognize subtle expressions, prior studies have
investigated various combinations of features and classifiers, such as spatio-temporal
directional features extracted by robust PCA [51], and a temporal interpolation
{SVM,MKL,RF} classifiers [45]. Another source of error involves head pose. For such
cases, previous work sought to model head pose and expression simultaneously, e.g., using a
particle filter with multi-class dynamics [19] or a variable-intensity template [38]. Individual
differences also cause errors, and can be approached using domain adaption methods [13],
[48]. Other works seek to jointly recognize face identity and facial expression using a
dictionary-based component separation algorithm [50]. However, other sources of error,
such as human aging [35], are possible, and others may be unknown. Addressing specific
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sources of error individually may impair generalizability and fails to address unknown
sources of error, which can further impair generalizability.

Instead of dealing with specific factors, CPM is a nonspecific method that copes with
sources of error both recognizable and not. Regardless of the type of error, CPM is able to
automatically identify easy samples from hard ones, preserve confident knowledge using
confident classifiers, and then transfer to a person-specific classifier.

Semi-supervised learning (SSL)

SSL has emerged as a promising approach to incorporate unlabeled data for training. This
approach makes one or more assumptions on relationships between input and label space
[9]. The smoothness assumption enforces samples within a neighborhood to share similar
labels, and can be typically modeled by a graph-based method [41]. The c/uster assumption
encourages clusters of samples to obtain same labels. This assumption has been shown to be
equivalent to low-density separation [10], and can be extended to entropy minimization [32].
The manifold assumption considers that samples lie on a low-dimensional manifold. As the
closest approach to CPM, Laplacian SVM (Lap-SVM) [5], [43] incorporated this
assumption as a regularization for learning an SVM. Other work explored the combination
of the three assumptions using a boosting framework [12]. Interested readers are referred to
[9], [58] for a more extensive review.

Notwithstanding the progress that has been made by pursuing these assumptions, they could
be insufficient. As noted, many sources of error may not be modeled or even known. In the
AU detection scenario where feature distribution across subjects could change significantly
[13], [48], the smoothness and manifold assumptions in standard SSL could be violated
because closer data may contain different labels. CPM utilizes a quasi-semi-supervised
approach that preserves spatial-temporal smoothness on unlabeled test samples.

Transfer learning

Transfer learning considers discrepancy caused by domain differences. Presuming that each
domain can be represented as a linear subspace, several studies proposed to find
intermediate spaces so that the domain mismatch can be reduced. Techniques include
subspace alignment [26], and geodesic distances on a Grassmann manifold [30], [31]. The
discrepancy between raw features can be alleviated by learning a transformation [36], [44].
Some explore the idea of importance re-weighting to adapt one or multiple training
domain(s) to a test domain [7], [34], [49]. Following this direction, Selective Transfer
Machine (STM) [13] was proposed to personalize classifiers for facial AU detection by
selecting a subset of training samples that form a distribution close to the test subject.
Recently, there have been several studies that describe a training domain as classifier
parameters, and assume that an ideal classifier for the test domain can be represented as a
combination of the learned classifiers [1], [21], [22], [53].

CPM differs from transfer learning in three ways. One, most transfer learning methods
emphasize errors caused by individual differences, head pose or AU intensity; CPM has no
such assumption. Two, most transfer learning methods are frame-based; CPM considers a
spatial-temporal smoothness for video data. Three, most transfer learning methods seek
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multiple sources domains [21], [22], [48] or importance re-weighting [13], [49], which could
be computationally expensive; CPM avoids so using a sample selection strategy.

lll. Confidence Preserving Machine (CPM)

A. Overview of CPM for AU detection

Facial AU detection typically deals with data in the form of videos, /.e., each subject has at
least a clip of video instead of a single image. Among these videos, some frames are easier
to tell an AU presence than others. Fig. 2 shows the easy and hard frames from a particular
video. Because hard samples are intrinsically inseparable, treating easy and hard samples
equally would degrade the performance of a standard single-hyperplane classifier (e.g.,
SVM [25]).

To address these issues, we propose the CPM, a two-stage framework that exploits multiple
classifiers with an easy-to-hard strategy. Fig. 3 illustrates the CPM framework. The first
stage, training confident classifiers, aims to find a pair of classifiers that distinguish easy and
hard samples in training subjects. We define the easy samples as the ones on which the
predictions of the confident classifiers agree with each other, and the hard samples
otherwise. Compared to the standard approaches that use a single classifier, each confident
classifier focuses on predicting one class. The confident classifiers, therefore, are able to
identify whether an unseen sample is easy or not, and predict confidently on it. In the second
stage, training a person-specific classifier, we first identify easy test samples by applying the
trained confident classifiers. With confident predictions on easy test samples, we introduce a
quasi-semi-supervised approach to train a person-specific classifier, which we term as a PS-
QSS classifier. The PS-QSS classifier determines the label of the hard samples by
propagating consistently the predictions in space and time.

B. Train confident classifiers

The first stage in CPM is to train the confident classifiers, a pair of classifiers that aim to
cooperatively identify and separate easy and hard samples in the training set {x, yl.}’f ) with
1=

index 2 ={1, 2, ..., n}, where y/£{+1,-1} denotes a label and s the size of the training
set.

In this paper, we cast the AU detection problem as a binary classification problem, although
multi-label formulations have been proposed (e.g.., [57]). We formulate CPM in the context
of maximum margin learning extending the support vector machine (SVM), but it can be
applicable to any other supervised learning paradigm. The intuition behind the confident
classifiers is to learn two classifiers, one for the positive class, represented by a hyperplane
w., and will predict confidently positive samples; similarly, w_ is for the negative class. We
consider the easy samples &as the subset of training samples where both classifiers make
the same prediction and /ard'samples 7 otherwise. It is important to note that w, and w_
classify the easy positive and negative samples respectively and they are not necessarily
parallel. Mathematically speaking,
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E={ieD|ywx>0,Vy e+, -}l
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where &and # denote the index sets of easy samples and hard samples, and we denote the
confident classifiers (w.,w-), or wy,. Learning the confident classifiers can be done
iteratively by maximizing the margin as:

. 2 2 2
min [[w [+ D& + &)

y L]
stywlx,>1-¢,vieg, @

iyt =

Iw ! - i

where yjis the ground truth label, ;ﬁ is a relabel of a hard training sample x; that will be

explained below. £;and £;are non-negative slack variables for easy samples and hard
samples respectively, to take into account misclassification. The easy samples will preserve

the original labels y;, whereas we will relabel the hard samples as ;7;“ for w, and as ;7/? forw

-, to make the classifiers as confident as possible.

Alg. 1 summarizes the alternating procedure of solving (2), which involves the easy samples
&, the hard samples %, and the confident classifiers (w.,w_). Given &and %, the confident

classifiers (w,,w_) are solved as standard SVMs [25]. Given (w.,w_), &and # are inferred

using Eq. (1).

Note that the convergence of this alternating procedure is not guaranteed; instead we set a
maximum iteration. The set of hard samples is initialized as empty. In the later iterations,
hard samples are updated as those misclassified by both w, and w_. The relabeling strategy
enables w., and w_ to preserve confident predictions in each class by adjusting the labels for
hard samples. Here, we explore two relabeling strategies:

1 Holistic relabeling: The most straightforward strategy is to relabel a//hard
samples as +1 when training w_, and —1 when training wy, 7.é., ;7;’ = -y, VX;€

7. We term this strategy holistic relabeling. The main advantage of holistic
relabeling is its low computational complexity.

2. L ocalized relabeling: Holistic relabeling may result in some unnecessary hard
samples if signal noise exists. To gain more robustness against signal noise, we
relabel an hard sample x;as +1 only when there exists a neighboring support
instance x4 with positive ground truth label, and similarly for relabeling x;as —1.
We term this focalized relabeling. Denote the set of samples with support
instances as ', = {J € HRke H - AX; X)) < 1, Yk= ¥}, where ris a threshold
and a(x;, xg) is the distance between x;and X4 The relabeling is formulated as
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+1 xje§+

. -1 xjeS_ B
nj = = (3)

¥j otherwise’ U

y; otherwise '

For simplicity, both strategies use binary labels. Note that other relabeling strategies are
directly applicable, e.g., weighting the relabels similar to those in DA-SVM [7], or
introducing the concepts of bags as in MIL [2]. Fig. 4 illustrates the two relabeling strategies
on synthetic examples. (a) and (b) illustrate the confident classifiers learned using holistic
relabeling on A and B, respectively. As can be seen, the confident classifiers move toward
the noisy instances in (b), showing that the holistic relabeling is improper for the presence of
noise. Fig. 4(c) illustrates the result using localized relabeling, which is more robust to noisy
instances.

Algorithm 1

Train confident classifiers

Input: Data {(Xi’ yi)}r,’ 1 and itsindexset 7 ={1, 2, .. ., n
1=

Output: Confident classifiers (w,,w_), easy samples &and hard samples %

1 nit: & «9; #<

2 repeat

3 (w,,w_) <—solve (2) with fixed &and #:

4: Update easy and hard samples (&,5) using (1);
5

Update relabels n}!’, n;Vj e X,

6: until convergence or exceed max iteration

C. Train a person-specific (PS) classifier using a quasi-semisupervised (QSS) strategy

In the previous section, we have discussed how to train the confident classifiers. As pointed
out first by Chu et al. [13], a generic classifier trained on many subjects is unlikely to
generalize well to an unseen subject because of the domain discrepancy between the training
and the test distributions that vary according to camera model, intra-personal variability,
illumination, etc. Chu et a/. [13] showed that person-specific (PS) and a personalized model
outperformed existing methods. The distinction between PS and personalized models are as
follows. PS classifiers are referred to the ones trained in only one subject. Personalized
classifiers are generic classifiers that are adapted to a particular subject.

Recall our goal is to train a PS classifier f,(x) = thx for a test subject. To obtain such a

classifier, CPM first collects “virtual labels” from the predictions of confident classifiers w.
and w_. Since the confident classifiers are trained with many subjects, they are likely to
generalize well to easy samples. However, there remain hard samples that CPM finds
difficult to identify. To disambiguate the hard samples, CPM adopts a person-specific
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classifier using a quasi-semi-supervised (QSS) strategy. In particular, we adopt a Laplacian
to enforce label smoothness on spatially and temporally neighboring samples.

Let us assume that we have a m-frame test video denoted by X2 =[xy, X, . .., X,;] T with
index 2%€={1, 2, ..., m}. CPM first identifies the easy test samples &;as the ones on
which the confident classifiers predict consistently, /.e.,

&, = (i € 2| sign(w,x,) = sign(w x))}, and 3, = sign(w:lv—xl.) is a virtual label for an easy test

sample. Once these virtual labels are obtained, CPM propagates labels to the hard samples
with a semi-supervised strategy minimizing:

. P 2
min 37 £ W/ x) + 7w 1% + 7w, X, (4)
t ie%t
where ysand y;control the importance of regularizations.

