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Abstract

Objective—To examine the relationship between generation 1 (grandmaternal) cardiometabolic
risk factors and generation 3 (grandchild’s) birthweight and gestational age

Study design—Mother-daughter pairs in the Bogalusa Heart Study (1973-present) were linked
to their children’s birth certificates; women were also interviewed about their reproductive
histories, creating a three-generation linkage including 177 generation 1 (grandmothers), 210
generation 2 (mothers), and 424 generation 3 children. Pre-pregnancy cardiometabolic risk factors
(BM, lipids, glucose) for generation 1 (mean age 16.2) and 2 (mean age 11.1) were examined as
predictors of generation 3 birthweight and gestational age using linear and logistic regression with
adjustment for age, race, parity, and other confounders.

Results—Generation 2 higher BMI was associated with higher birthweight (28 g per 1 unit, 95%
Cl 12-44) and gestational age (0.08 weeks, 95% CI 0.02-0.14) in generation 3, and generation 1
higher BMI was associated with higher birthweight (52 g, 95% CI 34-70)) in the generation 2.
Generation 1’s higher glucose levels were associated with higher birthweight in generation 3
(adjusted beta 111 g, 95% CI 33-189), and triglycerides (adjusted beta —21, 95% CI —43-0) and
LDL (adjusted beta —24, 95% CI —48-0) were associated with lower birthweight.

Conclusions—These results suggest the possibility of multigenerational developmental
programming of birth outcomes, although mechanisms (whether biological or environmental) are
undetermined.
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The Developmental Origins of Health and Disease (DOHaD) hypothesis posits that in utero
exposures have lifelong effects on health: perhaps the most well-known example is the
relationship between low birthweight and adult cardiometabolic disease.? This work has
spurred increased interest in the determinants of birthweight as well as how prenatal
exposures may affect later-life health. It also leads to the hypothesis that exposures in one
generation may have effects on multiple generations to come. If prenatal malnutrition or
over-nutrition in the first generation leads to changes in birthweight in second generation,
the second generation’s adult metabolic health would be altered, which would lead to effects
on birth outcomes in the third generation. Alternately, nutrition in the first generation could
have direct effects on the oocytes of the third generation,3 change the microbiome,* or have
epigenetic consequences,® 6 meaning that effects on the third generation could be as strong
or stronger, and even affect subsequent generations.

Animal studies indicate the possibility of multigenerational inheritance related to nutrition
and metabolism?: 89

Very few human studies have examined multigenerational effects. In one study, generation 1
BMI was directly linked to generation 2 birthweight and BMI, but not third generation BMI,
nor did metabolic syndrome in the first generation produce any changes in the birthweight of
generations 2 or 3.

If the hypothesis of multigenerational transmission of metabolism is true, we would expect
the metabolic or nutritional status of the grandmaother to predict a baby’s birthweight, two
generations later. The grandmother’s risk factors could also predict a shorter gestational
age.12: 13 However, shorter gestational age may also be an indicator of suboptimal
intrauterine environment,14 and prematurity may induce developmental programming.® We
hypothesized that generation 1 (grandmother)’s risk factors would predict baby’s
birthweight and gestational age, and intrauterine undernutrition would produce low
birthweight in generation 2, followed by increased risk for obesity/diabetes, leading to
increased birthweight in generation 3.

The Bogalusa Heart Study (BHS) is a long-running study of childhood, adolescent, and how
adult cardiovascular health, founded by Dr Gerald Berenson in 1973 8. Participants were
initially recruited from schools in Bogalusa, LA, at ages 3-18. Over time, additional waves
of data collection were performed, adding additional participants up to adulthood. Female
participants have between 1 and 15 study visits, with a median of 2. In childhood, data
collection occurred approximately every two years, and in adulthood, approximately every
five years. Currently, participants are largely in their 40s through 60s, and follow-up for
cardiovascular and early aging measures continues. The data linkages were approved by the
Institutional Review Board of Tulane University under a waiver of informed consent. Parents
and participants provided informed consent for original data collection and interviews.

