Skip to main content
. Author manuscript; available in PMC: 2018 Jan 27.
Published in final edited form as: IEEE Trans Image Process. 2016 Jul 27;25(10):4753–4767. doi: 10.1109/TIP.2016.2594486

Algorithm 2.

Iterative Confidence Preserving Machine

Input: labeled training data {xi,yi}i=1n with index set π’Ÿ = {1, 2, . . . , n}, unlabeled test data {xite}i=1m with index set π’Ÿte = {1, 2, . . . , m}
Output: person-specific classifier wt
1: β„° β†π’Ÿ, β„‹β†βˆ…;
2: (w+,wβˆ’) ← solve (2);
3: (β„°,β„‹) using (1);
4: repeat
5:  Update relabels Ξ·j+,Ξ·j-, βˆ€j ∈ β„‹;
6:  (w+,wβˆ’) ← solve (2) with fixed β„° and β„‹;
7:  Estimate virtual labels {y^i}i=1m,
y^i={1wy⊀xite>0,βˆ€y∈{-1,+1},-1wy⊀xite<0,βˆ€y∈{-1,+1},0otherwise.
8:   Et={i∈Dte∣sign(w+⊀xite)=sign(w-⊀xite)};
9:  if βˆƒi, j ∈ β„°t, s.t. Ε·i = βˆ’1, Ε·j = 1 then
10:   wt ← solve (4) given Xte and {y^i}i=1m;
11:  else
12:    wt=12(w++w-);
13:  end if
14:  Update Et={i∈Dte∣y^i=sign(wt⊀xite)};
15:  Update (β„°,β„‹) ← (1);
16:  ℰ ←ℰ βˆͺβ„°t;
17: until convergence