S(w X %) is defined as the smoothness term. The intuition behind Sis to preserve spatial-
temporal relations in the label space, and we propose the smoothness regularizer as:

2
1 i+T
Sw. XY= D |fx) = D Aefx)|. )
ie@te lj=i-T,
J#FI

where f(x) = thx is the PS classifier prediction on sample x, X are the test samples, 7

controls the window size for which frames to include in the smoothing, and A;;is a weight
parameter that emphasizes closer temporal neighbors than further ones (/.e., the closer in
time two frames are the more similar their decision values are). We determine A,;using a
Gaussian distribution centered at the frame of interest, as illustrated in Fig. 5(a) where 7=05.

1,dl~j<8

We define a selection parameter €= , excluding the frames that are far away in

0, otherwise
feature space. gjjis the distance of frame 7and /in feature space. Z;is the normalization term

1 i+ T ; ; ;
such that Z'Zj Lot ik =1 After some linear algebra, we can rewrite Eqg. (5) in

matrix form as

S(w, X') = (X"“w) D'DX"w, (6)

1, i=j
1 . .
mxm _l=—=21.e.. - <
where D € R™/7, D, = Zi/lljel]’ 0< |i-j| <T,
0, otherwise
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The sums of D’s rows equal zeros, ie., Z;D ;= 0. Therefore, the smoothness matrix D
enforces the neighboring samples in both the feature space and the temporal space to have
similar predictions. Please refer details for solving w;to Appendix A.

Relations to Laplacian Matrix—Denote C = D TD for notational convenience. Both C
and Laplacian matrix L imposing smoothness on neighboring samples. They share several
properties, €.g., they are positive semidefinite, sum of each row and column are zero.
However, C considers both temporal and spatial constrains while L only consider spatial
constrains. Consequently, they have mathematically differences in formulation. D assembles
the incidence matrix V where L = VTV. Both D and V can be interpreted by a directed
graph, but in different ways. Let’s denote their corresponding graphs as 4p = {&p, ¥ p} and
Gy ={&, 7 v}, respectively. The £th row of V € ZI€7IXI” ¥l denotes a directed edge {j 4),
with non-zero entries V ;= -1 and V4 = +1. While D € RI” D7Dl a non-zero element Djj
<0, i # jcorresponds to a directed edge {J, /) in %. The absolute value of Djjis the weight of
edge {J, 7). Note that if there exists an edge (J; /), then edge (/, /) exists. But their weights are
not necessary the same, thus D is not symmetric. Differences can also be found if we regard
L and C as two operators. Taking an operation on f = [fxy), . .., Ax)]T, T Lf =% wy
(Rx) - /(xj))z, where wj;denotes the weight. While, fT Cf = S(w;X®), as Eq. (5) shown, has
a form of fTCf =Zpja;(x;) - l(xj))2+):,->/- bjif(x ) Ax))+ ¢, where aj; by; and care
coefficients. The extra item of A(x;)A(x) ascribes to the temporal constrain.

Fig. 5 shows the effectiveness of the smoothness term Son 3 AUs in the BP4D dataset [56].
To start the label propagation, 2.5% frames were randomly selected from each video as the
estimated labels of easy instances. We compare the prediction on the rest 97.5% frames by
training a linear SVM only using the labeled frames, and one with the smoothness term S
over all the labeled and unlabeled data. As can be seen, compared to the ground truth, the
prediction with the smoothness term performs more consistent result across three AUs.

In some cases, easy test samples are unavailable, and thus cause Eqg. (4) failing to learn wy.
Most singular cases occur in unbalanced AUs with few positive samples. For instance, the
appearance of AUL in a test subject is relatively rare. In such cases, the confident classifiers
are unlikely to discover easy positive samples from the test subject. We are unable to learn
w,by Eq. (4) because none easy positive samples are detected. To address these cases, we

found heuristically that w, = %(w+ +w_) provides good predictions.

V. Extensions of CPM

While CPM has reported good results, this section describes two extensions: (1) Iterative
CPM (iCPM) incorporates a progressive labeling strategy by gradually including test data in
the training set. (2) Kernel CPM (kCPM) extends CPM to incorporate non-linear decision
boundaries.

A. lterative CPM (iCPM)

CPM learns in sequential fashion the confident classifiers (Sec. 111-B) and the PS-QSS
classifier (Sec. I11-C). So, the PS-QSS classifier depends indirectly on the training data
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through confident classifiers. However, it is likely that there is mismatch between the
training and test data [13], [48], and the confident classifiers might not generalize well even
in the easy samples. To address this issue, we propose iterative CPM (iCPM) that jointly

learns the confident and PS classifiers.

Algorithm 2

Iterative Confidence Preserving Machine

i .. n - D te M
Input: labeled training data {Xi’ yi}' 1 with index set & = {1, 2, .. ., ri}, unlabeled test data {x[ .
1=

set Pe={1,2,..., m}

Output: person-specific classifier w,

1: & <9, H—F

2 (wy,w_) <—solve (2);
3 (&) using (1);

4: repeat

5

Update relabels ;1;', ;7;, VjE #
6: (w,,w_) «—solve (2) with fixed &and #:

Estimate virtual labels {il.}m ,

T te

I w.x. >0,Vye{-1, +1},

y i

T te

YiT1-1w x<0,Vye{—-1, +1},

v
0 otherwise.

8:
%t ={ie o' | Sign(wa;e) = sign(w-_rxie)};
9: if i, JE & s.t. y,:—l,yj:lthen
10:
w, <—solve (4) given X% and {ii}'_" v
1=
11 else
12:
= l(w +w_ ),
V=W TV
13: end if
14: T
Update &, = {i € 2" | 5, = sign(w, x/)};
15: Update (&%) < (1);
16: & —&UE
17: until convergence

1 with index

In iCPM, at each iteration, the easy test samples are selected to be part of the training for the
confident classifiers, so the confident classifiers is trained with test data (but no labels of test
data are provided). Alg. 2 summarizes the steps for iCPM algorithm. Fig. 6 illustrates a
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synthetic example. In Fig. 6, the training and test distributions are different. In the initialized
step, all the training data are labeled as easy-samples, so the confident classifiers are
basically a standard SVM, and the two confident classifiers are the same. This classifier
achieves 97% accuracy on test data. In the first iteration, we update the hard-samples (green
triangles) and re-train the confident classifiers. The confident classifiers identify easy
samples (blue and red diamonds) in test data, and the PS-QSS classifier labels the hard-
samples (green diamonds), and learns the PS-QSS classifier (the black line), achieving 99%
of accuracy. Finally, in the second iteration, the easy and hard samples are again updated to
train the confident classifiers and the PS-QSS classifier achieving 100% of classification
accuracy.

Complexity—As in standard transfer learning methods [21], [49], iCPM incorporates all
the training data to compute a PS-QSS classifier. In every iteration, iCPM learns each of the
two confident classifier from the union of training samples and easy test samples, and learns
a PS-QSS classifier from the test samples. Despite the fact that every iteration involves
learning two confident classifiers and a PS-QSS classifier, iCPM is relatively efficient in
training due to the learning of linear classifiers. In Alg. 2, solving (2) with fixed &and #
and solving (4) are both linear with complexity #(max(n, dmin(n, a)?) [8], where d'is the
dimension of features; 77is the number of samples in &U#in (2), or the number of test
samples in (4).

B. Kernel CPM (kCPM)

CPM and iCPM are efficient to learn because they assume a linear decision boundary.
However, most practical cases would require a non-linear decision boundary to separate real
data. Non-linear boundaries are likely to lead a better separation between easy and hard
samples. A simple approach to extend our proposed CPM model is to directly apply kernel
tricks in (2) and (4). However, the directly kernelization of CPM is time and memory
consuming since the training of confident classifiers (2) involves around 100,000 samples.
To reduce the computational burden, we design a strategy to select samples in the training of
the confident classifiers. Below, we present the details to kernelize the two steps of KCPM,
1.e., training confident classifiers and training PS-QSS classifier.

Algorithm 3
Sample selection for kKCPM

Input: Positive training samples &, negative training samples &, distance threshold 7; order flag positive_first.
Output: Selected points set.¥’
S
if positive_first then
9D =9, UD_, where 9, occur first.
else

D =D_UYD,, where D_ occur first.

end if

N2 g kR w DN R

for all x;in Z in order do
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8: if min, e % dx; x) >rthen
o: Add x;into.%;

10: end if

11: end for

Train confident classifiers—Unlike the linear CPM mentioned in Sec. I11, training
nonlinear confident classifiers involves an 77 x 17 kernel matrix that is expensive to store and
compute. Instead, we propose a sample selection strategy to reduce the size of training
samples.

Alg. 3 describes the sample selection algorithm. The intuition is to reduce the training size
by selecting only one representative sample in a region with radius . That is, a sample is
selected if and only if none of its r~radius neighbors are selected. This process proceeds until
all samples are examined. The resulting distribution tends to be uniform, and contains much
less samples than the original distribution. Denote the desired size of training samples as 77,
we determined the radius raccording to an empirical distance estimation. Specifically, we
first randomly select 7”samples, compute for each sample the distance to its nearest
neighbor, and then assign ras the average over n”distances. The ordering of sample
selection varies for training the confident classifiers (£, £). To get £, we perform the
sample selection process for negative samples before positive samples. This ensures that
each selected positive sample has a neighborhood of only positive samples in the original
distribution. Thus, £ trained on such selected samples is confident on its positive
predictions. To get £, we apply the same strategy with a reversed order (positive samples
first).

Fig. 7 illustrates an example of the sample selection strategy. As seen in Fig. 7(b), negative
samples are selected in the middle region where original positive and negative samples are
messed up. As a result, the learned 7, lies to the right side of a typical kernel SVM (black
line in Fig. 7(a)). Similarly, in Fig. 7(c), £ lies to the left side. The selected samples in Fig.
7(b)—(c) distribute uniformly, and are much less than those in original dataset as shown in
Fig. 7(a).

The sample selection algorithm shows its advantages on two-folds. First, it is feasible to
train kernel machines on the selected samples, which are much smaller in size than the
original dataset while well represent the kernel space. Although other instance selecting
algorithms can also reduce the size of original dataset (e.g., sparse modeling representative
selection [18], multi-class instance selection [11]), they lack the mechanisms to train two
biased classifiers. The second advantage of the proposed sample selection strategy is that
confident classifiers trained on the two sets of points are able to predict confidently on
opposite sides of the margin. Specifically, the classifier is confident in its negative
predictions if it is trained on the samples selected under a positive-first order. And similar is
the other one.
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Train the PS-QSS classifier—Using Alg. 3, we are able to select a set of positive-first

samples { x]‘ ..... x++}, a set of negative-first samples { x,...,x"_}, and learn the nonlinear
n n

confident classifiers (7., £). For notational convenience, we use the notation y € {+, =} in

y . -
Sec. 111-B to denote the selected samples as {le}’_’ v and the confident classifiers as f.
1=

n T

; it 1 -
Given f,, the prediction on a test sample x€ becomes fyx 4= p 1otyl.(xlhx € o where a,

=lay, ..., qw]" € R are the parameters of f, and (., .) denotes the inner product in

2
i i . Ix. — x|
a reproducing kernel Hilbert space. In this paper, we use (xi,xi)% = exp (—’21)
’ 20

Similar to the regular linear CPM, test samples with consistent predictions from the
confident classifiers are identified as easy test samples, i.e., &= {/ € 29 f.(x)f-(x) > 0}.
Then, we train a nonlinear person-specific (PS) classifier in a quasisemi-supervised (QSS)
manner as discussed in Sec. I11-C using the nonlinear form of Eq. (4):

. ~ (Tt Tyt 1 gt
min Z £y, K)+ya Ka +y,Sa,K), (7)

o
le%t

where KZ€ R™M is a kernel matrix computed from /7 test samples, and S(a’K? is the
nonlinear smoothness term defined as:

S@', K" = (K'a') D'DK'a’. (8)

The prediction of a test sample x is then computed as f,(x) = ¥7"_ 1a§(xi,x)%, where a§ is the

/-th element of a’.

C. Discussion on related work

The proposed CPM and its extensions (referred as CPMSs) are related to existing methods
that use multiple classifiers [27], [37], methods that follow an “easy-to-hard” strategy [4],
[33], [39], semi-supervised learning [6], [43], [46], and transfer learning [23]. Table |
compares CPMs against related methods in terms of their properties.

A crucial property of CPMs is the use of multiple classifiers, which are also exploited in
boosting methods [27] and Twin SVMs (TW-SVMs) [37]. The goal of using multiple
classifiers is to generate multiple non-parallel hyperplanes that yield better separation than
standard methods with a single hyperplane. Boosting methods train a set of weak classifiers
and sequentially combine them into a strong classifier. In TW-SVMs, each hyperplane of the
twin classifiers is close to one class and far from the other. Similarly, CPM uses the
confident classifiers that form two non-parallel hyperplanes to preserve confident
predictions.
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Other methods also employ the mechanism of identify easy and hard samples, such as self-
paced learning [39] and SVM with reject options (RO-SVM) [4], [33]. Self-paced learning
models the “easiness” as latent variables, and assigns less weights to samples that are
potentially hard to classify. RO-SVM designs new loss functions for hard samples in the
“rejection region”. However, all these methods focus on classification without using
unlabeled data.

Semi-supervised learning (SSL) is a technique known for the use of unlabeled data.
Examples include self-training [46], co-training [6] and Laplacian SVM (Lap-SVM) [43].
Self-training progressively adds unlabeled data with high confidence to retrain the classifier.
Co-training adopts unlabeled data by training two or more classifiers so that the most
confident samples from one classifier are used to train another. Lap-SVM utilizes unlabeled
data by propagating labeled samples to unlabeled ones through a smoothness assumption.
However, common to these methods is the assumption that labeled and unlabeled data are
drawn from the same distribution.

Mismatches in data distribution can be addressed by transfer learning approaches. Closest to
CPM is DAM [23] due to their common properties such as the use of multiple classifiers,
smoothness assumptions, the use of unlabeled test data, and progressively labeling. One
major difference between CPM and DAM is how a test sample is identified as easy or hard.
DAM used a manually-determined threshold to reject a hard test sample. On the contrary,
CPM automatically identifies easy and hard samples using a principled easy-to-hard
strategy. Compared to the aforementioned methods, CPMs possess all properties as
summarized in Table I.

V. Experiments

In this section, we experimentally validate the proposed CPM and its extensions. First, we
describe the datasets and settings used in the experiments. Then, we provide an objective
evaluation on CPM components, and compare CPM with alternative methods, including a
baseline SVM, semi-supervised learning methods, transfer learning methods, and boosting
methods. Finally, we provide hard sample analysis in terms of AU intensities, head poses,
and individual differences.

A. Datasets and settings

This section describes datasets and settings used throughout the experiments. We chose to
use four largest spontaneous facial expressions datasets:

1 GFT [15] are recorded when three unacquainted young adults sat around a
circular table for a 30-minute conversation with drinks. Moderate out-of-plane
head motion and occlusion are presented in the videos which makes the AU
detection challenging. In our experiments, 50 subjects are selected and each
video is about 5000 frames.

2. BP4D [56] is a spontaneous facial expression dataset in both 2D and 3D videos.
The dataset includes 41 participants aging from 18 to 29 associating with 8 tasks,
which are covered with an interview process and a series of activities to elicit
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eight emotions. Frame-level ground-truth for facial actions are obtained using
FACS. In our experiments, we only use the 2D videos.

3. DISFA [42] recorded 27 subjects’ spontaneous expressions when they were
watching video clips. DISFA not only codes the AUs, but also labels the
intensities. In our experiments, we use the frames with intensities equal or
greater than A-level as positive, the rest as negative. The dataset consist of 27
videos with 4845 frames each.

4, RU FACS [3] consists of 100 subjects participating in a “false opinion” paradigm
that shows a wide rage of emotional expressions. 33 subjects have been FACS-
coded. Like the other three, it includes spontaneous behavior such as speech. We
selected 28 of the coded 33 participants with sequence length of about 7000
frames.

All experiments were conducted under a same protocol where each dataset was reorganized
in 10 disjoint splits. Each split designated numerous (5 in GFT, 4 or 5 in BP4D, 2 or 3 in
DISFA and RU FACS) subjects as test data and the rest as training data, /.e., each subject
was treated as the test data in turns during the 10 splits. For each frame, we tracked 49 facial
landmarks using IntraFace [16], and registered faces onto a 200x200 template. Then, SIFT
descriptors were extracted on 32x32 regions centered at each facial landmark.