Two linkages with reproductive outcomes have been performed. The first, performed in the
early 90s, linked participants with their own birth certificates. The linkage was performed
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manually based on name and birthdate. 6928 participants were linked to data on birthweight
and gestational age. The second linkage was performed in 2012-2015. Female participants
were linked to their children’s birth certificates for Louisiana, Mississippi, and Texas births
from 1982-2009, including a deterministic record linkage based on maternal social security
number (SSN), and probabilistic linkage when SSN was unavailable. 1591 women also had
been interviewed about their reproductive history during 2012-2016, including data on
birthweight and gestational age of each pregnancy and birth.

Two generation linkage

First and last name of the mother had been recorded at some time-point for 10,292 of the
12,138 study participants. A manual record review was conducted comparing maternal name
with the names of the nearly 6,000 female study participants. (An attempt to link to paternal
participants proved impracticable.) A match was considered likely when the recorded
maternal name was identical to the female participant’s name, and the participant’s age at
the time of the child’s birth was 16 or higher. Situations in which the participant’s name was
similar to the reported maternal name (i.e. common alternative spellings or possible
misspellings, nicknames, or typos), or the name was identical but the participant would have
been between the ages of 12 — 15 at the time of the birth or the participant’s birthdate was
missing, were flagged as questionable matches. Using this method, 702 possible mother/
child pairs were identified, including 114 questionable matches. Questionable matches were
checked against reported addresses, when available, for further verification. Of the
questionable matches, 24 were not verifiable (i.e. participant was not in the 1994 census).
For the remaining 90 questionable matches, 74 (82.2%) were confirmed using census data,
and two of the incorrect matches were corrected using census data. Thus, of the 114
questionable matches, 100 were considered true matches based on the high verification rate
(24 unchecked + 74 verified + 2 corrected). A random sample of 50 likely matches was also
checked against Bogalusa study census data from 1994. Of these, two were not verifiable,
and all of the remaining 48 verifiable matches were confirmed; thus, all 588 likely matches
were considered true matches. In total, this process led to 688 mother/child pairs [(688
children (generation 2) to 437 women (generation 1)].

Three generation linkage

Of the 688 children (generation 2) matched during the mother/child BHS match, 345
(50.2%) were female. Of these, 211 had been linked to at least one birth (433 individual live-
births). After excluding multiple births, the three-generation linkage included 424 three-
generational triads: 177 generation 1 (grandmothers), 210 generation 2 (mothers), and 424
generation 3 children Data for both the first and second generation women was drawn from
BHS visits, and data for the third generation was obtained from vital statistics (n= 383) and
interviews (n=41).

Exposure and outcome measures

Birthweight and gestational age (obstetric estimate) were taken from the vital statistics data,
or, if this was not available, mother’s report (Mother’s report of her infants’ birth outcomes
is generally valid.17-19)
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All participants were measured and weighed in duplicate in light clothing with shoes off; the
average of the measures was used. Fasting blood samples were drawn by venipuncture and
stored at —80 until analysis. Cholesterol, triglycerides and glucose were measured by
enzymatic procedures (Olympus AU400e analyzer). Insulin was measured by
radioimmunoassay (Millipore). Plasma glucose was measured with enzymatic methods
(Beckman Coulter). Measurements were made by laboratory technicians blinded to
participants’ risk factors. The Bogalusa Heart Study Chemistry Laboratory adheres to
rigorous quality control procedures and has participated in the CDC-NHLBI Lipid
Standardization Program since 1981. The intraclass correlation coefficient, a reliability
measure of interindividual variability, for human blind duplicate samples ranged from 0.92
for glucose to 0.99 for total cholesterol. If multiple pre-pregnancy measures were available,
the one closest in time to the pregnancy was used. Mean age at the BHS visit prior to
pregnancy was 16.2 for generation 1 and 11.1 for generation 2

