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Abstract

We address the nature of unintentional changes in performance in two papers. This first paper 

tested a hypothesis that unintentional changes in performance variables during continuous tasks 

without visual feedback are due to two processes. First, there is a drift of the referent coordinate 

for the salient performance variable toward the actual coordinate of the effector. Second, there is a 

drift toward minimum of a cost function. We tested this hypothesis in four-finger isometric 

pressing tasks that required the accurate production of a combination of total moment and total 

force with natural and modified finger involvement. Subjects performed accurate force/moment 

production tasks under visual feedback, and then visual feedback was removed for some or all of 

the salient variables. Analytical inverse optimization was used to compute a cost function. Without 

visual feedback, both force and moment drifted slowly toward lower absolute magnitudes. Over 15 

s, the force drop could reach 20% of its initial magnitude while moment drop could reach 30% of 

its initial magnitude. Individual finger forces could show drifts toward both higher and lower 

forces. The cost function estimated using the analytical inverse optimization reduced its value as a 

consequence of the drift. We interpret the results within the framework of hierarchical control with 

referent spatial coordinates for salient variables at each level of the hierarchy combined with 

synergic control of salient variables. The force drift is discussed as a natural relaxation process 

toward states with lower potential energy in the physical (physiological) system involved in the 

task.
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Introduction

The unintentional drift of performance is a well-documented phenomenon. It is observed 

during both unperturbed continuous trials (Slifkin et al. 2000; Vaillancourt and Russell 

2002), in response to transient force perturbations (Wilhelm et al. 2013; Zhou et al. 2014), 
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and over repeated trials (Heijnen et al. 2012). Within this context, we use the word 

“unintentional” for changes in performance that happen in the absence of changes in the 

external force field and distortions in the natural sensory feedback, and without the actor’s 

knowledge. For example, when a person is asked to maintain accurate constant force by an 

effector under visual feedback and then the feedback is removed, a slow drift in force, 

typically to lower values, is observed (Vaillancourt and Russell 2002; Shapkova et al. 2008). 

A similar, but much faster, drift is observed when the effector is subjected to a transient 

perturbation (Wilhelm et al. 2013; Reschechtko et al. 2014). If a person is asked to walk 

toward an obstacle, step over it, and continue walking, over repeated trials the clearance 

between the foot and the obstacle gets smaller (particularly for the trailing foot), and 

sometimes the foot touches the obstacle (Heijnen et al. 2012, 2014). The cited earlier studies 

offered interpretations of these phenomena based on a variety of concepts such as limitation 

of the working memory, boredom, inattention, minimization of energy expenditure, and 

fatigue.

Recently, we have offered a conceptually different interpretation for unintentional drifts in 

performance based on two concepts. The first is the control of voluntary actions with 

changes in referent coordinates (RCs) for the involved effectors (Feldman and Levin 1995; 

Feldman 2015). The second is the idea of synergic control of redundant systems (note that 

all natural actions involve redundant sets of effectors, Bernstein 1967) based on the principle 

of abundance (Latash 2012). For example, producing a constant force by an effector is 

associated with setting its RC (and possibly apparent stiffness k, Latash and Zatsiorsky 

1993) and keeping it unchanged with the help of visual feedback. When the feedback 

becomes unavailable, RC may drift toward the actual coordinate (AC) of the effector (e.g., 

the actual coordinate of the fingertip) and cause a slow force decrease. In isometric 

conditions AC is constant, force magnitude F = k(RC – AC), and a drift in RC is reflected in 

the drift in force. This hypothetical mechanism has been referred to as RC-back-coupling 

(Reschechtko et al. 2014; Ambike et al. 2015; Zhou et al. 2015). Along similar lines, 

moment of force (M) production may be viewed as a consequence of a change in referent 

orientation (RO) of the object with respect to its actual orientation (AO): M = kR(RO – AO) 

where kR is rotational apparent stiffness (Latash et al. 2010; Parsa et al. 2016). Unintentional 

changes in M are viewed as consequences of a drift of RO toward AO, which is another 

example of the hypothetical RC-back-coupling mechanism. Figure 1 illustrates the notions 

of actual coordinate (AC), referent coordinate (RC), actual orientation (AO), and referent 

orientation (RO) in panel A, and RC-back-coupling in panel B. Note that RC-back-coupling 

can potentially lead to an increase or a decrease in the force by individual effectors (finger) 

depending on the relative drifts in RC and RO (Parsa et al. 2016).

