Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Nov 1;88(21):9463–9467. doi: 10.1073/pnas.88.21.9463

Subunit interactions change the heme active-site geometry in p-cresol methylhydroxylase.

G L McLendon 1, S Bagby 1, J A Charman 1, P C Driscoll 1, W S McIntire 1, F S Mathews 1, H A Hill 1
PMCID: PMC52738  PMID: 1946360

Abstract

The enzyme p-cresol methylhydroxylase [4-cresol: (acceptor) oxidoreductase (methyl-hydroxylating), EC 1.17.99.1] contains two subunits: a cytochrome c (electron transfer) subunit (cytochrome cpc) and a flavin (catalytic) subunit. When these subunits are separated by isoelectric focusing, a stable cytochrome subunit is obtained. Significant differences are observed between the one-dimensional NMR spectra of oxidized cytochrome cpc and of oxidized p-cresol methylhydroxylase. Analysis of the two-dimensional nuclear Overhauser enhancement and exchange spectroscopy (NOESY) spectrum of reduced cytochrome cpc suggests that the axial ligand, Met-50, of the stable subunit reorients by a rotation about the C gamma-S delta bond when cytochrome cpc binds to the flavin subunit. This reorientation must result in a change in bonding at the heme, which is reflected both in the para-magnetically shifted resonances and in the redox potential. p-Cresol methylhydroxylase thereby provides an interesting example of the coupling of subunit interactions to active-site structure and reactivity.

Full text

PDF
9463

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Driscoll P. C., Hill H. A., Redfield C. 1H-NMR sequential assignments and cation-binding studies of spinach plastocyanin. Eur J Biochem. 1987 Dec 30;170(1-2):279–292. doi: 10.1111/j.1432-1033.1987.tb13697.x. [DOI] [PubMed] [Google Scholar]
  2. Hopper D. J. Redox potential of the cytochrome c in the flavocytochrome p-cresol methylhydroxylase. FEBS Lett. 1983 Sep 5;161(1):100–102. doi: 10.1016/0014-5793(83)80738-8. [DOI] [PubMed] [Google Scholar]
  3. Hopper D. J., Taylor D. G. The purification and properties of p-cresol-(acceptor) oxidoreductase (hydroxylating), a flavocytochrome from Pseudomonas putida. Biochem J. 1977 Oct 1;167(1):155–162. doi: 10.1042/bj1670155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hopper K. D. Management of Low Back Pain in the Military Population. Mil Med. 1989 Jul;154(7):378–379. [PubMed] [Google Scholar]
  5. MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
  6. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  7. McIntire W. S., Hopper D. J., Singer T. P. Steady-state and stopped-flow kinetic measurements of the primary deuterium isotope effect in the reaction catalyzed by p-cresol methylhydroxylase. Biochemistry. 1987 Jun 30;26(13):4107–4117. doi: 10.1021/bi00387a055. [DOI] [PubMed] [Google Scholar]
  8. McIntire W., Edmondson D. E., Hopper D. J., Singer T. P. 8 alpha-(O-Tyrosyl)flavin adenine dinucleotide, the prosthetic group of bacterial p-cresol methylhydroxylase. Biochemistry. 1981 May 26;20(11):3068–3075. doi: 10.1021/bi00514a013. [DOI] [PubMed] [Google Scholar]
  9. McIntire W., Hopper D. J., Singer T. P. p-Cresol methylhydroxylase. Assay and general properties. Biochem J. 1985 Jun 1;228(2):325–335. doi: 10.1042/bj2280325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McIntire W., Singer T. P. Resolution of p-cresol methylhydroxylase into catalytically active subunits and reconstitution of the flavocytochrome. FEBS Lett. 1982 Jul 5;143(2):316–318. doi: 10.1016/0014-5793(82)80124-5. [DOI] [PubMed] [Google Scholar]
  11. McLachlan S. J., La Mar G. N., Lee K. B. One- and two-dimensional nuclear Overhauser effect studies of the electronic/molecular structure of the heme cavity of ferricytochrome b5. Biochim Biophys Acta. 1988 Dec 2;957(3):430–445. doi: 10.1016/0167-4838(88)90234-8. [DOI] [PubMed] [Google Scholar]
  12. Senn H., Billeter M., Wüthrich K. The spatial structure of the axially bound methionine in solution conformations of horse ferrocytochrome c and Pseudomonas aeruginosa ferrocytochrome c551 by 1H NMR. Eur Biophys J. 1984;11(1):3–15. doi: 10.1007/BF00253853. [DOI] [PubMed] [Google Scholar]
  13. Shamala N., Lim L. W., Mathews F. S., McIntire W., Singer T. P., Hopper D. J. Structure of an intermolecular electron-transfer complex: p-cresol methylhydroxylase at 6.0-A resolution. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4626–4630. doi: 10.1073/pnas.83.13.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Williams G., Moore G. R., Porteous R., Robinson M. N., Soffe N., Williams R. J. Solution structure of mitochondrial cytochrome c. I. 1H nuclear magnetic resonance of ferricytochrome c. J Mol Biol. 1985 Jun 5;183(3):409–428. doi: 10.1016/0022-2836(85)90011-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES