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Abstract Selenium is an essential micronutrient that is

incorporated into at least 25 selenoproteins encoded by the

human genome, many of which serve antioxidant func-

tions. Because patients with inflammatory bowel disease

(IBD) demonstrate nutritional deficiencies and are at

increased risk for colon cancer due to heightened inflam-

mation and oxidative stress, selenoprotein dysfunction may

contribute to disease progression. Over the years, numerous

studies have analyzed the effects of selenoprotein loss and

shown that they are important mediators of intestinal

inflammation and carcinogenesis. In particular, recent work

has focused on the role of selenoprotein P (SEPP1), a major

selenium transport protein which also has endogenous

antioxidant function. These experiments determined

SEPP1 loss altered immune and epithelial cellular function

in a murine model of colitis-associated carcinoma. Here,

we discuss the current knowledge of SEPP1 and seleno-

protein function in the setting of IBD, colitis, and

inflammatory tumorigenesis.
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Abbreviations

SEPP1 Selenoprotein P

CAC Colitis-associated cancer

IBD Inflammatory bowel disease

CD Crohn’s disease

UC Ulcerative colitis

SeP Selenoprotein

GPx Glutathione Peroxidase

ROS Reactive oxygen species

Se Selenium

CRC Colorectal cancer

AOM Azoxymethane

DSS Dextran sulfate sodium

Sec Selenocysteine

Cys Cysteine

GSH Glutathione

ACF Aberrant crypt foci

TNBS 2,4,6-Trinitrobenzene sulphonic acid

IFN-c Interferon-c
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Introduction

Inflammatory bowel disease (IBD) is estimated to affect over

1 million Americans and 2.5 million Europeans [1]. IBD is

primarily comprised of two types of chronic inflammatory

disorders of the intestine, Crohn’s disease (CD) and ulcera-

tive colitis (UC) [2]. IBD etiology is incompletely

understood, but evidence to-date suggests a complex inter-

play between microbes, other undefined environmental

exposures, genetic susceptibility, and inappropriately sus-

tained and severe autoimmune inflammatory responses,

which ultimately results in repetitive injury to the GI tract

[3, 4]. Longstanding colonic IBD also predisposes patients to

colorectal cancer (CRC). In this situation, sustained

inflammation results in a pro-tumorigenic microenviron-

ment in which reactive oxygen species (ROS) induce protein

and DNA damage, stimulate immune cell recruitment and

polarization, and accelerate epithelial cell proliferation [5].

As greater disease activity is associated with increased

cancer risk, understanding the molecular pathogenesis of

IBD and identifying modifiable factors affecting disease

severity are of paramount importance. Toward that goal,

recent studies have implicated the essential micronutrient

selenium (Se) as well as specific selenium containing

proteins (selenoproteins, SePs), such as selenoprotein P

(SEPP1) and members of the glutathione peroxidase (GPx)

family, in modifying inflammation and tumorigenesis. The

aim of this article is to review the literature on Se and SePs

in colitis and colitis-associated carcinoma and pose the

argument that Se and SePs are valid targets for therapeutic

intervention in IBD.

Selenium and selenoprotein function

Se was discovered by J.J. Berzelius in 1817 and initially

recognized to be a toxin when ingested in large amounts

[6]. However, Se was later determined to be an essential

micronutrient and indispensable for the production of SePs,

where it is incorporated as the 21st amino acid seleno-

cysteine (Sec). Functionally, SePs are known to be potent

antioxidants, and the majority of characterized SePs cat-

alyze oxidation–reduction reactions using the Sec as an

active site [7]. SePs are particularly effective antioxidants

owing to the selenol group in Sec, which is more fully

ionized than the thiol of cysteine (Cys) at physiological pH.

In addition, Sec has a lower pKa (*5.2) and reduction

potential than Cys. This makes Sec more reactive than Cys,

which is presented within the active site of many non-

selenoprotein enzymes [8]. Aside from the normal

antioxidant activity contributed by the Sec, selenoprotein S

and selenoprotein 15 can process and remove misfolded

proteins [9, 10], and MsrB1 is capable of regulating

antioxidant protein repair through protein disulfide shuf-

fling [11].

Expression of SePs is tightly controlled by the Sec

translational process which is highly dependent on the

presence of Se (for reviews on translational regulation of

selenoprotein synthesis, see [12–14]). Se deficiency redu-

ces the intracellular amounts of mature tRNA Sec, a special

transfer RNA charged with Sec, which in turn results in

decreased SeP production. In the setting of limiting Sec

tRNA levels, SePs may still be translated; however, there is

a ‘‘hierarchy’’ of SeP expression. This hierarchy reflects the

relative importance of the selenoproteins in cellular

homeostasis. For example, depending on the particular

tissue, GPx4[SEPP1[ thioredoxin reductase 1[ type I

deiodinase[GPx1 [15, 16]. Selenoprotein synthesis is

also considered to be modulated by differential expression

of two Sec tRNA isoforms which are distinguished by the

presence of 20-O-methylribose at position 34 (Um34). The

Um34 modification is also dependent on Se availability,

with mice maintained on a high Se diet having increased

percentages of mcm5Um-containing Sec tRNA [17]. These

two Sec tRNA isoforms are differentially associated with

production of distinct classes of SePs. The SePs most

responsive to the modified mcm5Um-containing Sec tRNA

are stress-related SePs, such as GPx1 and GPx3, whereas

housekeeping SePs, essential for survival, are not depen-

dent on the Um34 modification allowing higher expression

in the context of decreased Se availability [18]. While

originally described in mouse models, the mutation of the

Sec tRNA gene (TRSP) which interferes with the Um34

modification has recently been described in a human sub-

ject, where authors note decreased expression of stress-

related SePs, while the expression of housekeeping SePs

was largely preserved [19].

Selenium in human disease

Se and SePs contribute greatly to human health, and their

functions are most often linked to antioxidant ability.

Indeed, Se deficiency, due to Se-poor soil, is correlated

with the congestive cardiomyopathy known as Keshan

disease [20] and the deforming osteochondropathy,

Kashin–Beck disease [21]. Keshan disease incidence has

been reduced by the administration of Se-fortified table salt

[22], implicating Se deficiency as the etiologic precipitant

in this disorder. Fulvic acid supplementation and selenium

deficiency in mice recapitulated many of the symptoms of

Kashin–Beck disease [23], suggesting that Se supplemen-

tation may prevent this disorder. However, a double-blind,

randomized control trial of Se supplementation did not

affect the clinical course of patients with Kashin–Beck

disease [24]. In addition, patients with genetically impaired
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selenoprotein biosynthesis present with multisystem dis-

orders. For example, the mutation of SBP2 (SECISBP2) is

characterized by the failure of spermatogenesis, impaired T

lymphocyte proliferation, abnormal mononuclear cytokine

secretion, telomere shortening, increased cutaneous ROS,

and susceptibility to ultraviolet radiation-induced oxidative

damage [25]. Impaired oxidative defenses, muscle defects,

and thyroid dysfunction were also observed in the setting

of Sec tRNA (TRSP) mutation [19]. Together, these studies

underscore the importance of Se and SePs in the mainte-

nance of human health.

Epidemiological studies of patients with below average

Se levels have further suggested important biological

functions for SePs. Observational studies associate lower

serum Se levels with epilepsy [26], age-associated neuro-

logical disorders [27], and decreased survival following

HIV infection [28]. It should be noted that, as these are

observational studies, the causative roles of Se in these

diseases have not been proven, but suggests that Se might

be protective. Further research on the benefit of Se sup-

plementation in these diseases is essential.

As Se may confer protection against disease by reducing

chronic oxidative stress and inflammation, it was hypoth-

esized that Se supplementation would protect against

cancer development. Indeed, animal models have demon-

strated that Se supplementation can reduce the incidence

and severity of liver [29], esophageal [30], pancreatic [31],

prostatic [32], colon [33], and mammary carcinogenesis

[34]. Unfortunately, large clinical trials have yielded mixed

results, some suggesting that Se supplementation and/or

higher Se status may reduce cancer risk [35–37] and others

failing to correlate serum Se levels with cancer risk

[38–40]. Thus, the impact of Se supplementation on cancer

is a more complex issue than has been heretofore

recognized.

Selenium and IBD

Interestingly, the benefit of Se supplementation might be

best realized in populations with low baseline Se and high

inflammatory burden, such as patients with IBD. IBD

patients can have defects in intestinal absorption, leading to

nutritional deficiencies which are important to recognize

and treat in disease management. Se deficiency and

decreased SeP activity have been described in both CD and

UC patients, often correlating with disease severity

[41–47]. Similar findings have been observed in the dex-

tran sulfate sodium (DSS) mouse model of colitis, where

decreased plasma Se levels and GPx activity were observed

[48]. However, these studies do not indicate a causal role

for Se in IBD development. Nevertheless, experiments

analyzing Se deficiency in the context of colitis observed

exacerbated disease severity, with higher mortality,

decreased body weight, increased diarrhea, more pro-

nounced inflammatory injury, and increased activation of

pro-tumorigenic pathways, such as EGF and TGFb [48].