Typical tasks involve redundant sets of effectors. For such a task, the effector space can be 

decomposed into two subspaces based on the effect that the effectors have on a salient 

performance variable. The uncontrolled manifold (UCM, Scholz and Schöner 1999) is a 

subspace corresponding to no change in that variable, while the orthogonal to the UCM 

subspace (ORT) corresponds to changes in this variable. During steady-state tasks, processes 

in the UCM are usually less stable as compared to ORT (reviewed in Latash et al. 2002, 

2007). Note that processes in less-stable spaces are slower as compared to more-stable 

spaces (cf. motion of a mass on a weak spring – less stable, and on a stiff spring – more 
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stable). Hence, slower drift is expected within the UCM while faster drift is expected within 

ORT. When the system is perturbed leading to a change in the salient performance variable, 

the perturbation by definition affects the ORT space resulting in a fast RC-back-coupling 

process and fast change in that performance variable. During continuous steady-state tasks, 

transient relaxation processes are slow reflecting the lower stability within the UCM. A 

degree of coupling between the two subspaces has been hypothesized leading to the slow 

force drift observed during continuous tasks (Ambike et al. 2015).

The concepts of RC and synergic control were used to explain the overall change in the 

salient performance variable and its stability as reflected, for example, in the structure of 

inter-trial variance within the UCM and ORT spaces (reviewed in Latash et al. 2007). In this 

study, we focus on a third characteristic of actions by abundant systems, namely the average 

across trials sharing of the salient performance variable among the elements. Sharing has 

been addressed based on optimality principles (reviewed in Prilutsky and Zatsiorsky 2002). 

Recently, a method of analytical inverse optimization (ANIO) has been introduced 

(Terekhov et al. 2010) that allows computing a cost function based on observed behavior of 

a redundant system over a broad range of task constraint values.

Our main hypothesis is unintentional changes in performance variables during continuous 

tasks without visual feedback are due to two processes. First, there is the aforementioned 

RC-back-coupling leading to a drift of the RC towards the actual coordinate of the effector. 

Second, there is a drift within the UCM toward a minimum of the cost function reflected in 

coordinated drifts of the elemental variables (variables produced by individual effectors at 

the selected level of analysis). We tested this hypothesis in multi-finger isometric pressing 

tasks that required the accurate production of a combination of total moment and total force, 

{MTOT; FTOT} (similar to Park et al. 2010, 2013).

To test the first set of predictions, we quantified the drifts in FTOT and MTOT observed when 

the subjects continued performing such tasks without visual feedback. We predicted that 

FTOT would drop (similarly to Vaillancourt and Russell 2002; Ambike et al. 2015a) while 

MTOT drift would depend on the initial magnitude and direction of MTOT and directed 

toward its zero magnitude corresponding to the horizontal actual orientation of the hand. 

This prediction is based on the idea that MTOT production may be viewed as a shift of the 

referent orientation of the plane of fingertip coordinates (RO) away from its actual 

orientation (AO) scaled with an apparent stiffness coefficient (kO): MTOT = kO(RO − AO).

To test the second set of predictions, we required our subjects to vary their preferred sharing 

of the task among the four fingers using visual feedback. Namely, we asked them to produce 

the same {MTOT; FTOT} combination but with the force of the middle finger (FMID) reduced 

by 50%. Any finger could be chosen as a candidate for this manipulation. We selected the 

middle finger because: (1) its effects on MTOT are relatively small and could be easily 

compensated for by adjustments in other finger forces; and (2) it is a strong finger with 

substantial contribution to FTOT (Li et al. 1998). After visual feedback had been turned off, 

we expected the forces to drift towards their preferred sharing pattern corresponding to a 

minimum of the cost function reconstructed using the ANIO method. Since no perturbations 

were used, we expected all the processes to be relatively slow (e.g., as in Ambike et al. 
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2015a,b). To explore the interaction among the hypothesized processes, we quantified the 

drifts in performance under a variety of visual feedback conditions, from no feedback at all 

to feedback presented selectively on only a subset of the three constraints, FTOT, MTOT, and 

FMID. We expected consistent drifts in the no-feedback variables only.

