Algorithm 2.
Iterative Confidence Preserving Machine
| Input: labeled training data with index set π = {1, 2, . . . , n}, unlabeled test data with index set πte = {1, 2, . . . , m} | ||
| Output: person-specific classifier wt | ||
| 1: | β° βπ, βββ ; | |
| 2: | (w+,wβ) β solve (2); | |
| 3: | (β°,β) using (1); | |
| 4: | repeat | |
| 5: | βUpdate relabels , βj β β; | |
| 6: | β(w+,wβ) β solve (2) with fixed β° and β; | |
| 7: | βEstimate virtual labels , | |
|
|
||
| 8: | β ; | |
| 9: | βif βi, j β β°t, s.t. Ε·i = β1, Ε·j = 1 then | |
| 10: | ββwt β solve (4) given Xte and ; | |
| 11: | βelse | |
| 12: | ββ ; | |
| 13: | βend if | |
| 14: | βUpdate ; | |
| 15: | βUpdate (β°,β) β (1); | |
| 16: | ββ° ββ° βͺβ°t; | |
| 17: | until convergence | |