Increased tumorigenesis and disease progression have also

been observed in Se-deficient mice placed on a colitis-

associated carcinoma (CAC) protocol, using azoxymethane

(AOM) to initiate genetic mutations followed by repeated

cycles of DSS-based epithelial injury [48]. Together, these

studies suggest a direct role for Se in mediating IBD

severity and its associated cancer risk.

Investigating selenoproteins through SEC tRNA
mutations

While Se is primarily incorporated into SePs, it was still

unclear whether the effects observed with Se were due to

the loss of Se-containing proteins or low-molecular weight

Se compounds. To broadly investigate the role of SePs,

mouse models were developed with modified expression of

Sec tRNA which interferes with selenoprotein biosynthesis

[49]. Collectively, these models have indicated that SePs

exert the bulk of Se’s influence in regulating oxidative

stress and tumorigenesis in the gut.

The first developed Sec tRNA mouse model [(i6A-)

tRNA[Ser]Sec] relied on transgenic expression of mutated

Sec tRNA specifically interfering with synthesis of

mcm5Um-containing Sec tRNA. Global transgene expres-

sion decreased levels of stress-related SePs [49]. In the gut,

Sec tRNA transgenic mice were observed to have increased

numbers of aberrant crypt foci (ACF), a type of preneo-

plastic colonic lesion, after exposure to AOM [50].

Interestingly, these were the first data to show that SeP

expression could directly modify the development of col-

orectal tumorigenesis. To date, this mouse model has also

been used to show that decreased SeP expression augments

development of prostatic intraepithelial neoplasia, hepato-

carcinoma, and inflammatory pyogranulomas, indicating a

broad role for stress-related SePs in tumorigenesis across

organ systems [51, 52].

As global loss of the mammalian Sec tRNA gene (Trsp)

is embryonic lethal, studies to analyze the effect of com-

plete Sec tRNA and selenoprotein loss have relied on a

conditional knockout (KO) model to determine tissue-

specific effects [53, 54]. However, the effects of tissue-

specific Sec tRNA loss were often severe, with SeP

expression in many tissues, such as the endothelium, car-

diac muscle, liver, and skin, required for survival [55–57].

Nevertheless, Se has long been known to contribute to

immune cell function (reviewed in [58]), and this model

has provided useful insight into the function of SePs in

different immune cell populations, and particularly how
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they may contribute to inflammatory tumorigenesis in the

gut. Trsp knockout in myeloid lineages through a LysM-

Cre driver led to increased oxidative stress, upregulated

transcription of antioxidant enzymes, accumulation of

reactive oxygen species, altered expression of extracellular

matrix-related genes, and diminished migration through

matrix [56, 59]. Furthermore, placing these mice on an

acute DSS-induced colitis protocol resulted in worse colitis

characterized by pronounced inflammation, neutrophil

infiltration, edema, weight loss, shorter colon length, and

expression of pro-inflammatory cytokines relative to WT

mice treated with DSS [60]. While intestine epithelial-

specific Trsp KO has not yet been described, these data

suggest that selenoprotein expression in myeloid-derived

immune cells is potent suppressors of inflammation in the

gut and likely contributes to inflammatory tumorigenesis.

Glutathione peroxidases

In addition to global SeP loss through the modulation of

Sec tRNA expression, other studies have analyzed contri-

butions of individual selenoproteins. While several SePs

have been examined in the context of colitis and CAC,

some of the best studied are those of the glutathione per-

oxidase family. As these proteins are characterized by their

ability to metabolize hydrogen peroxide (H2O2) and other

peroxides, they are considered to be some of the most

potent mediators of Se’s effects in oxidative stress and

inflammation. In colitis, extracellular GPx levels increase

dramatically following DSS treatment, suggesting that

these enzymes are upregulated in response to oxidative

injury [61]. Specifically, Gpx2, a recently described target

of STAT family transcription factors, was determined by

gene expression profiling to be one of only seven genes

upregulated in three separate models of colitis: DSS,

transfer of CD4? CD45RBhigh T cell populations, and

2,4,6-trinitrobenzene sulphonic acid (TNBS) treatment

[62, 63]. GPX2 upregulation was further observed in tis-

sues from both CD and UC patients, as well as colorectal

adenomas [63]. Interestingly, GPx1 and GPx2 were also

the SePs most affected by expression of the (i6A-)

tRNA[Ser]Sec Sec tRNA transgene in the colon, suggesting

that reduced GPx expression is a contributing factor to the

augmented DSS-induced colitis observed in this model.

Determining the precise role of the GPx family in colitis

and inflammatory tumorigenesis has been further aided by

the development of individual knockout mouse models.

While there are eight GPx family members, GPx’s 5-8 are

not SePs in the rodent, as the Sec is substituted for cysteine.

Of the remaining GPx family members, global loss of Gpx4

is embryonic lethal, perhaps not surprising given its place

at the top of the selenium hierarchy noted above [64]. On

the other hand, mice lacking Gpx1, Gpx2, and Gpx3 all

develop normally, with no overt baseline phenotypes.

However, mice deficient for both Gpx1 and Gpx2 devel-

oped spontaneous ileocolitis [65] linked to excess NADPH

oxidase-generated ROS [66]. Individual knockout of Gpx1

or Gpx2 also rendered mice more susceptible to salmo-

nella-induced colitis [67], while Gpx2 and Gpx3 knockout

mice each have increased inflammation and CAC in AOM/

DSS models [68, 69]. Together, these studies suggest a

broad role for GPx family selenoproteins in mediating

oxidative stress in the context of intestinal inflammation

and downstream tumorigenesis.

Selenoprotein P and cancer

In addition to GPx family SePs, selenoprotein P (SEPP1) has

also been implicated in mediating Se’s effect on inflamma-

tory tumorigenesis. Unlike the majority of SePs which are

best characterized by their enzymatic activity, SEPP1 is

better known as the predominant Se transport protein. SEPP1

is primarily expressed in the liver, where the majority of Se

metabolism takes place, incorporating Se in ten Sec residues

within its primary structure (in comparison, most SePs only

have 1 Sec). Themajority of these Secs exist within SEPP1’s

Se-rich C-terminal domain, which is necessary for the

delivery of Se to distant tissues via the plasma, where it can

be taken up and degraded to free Se for the synthesis of other

SePs. SEPP1 currently has two known receptors which are

differentially expressed based on tissue type. In tissues such

as the brain and testes, SEPP1 is taken up by apoER2-me-

diated endocytosis, although in other tissues, such as the

kidney, the primary SEPP1 receptor is megalin, a lipoprotein

receptor localized to the proximal tubule epithelium within

the kidney [70–72]. To illustrate the effect of SEPP1 in Se

transport, hepatocyte-specific Sepp1 knock out resulted in a

90 % reduction in plasma Se levels, greatly reducing the

whole body and tissue Se [73]. However, it is important to

note that SEPP1 can also function as an antioxidant through a

single N-terminal Sec, which exists within a UXXC motif

that catalyzes the oxidation of glutathione (GSH) by a

hydrogen peroxide or phosphatidylcholine hydroperoxide

[74, 75]. Thus, both N- and C-terminal domains contribute to

the overall function of SEPP1, making it vital for the pro-

duction of other selenoproteins within target organs and

giving it the ability to serve in an antioxidant function.

SEPP1 levels and activity are significantly decreased

in colon tumors, human prostate tumors, C3(1)/Tag

transgenic mouse tumors, and in prostate cancer cell

lines [76, 77]. Furthermore, several SNPs have been

identified in SEPP1 that may contribute to decreased

expression in colorectal adenomas and have been asso-

ciated with cancer risk [78–80]. Indeed, SEPP1 transcript
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levels are decreased as early as the adenoma stage in

CRC [81, 82]. Collectively, these data suggest that

SEPP1 regulates intestinal homeostasis and protects from

colitis and CAC.

SEPP1 modifies CAC

Recently, a global Sepp1 knockout mouse model was used

to investigate the contribution of SEPP1 to intestinal injury

and development of CAC. In this study, Sepp1 wild type

(WT, Sepp1?/?), heterozygous (Sepp1?/-), and null (Sep-

p1-/-) mice were subjected to the AOM/DSS initiation–

promotion protocol to model inflammatory tumorigenesis.

These studies suggest that SEPP1 functions as a haploin-

sufficient tumor suppressor, with Sepp1?/- mice displaying

increased tumor multiplicity, a higher degree of dysplasia,

increased intratumoral proliferation, and a greater extent of

oxidative DNA lesions relative to both Sepp1?/? and

Sepp1-/- mice. Thus, reducing, but not eliminating, SEPP1

results in significantly increased tumor burden. Contrary to

expectations, complete Sepp1 deficiency (Sepp1-/-)

resulted in decreased tumorigenesis concomitant with

increased apoptosis, decreased proliferation, and high

genomic instability [82]. Thus, it is postulated that this

observation is due to the ‘‘double-edged-sword’’ of

oxidative stress where instead of promotion of malignancy

with increased ROS production, critically high levels of

oxidative injury lead to the clearance of initiated Sepp1-/-

cells. This is supported by the observation that when Sep-

p1-/- mice are treated with either AOM or DSS as single

modalities tumor multiplicity is increased [82].

Specific assessment of the role of SEPP1 in tumorige-

nesis is confounded by the fact that SEPP1 participates in

Se transport and contributes to the production of other SePs

which may influence colitis. To test whether SEPP1’s Se

transport capacity contributes to CAC development, mice

with truncated Se-rich C-terminal domain [70] were sub-

jected to AOM/DSS treatment. These mice show increased

tumor number and dysplasia, although not to the extent of

Sepp1 heterozygous mice [82], indicating that at least some

of the phenotype observed in SEPP1 deficiency was due to

loss of this domain. However, a contribution of the Sec

redox active was also observed in mice containing an

enzymatically dead serine in place of Sec [75] and also had

increased tumor number and size with associated increased

proliferation and DNA damage. Thus, both the Se transport

and enzymatic functions of SEPP1 contribute to protect

against intestinal injury and CAC. As complete knockout

of SEPP1 resulted in a phenotype that differed significantly

from that seen with loss of either component alone, other

impacts of SEPP1 loss cannot be ruled out.

Cell-type specific roles for SEPP1

SEPP1 is expressed in the intestinal epithelium and

immune cells, and in the context of global SEPP1 loss it

remained unclear which cell type was mediating the

observed phenotypes. Macrophages contribute to the

pathogenesis of colitis and tumor development, and loss of

SeP synthesis within macrophages increases inflammatory

injury in DSS-based colitis models [60]. Interestingly,

SEPP1 is also the most upregulated gene in pro-inflam-

matory tumor-conditioned macrophages [83] suggesting an

important role for SEPP1 in macrophage function. It is

likely that multiple selenoproteins contribute to the

inflammatory microenvironment and a loss of balance

within the macrophage selenoproteome alters immune cell

activity. Moreover, SEPP1 expression and/or secretion is

decreased by the cytokines TGF-b1, interleukin 1b, tumor

necrosis factor a, and interferon c (IFN-c) [84, 85], further
complicating the role of SEPP1 in immune cell activity.

Experimentally, an increase in total and M2 macrophages

was observed in tumors from AOM/DSS-treated Sepp1?/-

mice. The increase in M2 macrophages was determined to

be due to skewed polarization as opposed to recruitment, as

direct stimulation with either IFN-c and LPS or IL-13 led

to decreased M1 polarization and increased M2 polariza-

tion, respectively, in SEPP1 heterozygous naı̈ve

macrophages. This only occurred in heterozygous macro-

phages and was not seen in full knockout macrophages,

indicating that tight regulation of SEPP1 levels is required

for proper macrophage function. Thus, SEPP1 may protect

against inflammatory tumorigenesis through its attenuation

of pro-inflammatory immune cell polarization, though the

roles of SEPP1 in the immune environment are complex.

On the other hand, Sepp1-/- mice demonstrated

increased DNA damage and significantly altered apoptosis

and proliferation within the epithelial compartment, sug-

gesting that this cell population may be differentially

affected by SEPP1 loss. To determine whether SEPP1

mediates epithelial tissue-autonomous effects, small

intestinal organoids (enteroids) [86] were generated from

WT and Sepp1-/- mice. These studies demonstrated

increased plating efficiency, branching, and stem spheroids

(Fig. 1) in enteroids from Sepp1-/- mice, all indicators of

increased stem-cell function [87–89]. These data suggest

that loss of SEPP1 in epithelial cells drives them to a more

stem-cell-like and potentially pro-tumorigenic phenotype.

Moreover, the assessment of tumor tissue isolated from

Sepp1-/- mice revealed increased expression of genes

regulated by the WNT signaling pathway, a pathway

heavily implicated in maintaining stem-cell populations as

well as being a key driver in intestinal tumorigenesis [90].

Together, these functional alterations in Sepp1-/-
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enteroids highlight changes that are likely occurring within

the intestinal epithelial cells which may independently

contribute to cell transformation and tumor promotion.

Conclusions

Pre-clinical studies strongly indicate that antioxidants, such

as many of the SePs which are produced depending on

local Se concentration, should be chemopreventative

agents in malignancy, but human trials have proven a

disappointment. The US case–control study testing the

efficacy of Se and vitamin E supplementation in cancer

(SELECT) did not demonstrate a protective effect of Se

supplementation on risk of CRC [91], and an intervention

trial meta-analysis determined that oral administration of

Se was not effective in preventing colorectal neoplasia

[40]. However, research on SePs in inflammatory cancer

suggests that patient selection will play a significant role in

the success of Se supplementation studies in humans. Thus,

targeted supplementation in Se-deficient populations may

be an effective prevention strategy. Indeed, some patients

with IBD are Se deficient, with SEPP1 expression

decreased as much as 50 % in patients compared to healthy

controls [92, 93]. As SEPP1 haploinsufficiency leads to

increased tumorigenesis in rodent CAC models, the degree

of SEPP1 reduction observed in IBD patients is to a level

that, in animals, promotes tumorigenesis. In further support

of a protective role for Se supplementation, a significant

survival benefit was demonstrated in mouse cohorts fed a

high Se diet (1.0 PPM) as opposed to an Se sufficient diet

(0.25 PPM) when subjected to the AOM/DSS protocol

[82]. As selenoprotein expression should be optimized at

0.25 PPM, it may be that the protective effect of the high

Se diet occurs due to reduced Se uptake in mice subjected

to the inflammatory carcinogenesis protocol.

Se supplementation may additionally benefit popula-

tions with decreased SEPP1 expression due to genetic

polymorphisms affecting its expression. Case control

studies of incident prostate cancer cases and matched

controls indicated increased prostate cancer risk in patients

harboring SEPP1 SNPs, possibly influenced by decreased

Fig. 1 Sepp1-/- enteroids demonstrate increased stem-cell charac-

teristics. This schematic shows normal growth characteristics upon

plating single intestinal crypts. Proliferating cells (red asterisk)

include stem cells (CBCs, crypt-based columnar cells) and transient

amplifying (TA) cells. Upon differentiation, cells no longer prolif-

erate but complete the crypt structure. When WNT is added to the

Matrigel matrix, an increased propensity to form stem spheroids

occurs. Once WNT has been expended, enteroids proliferate and

component cells differentiate. In the case of Sepp1 knockout,

enteroids form more stem spheroids, indicative of increased WNT

tone. Sepp1-/- enteroids also demonstrate increased branching,

which suggests a higher percentage of stem cells within the

population, and higher proliferation even in regions, where cells

should be differentiated and quiescent. All these characteristics

indicate that loss of SEPP1 contributes to increased tumorigenic

properties in epithelial cells
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plasma SEPP1 [78, 94]. Four SEPP1 variants are signifi-

cantly associated with advanced colorectal adenoma risk

[79], and genetic instability has been observed in the

SEPP1 promoter (T)17 repeat motif in CRC in the context

of the MSI-CRC mutator phenotype [80]. Though these

polymorphisms are incompletely understood, they tend to

be linked with increased cancer risk and modulate either

expression or isoform proportion of SEPP1. Genotyping of

SEPP1 in patients with CAC may predict increased

responsiveness to Se supplementation.

In conclusion, this review presents a broad role for SePs

in protection against inflammatory carcinogenesis. Studies

relying on mutation of selenocysteine tRNA indicate a

protective role of SePs in inflammatory tumorigenesis, but

do not identify the SePs responsible. It is likely that mul-

tiple SePs can contribute to this phenotype. For example,

loss of both GPx1 and GPx2 worsens colitis, indicating that

these two SePs are important in mitigating intestinal

inflammation. Furthermore, decreases in SEPP1 contribute

to inflammatory tumorigenesis by reducing redox capacity,

enhancing stem-cell characteristics and proliferation of

epithelial cells, and modulating immune cell polarization

toward a pro-tumorigenic phenotype. Loss of GPx3, in a

similar model, results in increased tumorigenesis and

dysplasia concomitant with increased proliferation, hyper-

active WNT signaling, and increased DNA damage. It is

likely that, with more thorough study of SePs in inflam-

matory tumorigenesis, we will see a common trend

amongst SePs which will further promote Se and SePs as

bona fide therapeutic targets in the prevention of inflam-

matory tumorigenesis.
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