For evaluation, we reported both conventional frame-based F1 score (F1-frame) and event-
based F1 score (F1-event) [17]. The former is prevalent in binary classification problems,
while the latter can evaluate detection performance at event-level. An “event” is defined as a
max continuous period with an AU presence. In this sense, F1-event captures the agreement
between the ground truth events and the predicted events, by measuring the event-based
recall ER as the fraction of true events being correctly predicted, and the event-based
precision EPas the fraction of predicted events being true. An event-level agreement holds

true if an overlap score between a ground truth event and a predicted event is above a certain
2-ER-EP

FR L Ep curve by adjusting the

threshold. F1-event was computed as the area under the

overlapping threshold in [0,1].

B. Objective evaluation on CPM components

Recall that two major components in CPM are the confident classifiers and the person-
specific (PS) classifier learned with quasi-semi-supervised (QSS) learning strategy. To
validate their effectiveness, we conducted comparisons with a baseline linear SVM [25],
confident classifiers only (Conf), and CPM (/7.¢e., Conf+QSS). In Conf, we trained confident
classifiers using Alg. 1, and then passed them to train a PS classifier without a smoothness
assumption. Conf checks whether the confident classifiers are effective when compared with
a standard single-hyperplane SVM. CPM differs from Conf by learning the PS classifier
with the spatial-temporal smoothness as discussed in Sec. I11-C. In this way, CPM verifies
the effectiveness of the PS-QSS classifier on propagating labels with smoothness
assumptions. We also conducted iCPM to validate the iterative integration in CPM, and
kCPM see how a non-linear boundary would influence the performance.
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Fig. 8 reports the results of the above four experiments on GFT, BP4D, DISFA, and RU-
FACS datasets, respectively. The values of F1-frame and F1-event were reported as the
average over all AUs. Comparing the results between SVM and Conf, confident classifiers
showed positive affects on the performance. The effectiveness of applying smoothness
assumptions was indicated by the results between Conf and CPM. Out of the results, iCPM
outperformed CPM in most cases, validating the effectiveness of the proposed iterative
integration. kCPM shows its advantages over CPM because non-linear boundaries are more
accurate than linear ones. When compared with iCPM, KCPM only has a better F1-frame
performance. An explanation is that iCPM has an iterative mechanism, which iteratively
strengthens the spatiotemporal smoothness. Thus, a better F1-event is achieved.

C. Comparisons with alternative methods

This section compares the proposed CPM with alternative methods discussed in Sec. IV-C,
including baseline methods, semi-supervised learning (SSL), and transfer learning. Note that
typical transfer learning methods treat each dataset as a domain, while this subject treats
each subject as a domain. For baselines, we used LibLinear [25] and Matlab toolbox for
Adaboost [27]. For SSL, we implemented a linear version of Laplacian SVM (Lap) [43]. Its
kernel version is computationally prohibitive because our experiments contain more than
100,000 samples. For transfer learning, we compared to state-of-the-art methods including
Geodesic Flow Kernel (GFK) [30], Domain Adaption Machine (DAM) [21], and Multi-
source Domain Adaptation (MDA) [49]. GFK computed the geodesic flow kernel from
training to test sample, and then used it as a kernel in SVM. DAM fitted a classifier for test
subject as a linear combination of classifiers of training subjects. Note that DAM is able to
tackle with unlabeled test data. We did not use its extended version DSM [22] because DSM
requires to enumerate all the possible selections of source domains, which are as much as
2% in our experiment. MDA performed unsupervised domain adaptation by re-weighting
both source domains and training instances. All methods, except for SVM and Ada, learned
a specific classifier for each test subject. Codes of other competitive methods were either
downloaded from author’s web page or provided by the authors. To show a more fair
comparison, we also implemented Hidden Markov Model (HMM) as a post-processing for
smoothing the prediction of SVM, Lap, and Ada. Note that HMM was not directly
applicable for DAM, MDA, and GFK because their scores of the frame-level labeling output
were available only for test data.

Table 11~V show the results reported with the best parameters. SVM and Ada outperformed
well in some AUs. Despite this, the overall performances of Ada were worse than iCPM,
because Adaboost is a supervised method without investigating unlabeled test data. Overall,
Lap had the worst performance due to its unsuitable assumption for spontaneous facial
expression detection, which enforced the data to have similar decision values with their
neighbors. Such assumption was not guaranteed across training and test subjects drawn from
different distributions. Lap achieved better results on one or two AUs in BP4D. This is
because most frames in BP4D dataset were frontal and thus had less appearance differences.

Both DAM and MDA assumed the person-specific classifier is a linear combination of
multiple source classifiers. When positive and negative data were extremely imbalanced,
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e.g., AUl on GFT, DAM performed poorly because each source classifier was unreliable.
MDA performed better than DAM because MDA learned the weights for training data and
source-domains instead of using fixed weights, meanwhile, MDA had a smooth assumption
over test data. GFK performed similarly to SVM, although it did not provide a way to deal
with multiple sources. GFK regarded all the training videos as a domain and represented
data on the Grassmann manifold from training data to the test data. Across three datasets,
iCPM consistently outperformed three transfer learning methods.

With few exceptions, iCPM consistently outperformed the alternative methods in both
metrics. Because iCPM incorporated the spatial-temporal smoothness term (Sec. I11-C), it
showed an obvious increase on F1-event compared to F1-frame. Recall that AU detection
aims for detecting temporal events, we believe this spatial-temporal smoothness would
significantly improve the detection result. Note that the experiments with HMM did not
show consistent improvements on either F1-frame or F1-event as iCPM did. A possible
explanation is that a trivial enforcement of temporal consistency is likely to make some
frames similar to their misclassified neighbors, or over-smooth some short events. It
indicated that the performance edge of iCPM was given by both separating easy/hard
samples and its temporal-spatial smoothness.

D. Hard sample analysis

Automated facial AU detector could fail due to various sources of errors. These errors are
ubiquitous in AU detection, but few existing studies address or systematically identify them.
In this section, we utilize CPM’s nature to identify the errors as “hard samples”, in hope to
provide a better understanding in challenges of automated AU detection. Specifically, we
rigorously investigate the properties of hard samples using the original CPM (Section I11).
The properties for investigation include AU intensity, head pose, and proportions of hard
samples in different individuals or AUs.

AU intensity—AU intensity measures the strength of an AU, telling if an AU is obvious or
not. Because annotations of AU intensity is available only in the DISFA dataset, we used
DISFA for this investigation. Intensity ranges from ‘A’ to ‘E’; ‘E’ reflects the most obvious
AU. Fig. 9 illustrates the statistic analysis in terms of AU intensity. We consider hard
samples in two cases. First, we investigate the percentage of hard samples from each of 8
AUs in every intensity, as shown in the upper row of Fig. 9. As can been seen, in almost all
cases, the lower the intensity, the more hard samples are discovered. This observation is the
most clear when we average over all AUs, confirming that low-intensity AUs tend to be hard
samples with high probability. Second, we investigate the percentage of each intensity
within positive hard samples, as shown in the lower row. As can be seen, most positive hard
samples (those with present AUs) have low level intensities, and no E-level AUs were
identified as hard samples. This finding suggests that AUs in hard samples have relatively
low intensities, providing a proof that most hard positive samples come from low-intensity
AUSs, while all E-level AUs are identified as easy samples. Note that each figure in lower row
does not sum to 1, because we have excluded the ones with intensity ‘0’ (negative samples)
from the statistic.
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Low-intensity AUs v.s. head poses—Given above AU intensity analysis, our findings
suggest that subtle AUs (AU with low intensities) are the majority of hard samples. In
addition, we have known that head pose could influence the performance [19], [38]. Here we
investigate the effects of AU subtleness and head poses on GFT, BP4D, and DISFA datasets.
Because intensity annotations were unavailable in these datasets, we measured the
subtleness of an AU at frame x; by its similarity to onset or offset frames:

s(x;) = % exp (—ﬂ jn;ir}y d(x;, xj)), 9)

where (@ denotes the index set of onset/offset frames, a(x;, x)) is the distance (we used
Euclidean distance) between frames x;and X, zand Bare parameters that normalize the
similarity to (0, 1]. The head pose of a frame was measured by its rotation angle to the
frontal face. In particular, given a rotation matrix R € R3*3, the angle &R) between the face
axis and the optical axis of the camera is calculated as

O(R) = arccos (10)

Ri;
lu(R)[|”

where u(R) = [0 0 1]R is the projection of rotation on the optical axis of camera (z-axis).
R33 is the element of R in the third row and third column. Denote 5= |17|2i c .#5(x) as

an averaged similarity over a set of frames &, and 0 5= ﬁzi ¢ .#0(x) as an averaged pose

angle. Let frames with high similarities with onset/offset frames be &y, = {s(x) = z3,, Vi€
A}, and frames with low similarity Wp= #\\,. zis a scaling factor controlling the factor,
which we empirically set = 1.5. For each AU, we computed their statistics in AU
subtleness and head poses as Sy, and 6190 respectively. Generally, subtle AUs in frontal faces
lead to large values in similarities, while large head poses could lead to small values in
similarities. Fig. 10 illustrates the CPM-identified hard and easy training samples in the
similarity-angle space of (g, 67&[). For three datasets, each AU is represented as two points
in the 2D space: one for easy samples and the other for hard samples. As can be seen, easy
samples consistently lie on the bottom-left corner in the similarity-angle space, showing that
easy sample typically comes from frontal faces with low similarity to onset/offset frames.
On the other hand, hard samples consistently lie on the right-up of the similarity-angle
coordinates. This justifies that sources of “sample hardness” can be traced back to subtleness
of an AU or large head poses.

Biases in individuals and AUs—We validated biases in individual and AUs by
investigating the proportions of hard samples in different subjects or different AUs. We
employed GFT dataset for this experiment because it contains the most frames and subjects
of all considered datasets. Fig. 11 illustrates the proportions of hard samples in GFT dataset.
The left figure shows an average proportion of hard samples in different subject. As can
been seen, the proportions vary between different subjects. For instance, some contains
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about three times more hard samples than others. The right figure shows the average

proportion for each AU. The dark green bars denote the proportions of hard positive samples

#hard pos. samples
#all pos. samples

(light green bars). As can be seen, the proportion differs across AUs. Note that for all AUs
except 14, proportion of hard positive samples are higher than those for negative ones. That
is because only AU14 has more positive samples than negative ones.

computed as , and similarly did the hard negative samples were computed

VI. Conclusion

In this study, we proposed confidence preserving machine (CPM) for facial AU detection.
CPM exploits an easy-to-hard strategy that first recognizes easy samples by a pair of
confident classifiers, and then tackles hard samples by propagating predictions from easy
samples to hard ones. Considering that the confident classifiers could be influenced by
different distributions between training and test data, we designed an iterative CPM (iCPM)
that iteratively adds easy test samples to the training process of confident classifiers. We also
developed an efficient kernel CPM (kCPM) to capture non-linear boundaries between easy
and hard samples. Results on four spontaneous facial expression datasets show that our
methods outperform state-of-the-art semi-supervised learning, transfer learning methods,
and a boosting method. Current CPM and its extensions are offline AU detectors. Future
work includes an “online” extension of CPM by incrementally updating the confident
classifiers and the QSS classifier, e.g., augmenting the easy training samples e for every ¢
frames.
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Appendix A Solution to PS-QSS Classifier wt

This appendix provides details about the derivation of solving the PS-QSS classifier in
Problem (4), Sec. I11-C. Without loss of generality, we multiply Problem (4) by % to ease a

multiple of 2 during the derivation:
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) 1 N 14 7y T
nvlvlf’ 22% £G,wIx) + 7‘||w,||2+ 7th(1))<”) DX"“w,, (11)
1 e
t

where &, is the index set of easy test samples, fy; & = max(0, 1 - yh? is a quadratic loss, y;
is the virtual label that confident classifiers assign to a easy test sample, and

th(DXte)TD(X’e)wt is the smooth regularizer detailed in Sec. 111-C. We use § € RI®4

interchangeably to denote a vector of y;. To solve Eq. (11), we use the Newton’s method for
solving the convex optimization problem. We denote the Hessian matrix of Eq. (11) as H
and the step size as a. A Newton step at iteration (z + 1) for w,follows the update:

witD = w gty (12)
t

where the first order Jacobian function V,y,and the second order Hessian matrix H are
computed as:

~ T
Vy, = X E X w, —E_X.§ +7,(DX") DX"“w,+yw, (13)

.
H=XJE X, +7,DX") DX“+y1, (14)

where X g € RI€4*d denotes the samples in &; | yis an d x didentity matrix, and E, €
RI4I81 is a diagonal matrix that indicates support vectors in Xg, i.e., Eg,ji= 1 if the /th
sample of &is the support vector, and 0 otherwise. Specifically, support vectors are the
frames with non-zero loss. From Egs. (13) and (14), we obtain:

vy =Hw,—EX.5. (15)

Substituting Eq. (15) into the Newton step in Eq. (12), we obtain the update for solving w;

W§1+ D _ (1- a)wgf) + aH_leng- (16)

Note that the second term in Eq. (16) involves an expensive computation of matrix inverse.
We avoid such inversion by computing (H™1E X ) as the solution to the linear system Hx
= EaXgy-
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\ PS-QSS classifier

The main idea of Confidence Preserving Machine (CPM): (a) A standard single-margin
classifier identifies true positive (TP), true negative (TN), false positive (FP) and false
negative (FN). Data within the margin (dashed lines) consist of mostly FP and FN,
producing undesired ambiguities for training a classifier. (b) The proposed confident
classifiers, two hyperplanes that are not necessarily parallel, reveal easy and hard samples
for preserving confident predictions in each class. (c) The proposed CPM, consisting of
confident classifiers and a person-specific (PS) classifier using a quasi-semi-supervised
(QSS) learning strategy, is trained to propagate predictions from confident test samples (easy

test samples) to hard ones.
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Fig. 2.
Ilustration of CPM on identifying AU12 from a real video. Dashed lines (light green)

indicate the hard frames due to low intensities and head pose; solid lines indicate the easy
samples for positive (light yellow) and negative (dark green) ones.
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The proposed two-stage CPM framework: Given training videos, the confident classifiers are
first trained, and then are passed to train a PS-QSS classifier, which makes the final
predictions on the test video. In iterative CPM, easy test samples are selected to iteratively

expand the training set.
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Fig. 4.

Illustration of two relabeling strategies. Data A and B are two synthetic data without and
with noisy instances, respectively. (a) ~(c) show the confident classifiers learned on the
relabeled data using holistic relabeling on A, holistic relabeling on B, and localized

relabeling on B, respectively.
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Fig. 5.
(a) an example of A with 7=5. (b)~(d) show the effectiveness of the smoothness term Son

AUG6 on video 2F01_11, AU12 on video 2F01_09, and AU17 on video 2F01 09,
respectively. The y~axis denotes AU occurrence (+1: presence, —1: absence).
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Fig. 6.
AgSynthetic example of iCPM. The first column illustrates two training subjects (rectangles
and circles) and a test subject (diamonds). A same color indicates the same class. The
second, third, and forth column illustrates the initialization and two iterations in Alg. 2,
respectively. Points in blue and red colors are easy samples, while those in green are hard
ones. (This figure is best shown in color copies).
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Fig. 7.

Ar? illustration of kKCPM: Easy negative, easy positive, and hard samples are denoted as blue
rectangles, red circles, and green triangles, respectively. (a) A standard kernel SVM trained
on original samples. (b)—(c) Confident classifiers £. and £ trained on selected points under
positive-first order and negative-first order, respectively. (d) Confident classifiers
cooperatively separate easy and hard samples.
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Fig. 8.
Results of SVM, confident, CPM, iCPM, and kKCPM. The values are averaged over different
AUs. In each dataset, different amounts of AUs are involved: 11 in GFT, 12 in BP4D, 8 in

DISFA, 7 in RU FACS. Note that the scales in each dataset are different for display purpose.
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Fig. 9.
Analysis on CPM-selected hard samples in terms of AU intensities using the DISFA dataset:

(Upper) the percentage of hard samples within each intensity; (lower) the percentage of each
AU intensity within positive hard samples.
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Fig. 10.

Analysis on CPM-selected hard and easy training samples in terms of head pose angle and
the similarity with onset/offset frames. Triangles and rectangles indicate hard and easy
samples, respectively. A number indicate an AU; “overall” indicates the average over all

data.
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Fig. 11.
A proportion of hard training samples that CPM selected from the GFT dataset. (Left) Each

bar denotes an averaged portion of hard samples over 11 AUs for a subject. (Right) Each bar
denotes an averaged proportion over 50 subjects for each AU.
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