Age was calculated from participant’s age at birth. Race was recorded at the initial BHS
visit. Smoking was based on reporting of current smoking at any visit. Parity was taken from
number of reported pregnancies or birth certificate data; marital status and education
(highest grade completed) were taken on self-report or as recorded on the birth certificate.
Pregnancy weight gain was taken from vital statistics data or maternal self-report, which is
moderately if not perfectly associated with recorded data.2? The reproductive history
interview contained information on tobacco use, marital status at birth, parity, highest grade
completed, and weight gain during pregnancy.

Statistical Analyses

To compare the included sample with the overall BHS sample, chi-square, t-tests, and
ANOVASs were used for bivariate comparisons. Linear and logistic models were also used to
determine whether differences remained after adjusting for age at first and last visit and race.
The generation 1 women and the generation 2 women were compared with the overall
sample in separate analyses.

For the main analysis, first, two-generation relationships with birth outcomes were
examined. Generation 1’s cardiometabolic factors at the visit prior to pregnancy were
examined as predictors of generation 2’s birth outcomes, and generation 2’s cardiometabolic
factors were examined as predictors of generation 3’s birth outcomes. Birthweight and
gestational age were examined as continuous outcomes to maximize study power. Multiple
linear regression models were used for continuous outcomes and logistic models for
dichotomous outcomes. Three models were used to examine the relationships: the first
model was unadjusted, the second adjusted for maternal BMI, and the third also adjusted for
known risk factors for birth outcomes (for generation 2-generation 3, age, smoking, race,
marital status, education, parity, weight gain during pregnancy, and time between the BHS
visit and pregnancy; for generation 1- generation 2, age, smoking, race, parity, and time
between the BHS visit and pregnancy [less information was available for this analysis
because generation 2’s birth outcomes were taken from the first linkage, and no data was
abstracted from the birth certificate beyond birthweight and gestational age]). Multiple
imputation was used to account for missing data in covariates.2 Models were generalized
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estimating equations (GEE) with an exchangeable working correlation matrix to allow for
correlation within family (generation 1).

Analysis 2 examined generation 1 characteristics as a predictor of generation 3’s birthweight
and gestational age. Generation 1 measurements at the visit prior in to the pregnancy with
generation 2’s were examined as predictors, with adjustment for maternal BMI (model 2),
grandmaternal BMI if not the exposure, and for maternal age, race, smoking, parity, marital
status, education, weight gain during pregnancy, and time between the BHS visit and the
pregnancy (model 3). An additional analysis controlled for the corresponding mother’s risk
profile (e.g., effect of grandmaternal glucose controlling for mother’s glucose levels).

Analysis 3 examined whether discrepancies in the BMI of the generation 1 and 2 were
associated with differences in the infant’s birthweight and gestational age. The BMIs were
categorized as: (1) both generations 1 and 2 overweight/obese; (2) neither overweight nor
obese; (3) generation 1 overweight/obese/generation 2 not; and (4) generation 2 overweight/
obese/generation 1 not. These four categories were examined as predictors of generation 3’s
birthweight/gestational age. A similar strategy was followed for other risk factors, with top
quartile as the cut-off for “high.”

Analysis 4 examined discrepancies in birthweight, looking at whether the generation 1’s
characteristics produced a pattern whereby one or the other of the generation 2 and
generation 3 had lower birthweight, but the other was not. Due to the small numbers, “lower
birthweight” was defined as <20™ percentile for this study population.

Finally, we examined the hypothesis that intrauterine undernutrition would produce low
birthweight in generation 2, followed by increased risk for obesity/diabetes, leading to
increased birthweight in generation 3. We compared the group with generation 1 normal/
underweight, generation 2 <20t percentile on birthweight, generation 2 later BMI
overweight/obese, to all others. Analyses were performed using SAS software version 9.3
with two-sided p-values.

The generation 1 and 2 women included in this analysis were 58% African-American, 42%
white, and the mean age at the BHS visit prior to pregnancy was 16.2 for generation 1 and
11.1 for generation 2 (Table I). Age of the generation 1 participants included in this analysis
was older at earliest visit (14.4 vs. 9.6) as well as most recent visit (34.5 vs. 18.8), compared
with women in the overall BHS sample (Table ). Included participants were much more
likely to be African-American (58% of this sample, compared with 36% of the larger
sample). Mean BMI and cholesterol were not different once race and age were accounted
for, and blood pressure was slightly lower than women in the overall sample (systolic —1.31
mmHg, p=0.08). The included generation 1 participants were much more likely to be
smokers (56% vs. 36% ever smoked), though this, too, was somewhat explained by the age
difference (p=0.14 for differences in smoking, after adjustment for race and age). The
included mothers had a younger age at earliest visit (mean 7.8) and latest visit (11.5)
compared with the overall population of women. Mean BMI and cholesterol were not

J Pedliatr. Author manuscript; available in PMC 2018 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Harville et al.

Page 6

different once race and age were accounted for, and blood pressure was slightly lower
(systolic —1.64 mmHg, p<0.01). Mean birthweight in the generation 1 was 3083 g, in the
generation 2 was 3187 g, and in the generation 3 was 3037 g, and birthweights were
correlated across generations (generation 1-generation 2, r=0.39, p<0.01; generation 2-
generation 3, r=0.24, p<0.01)

Two-generation comparison

Generation 2 (mother) higher BMI was associated with higher birthweight (28 g per 1 unit
of BMI, 95% CI 16, 40) and gestational age (0.08 weeks, 95% CI 0.02,0.14) in the
generation 3 (child), and generation 1 (grandmother) higher BMI was associated with higher
birthweight (52 g,95% CI 34, 70) in the generation 2 (mother) (Table II). Higher glucose and
triglycerides in generation 2 were associated with increased birthweight and LDL with
higher gestational age in generation 3, but these were to some degree explained by
confounding.

Three-generation comparison

Generation 1’s glucose levels were associated with higher birthweight in generation 3
(adjusted beta=111, 95% CI 33-189), and triglycerides (=21, -43-0) and LDL (-24, —48-0)
were associated with lower birthweight (Table 111). HDL was weakly associated with higher
gestational age (0.12, 0.00-0.24). Examination of discrepant risk factor patterns indicated
associations of birth outcomes with both generation 1 and 2 (Table 1V). The highest
birthweight was seen in those with both generation 1 and generation 2 overweight/obese,
although there was substantial overlap in the confidence intervals with the effects from a
single generation being obese.

Generation 1’s glucose level was more strongly associated with birthweight than generation
2’s, and the negative relationship between generation 1’s LDL and birthweight was mostly
in those whose generation 2’s LDL was not high. Generation 2’s triglycerides were mostly
associated with higher gestational age if the generation 1 was not in the “high” category.

Generation 1 BMI was very strongly inversely associated with the pattern of generation 2
having a lower birthweight, but generation 3 not (OR per 1 unit, 0.81, 95% CI 0.69-0.96)
(Table V; available at www.jpeds.com), and higher generation 1 triglycerides were also
associated with an increased likelihood of generation 3 having a lower birthweight, but
generation 2 not (OR per 10 units, 1.10, 95% CI 1.00-1.20; data not shown).

Finally, comparing the group with generation 1 normal/underweight, generation 2 <20t
percentile on birthweight, generation 2 later BMI overweight/obese, to all others,
birthweight in generation 3 was an average of 251 g (p=0.13) higher, reduced after
adjustment for confounding (adjusted beta 163 g, p=0.35).

Discussion

The results of this study are consistent with a previous study in Malta that linked clinical
databases for 182 mothers and daughters, who then gave birth to 233 infants, 22 in that
maternal BMI was one of the strongest drivers of birthweight. Unlike this previous study,

J Pedliatr. Author manuscript; available in PMC 2018 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Harville et al.

Page 7

however, we did find some generation 1- generation 3 relationships with cardiometabolic
factors. The Maltese study, however, was limited to what was recorded in a clinical database,
and so had much less detailed measures of the pre-pregnancy cardiometabolic risk factors.

Our results suggest the possibility of multigenerational developmental programming of birth
outcomes, although mechanisms (whether biological or environmental) are undetermined.
Also, although DOHabD research has linked low birthweight with both adult cardiovascular
and metabolic health,23 these effects may need to be distinguished for perinatal outcomes —
it has long been known that maternal glucose is associated with higher birthweight,2* and
higher lipids have been associated with lower gestational age.2> Animal work indicates the
possibility of transgenerational or multigenerational influences on health, although the
research is still in its early stages: maternal diet in generation 1 has been found to predict
adiposity in mice through generation 3 and sometimes 4.26: 27 Biological mechanisms that
could account for effects on three-generational effects could include epigenetic

changes 26 27 including changes in the oocytes or in tissues or altered gene expression.?8 It
is also possible that nutritional or metabolic dysfunction in generation 1 could induce
developmental programming of metabolism or hormone levels in generation 2 that was
especially prominent under conditions of stress, such as being pregnant, thus amplifying or
leading to additional programming of generation 3.2

Our study considers only maternally-mediated associations. Some studies indicate a stronger
paternal effects, or stronger effects working through the male offspring’s line rather than the
female; this was the case for the Overkalix study.10 It is possible that our results would have
been stronger, or different, if grandfathers or fathers could have been considered

There were limitations to the study. Included participants were different from other BHS
participants. Except for the race difference, these differences largely reflect the form of the
study, which includes several cross-sectional studies for which there was little follow-up,
and a core group that has been followed up multiple times; as well as the fact that allowing
three generations generally requires that the earliest generation have entered the study at an
older age. The sample for this analysis is limited to those who could be contacted and/or
linked, which makes them different from the overall sample in the ways demonstrated in
Table I; there is no reason to believe, however, that biological mechanisms would operate
differently in this group.

Other limitations are related to the available data. Pre-pregnancy cardiometabolic health is
represented with a single measurement, closest in time to pregnancy. Some women do have
multiple pre-pregnancy measures, but the number is too small for analysis (n=26). Even
using a single measure, the sample is small. A second limitation is the non-standardized
measurement timing, either at the same age or before pregnancy, which in some cases led to
long gaps between the cardiovascular measurement and the pregnancy outcome. All of these
factors limit our ability to detect anything beyond very large effects, and our ability to
distinguish transgenerational from genetic and environmental effects.
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Future studies should examine larger sample sizes; explore possible epigenetic and
programming mechanisms of effect; include male generation 1 and 2 participants; and assess
metabolic health in the third generation.
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Table 5

Grandmother’s cardiometabolic risk factors as predictors of cross-generational discrepancy in birthweight
(mother <20th percentile for birthweight, child not)

adjusted for maternal BMI, age, race, parity, weight gain during pregnancy,

unadjusted smoking, prenatal care, marital status, education

OR&  95% ClI OR 95% ClI
BMI (118 gen 1/289 gen 3)  0.80  0.68,0.93 0.81 0.69, 0.96
glucose (97 gen 1/217gen3) 0.96 0.63,1.48 0.99 0.58,1.71
triglycerides (118 gen 1/289 gen 3)  0.92  0.79, 1.06 0.94 0.80, 1.10
cholesterol (118 gen 1/289gen3) 1.06 0.88,1.28 1.08 0.89,1.32
HDL (118 gen 1/289gen 3) 1.17  0.95,1.45 1.19 0.92,1.53
LDL (118 gen 1/289gen3) 0.97 0.80, 1.19 1.00 0.81,1.24

aper 1 unit BMI and 10 units of other predictors
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