Methods

Subjects

Six male and five female subjects (age 27.27 ± 5.44 years, mass 74.18 ± 14.73 kg, height 

171.18 ± 8.30 m), all right-handed, volunteered to participate in the study. All subjects were 

healthy and without any history of neuropathy or any other upper-limb disorders. Nine 

subjects performed the experiment entirely. For technical reasons, for one of the conditions, 

the data for two subjects were unavailable (see later in Methods). All the procedures were 

approved by the Office for Research Protection of the Pennsylvania State University.

Equipment

Four force transducers (Nano-17 sensors, ATI Industrial Automation, Garner, NC, USA) 

were mounted on an aluminum plate, which was attached to a wooden board. The whole 

setup was fixed with a clamp to a table (Figure 2). The sensors were covered with sandpaper, 

the friction coefficient with the fingerpads was approximately 1.4–1.5 (Savescu et al. 2008). 

Visual feedback was shown on a 19″ monitor placed at the eye level, about 0.6 m away 

from subjects.

Twenty-four analog signals (4 sensors × 6 components) were digitized at 100 Hz by a 12-bit 

analog-digital converter (PCI-6031, National Instruments, Austin, TX). The programs for 

visual feedback and data collection were written in Labview 2010. Off-line analysis was 

done using Matlab 2014.

Experimental procedure

During the test, subjects sat in a chair at the table and placed the right-hand fingertips on the 

sensors. Two Velcro straps were used to maintain a steady hand and forearm position (Figure 

1). The wooden plate was covered with a soft sponge layer for comfort. Sensor position in 

the anterior-posterior direction was adjusted for subject’s hand anatomy.

At the beginning of every trial, the experimenter asked the subject to place the fingertips on 

the sensors and relax the hand. The sensor readings were set to zero so that during data 

collection only the downward active force of the fingers was recorded.

The vertical axis on the visual feedback monitor screen showed the total pressing force 

(FTOT, the sum of the pressing forces of all four fingers), and the horizontal axis showed the 

total moment of force (MTOT) computed about the anterior-posterior axis passing in-between 

the sensors for the ring and middle fingers (Figure 2). Note that MTOT was a nominal 

moment value computed based on the vertical force magnitudes that did not take into 

account possible effects of the shear forces. As shown in Figure 1, subjects controlled the 

cursor position by adjusting FTOT and MTOT. (MTOT, FTOT) = (0, 0) corresponded to a 
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cursor location in the mid-bottom of the screen. Pronation (PR) moment was considered 

negative while supination (SU) moment was positive.

The experiment consisted of three parts. The first part involved the maximum voluntary 

contraction (MVC) by all four fingers (MVC-4) and by the index finger alone (MVC-I). 

During these trials, the subjects were given feedback on the force produced by all four 

fingers (in MVC-4), or by the index finger (in MVC-I). Subjects performed two trials at each 

task with at least 30 s between the trials; the trial with the maximal value of the instructed 

force was chosen to set further tasks.

The second part involved data collection for analytical inverse optimization (ANIO). In this 

part, the subjects were required to press with the four fingers in a natural way, with minimal 

effort, to reach a target shown on the screen corresponding to a combination of MTOT and 

FTOT, {MTOT; FTOT}. To set tasks, we defined the unit of MTOT as 7% of MVC-I multiplied 

by the index finger nominal lever arm (0.045 m). Nine total force levels (5–45% of MVC-4 

with steps of 5%), and seventeen-moment levels (0–4PR and 0–4SU with steps of 0.5) were 

used resulting in a total of eighty-one {MTOT; FTOT} combinations that filled a triangular 

shape with {(4PR, 45%MVC), (0, 5%MVC), (4SU, 45%MVC)} as vertices (as in Park et al. 

2013). Subjects had 6 s to reach the target and stay there. There were 10-s intervals between 

trials, and additional 1-min rest periods after each 10-trial block.

The third part involved the main task. During this task, subjects were required to press with 

four fingers to reach the presented {MTOT; FTOT} target in a natural way, as in the second 

part. Three targets were used with FTOT always equal to 20% of MVC-4, while MTOT was 

1.5PR, 0, or 1.5SU.

All the subjects were able to reach the prescribed {MTOT; FTOT} target within 3 s. After 5 s 

from the trial initiation, additional feedback was shown in the middle of the screen (not 

interfering with the original feedback on {MTOT; FTOT}). The additional feedback showed 

the force of the middle finger, FMID, as a vertical rectangular chart (Fig. 2). The subjects 

were required to reduce FMID to 50% of the average FMID level they had been producing 

over the 4.5–5 s time interval from the trial initiation (computed online). They were given 10 

s to reach a new steady finger force combination that would satisfy the original {MTOT; 

FTOT} constraint and the new FMID constraint.

At that time (15 s into the trial), visual feedback was manipulated. There were seven 

feedback conditions: no feedback on any of the three variables (None), feedback on FTOT 

only, feedback on MTOT only, feedback on FMID only, feedback on FTOT and FMID 

(FTOT+FMID), feedback on FTOT and MTOT (MTOT+FTOT), and feedback on MTOT and FMID 

(MTOT+FMID). For nine of the subjects, an eighth condition was also used, in which all the 

feedback remained on the screen until the end of the trial (All). For technical reasons, data 

for the remaining two subjects for the “All” condition were unavailable. The subjects were 

always instructed to continue pressing with the same finger forces: “keep doing what you 

have been doing”. The conditions were presented in a fully randomized order. Three trials 

were performed under each condition.
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Before starting the data collection, subjects performed ten practice trials to get acquainted 

with the main task. Conditions for the practice trials were selected randomly. No data were 

recorded in those trials.

A 10-s break was enforced between trials to prevent fatigue. After every ten trials, a one-

minute break was given. Subjects were encouraged to ask for more rest during the 

experiment as needed. None of the subjects reported fatigue after the experiment.

Data processing

All data analysis was done in Matlab software. The finger forces were low-pass filtered at 5 

Hz using a zero lag, fourth-order Butterworth filter. Three phases were selected in each trial 

for data analysis. Phase-1 corresponded to the time interval between 4.7 and 4.8 s; Phase-2 
corresponded to the time interval between 14.7 and 14.8 s, and Phase-3 corresponded to the 

time interval between 29.7 and 29.8 s. These three 100-ms long time intervals were selected 

to reflect the steady states under the original two constraints, {MTOT; FTOT}, under the 

combination of three constraints, {MTOT; FTOT} and FMID, and at the end of the trial. Figure 

3 illustrates these three phases for a sample trial using the FTOT time series.

Analysis of the drift in performance variables—The drift in the main performance 

variables, FTOT, MTOT, and FMID was estimated as the difference in the values of these 

variables averaged over Phase-3 and Phase-2 (ΔFTOT, ΔMTOT, and ΔFMID, respectively). For 

each subject, the average drift values were computed across three repetitions over each 

condition separately. Since the initial values of the two main task-related variables, FTOT and 

MTOT, were well matched to the task values by the subjects (see Results), we expected the 

drifts to reflect the final values of those variables. For other variables that could show 

substantial variability across conditions, such as individual finger forces, we analyzed both 

initial (Phase-2) and final (Phase-3) values in addition to their changes. These comparisons 

in normalized (to MVC) units were made since the force drift magnitude is known to change 

proportionally with the initial force value (e.g., Ambike et al. 2015). For across-subjects 

comparisons, the drifts in all performance variables and finger forces were normalized by 

the corresponding average values within Phase-2.

ANIO and computation of the cost function—The Analytical Inverse Optimization 

(ANIO) method (Terekhov et al. 2010) was used for approximating the cost function. The 

method used the data collected in the second part of the study, that is, during accurate 

production of 81 different {MTOT; FTOT} tasks. For each trial, we computed the average 

finger forces during the time interval {5.7 s; 5.9 s} from the trial initiation. We tested the 

planarity of the collected data sets within each subject using principal component analysis 

(PCA). In previous studies, we used the criterion of >90% of the variance explained by the 

first two PC vectors (Park et al. 2010, 2011, 2012). Compared to the cited earlier studies, we 

softened the criterion for data acceptance into ANIO. This was done because two subjects 

showed about 85% of the data explained by the two first PCs. Otherwise, the results in those 

two subjects were not different from all other subjects. Hence, to be able to include those 

data in our analysis, we chose 80% to be the threshold. All the subjects, except one, 
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produced data sets that satisfied this criterion (see Table 1). This justified using a second-

order polynomial of finger forces as a cost function (Terekhov et al. 2010; Park et al. 2011):

(1)

where i stands for fingers (index, middle, ring, and little), subscript n stands for normal 

forces, ki and wi are coefficients selected to provide the best fit to the original data. Further, 

the cost functions were used to compute optimal solutions for the same {MTOT; FTOT} tasks 

for each subject. For consistency, we used this equation for the data of the only subject who 

failed to satisfy the 80% criterion. The dihedral angle (D-angle) between the plane of 

optimal solutions for the same {MTOT; FTOT} combinations and the plane of original data 

(spanned by PC1 and PC2) was computed. The D-angle is a metric reflecting the goodness 

of fit provided by the computed cost function. The dihedral angle equal to zero means that 

the two planes are parallel. The noise analysis and a description of why the dihedral angle is 

an adequate measure for goodness of fit was discussed in earlier publications (Terekhov et 

al. 2010; Terekhov and Zatsiorsky 2011). A more detailed description of the method can be 

found in the Appendix.

Equation (1) was further used to compute the cost values (CANIO) within Phase-2 and 

Phase-3 for the data collected during the main part of the experiment. The change in CANIO 

was computed between the two phases (ΔCANIO). The average values of ΔCANIO across the 

three repetitions at each condition were used for statistical purposes. In general, as defined 

by Eq. (1), CANIO = 0, corresponding to zero finger forces, may be viewed as optimal. 

However, this could never happen in the experiment, as people were explicitly instructed not 

to take their hand off the sensors. So, we expected CANIO to move closer to zero from 

Phase-2 to Phase-3, as compared to its initial value.

Statistical analysis

Data are presented in the text and Figures as means ± standard errors unless stated 

otherwise. To test the first hypothesis, a two-way repeated measure ANOVA was run on 

ΔFTOT, ΔMTOT, and ΔFMID, separately with the factors Feedback (None, FTOT, MTOT, 

FMID, FTOT+FMID, FTOT+ MTOT, MTOT+FMID, and All) and Moment (PR, ZE, and SU). To 

include the “All” condition, the analysis was repeated for nine subjects who had performed 

all of the conditions; however, the main effects were studied for 11 subjects without 

including the “All” feedback condition. To test the second hypothesis, the same ANOVA 

design was applied to ΔCANIO.

Furthermore, to study changes in finger forces during the main task, a two-way MANOVA 

with repeated measures was used with the factors Finger (index, middle, ring, and little), 

Feedback and Moment. In all of the analysis, significant effects of ANOVA and MANOVA 

were further explored using pairwise contrasts with Bonferroni adjustments. The 

adjustments were selected based on the actual number of levels of factors with significant 

main effects or on the number of permutations of levels in significant interaction effects.

Parsa et al. Page 7

Exp Brain Res. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



All the data sets were checked for normality and sphericity using the Mauchly criterion. In 

cases of sphericity violations, the Greenhouse-Geisser correction was applied. The nominal 

critical p-value (before Bonferroni adjustments) in all of the analysis was set at 0.05. The 

actual critical p-values depended on specific contrasts.

Results

Analytical Inverse Optimization (ANIO)

Principal component analysis (PCA) applied to the individual finger force data collected 

over the sets of 81 trials with different combinations of total moment and total force, 

{MTOT; FTOT}, led in all subjects, except one, to well over 80% of total variance accounted 

for by the first two PCs (Table 1). Only subject #4 failed to satisfy the 80% criterion, while 

the average value across subjects was 87.4±1.43%.

For consistency, we applied ANIO to the data of all subjects including subject #4. The 

second column in Table 1 shows the coefficients (ki) at the second-order terms of the cost 

function; see Equation (1) in Methods. Note that all these coefficients were positive, which 

is an important criterion for applicability of ANIO (Terekhov et al. 2010; Terekhov and 

Zatsiorsky 2011). The positive ki values mean that ANIO found a solution for the inverse 

optimization problem.

The dihedral angle (D-angle), the goodness of fit index (see Methods) was, on average 

5.49±1.25°. Two subjects showed larger values of the D-angle (>10°); one of them was 

subject #4 who also showed the lowest percentage of variance accounted for by the two PCs.

Drifts in task-related performance variables

All the subjects were able to perform the {MTOT; FTOT} tasks, even after the additional 

constraint on FMID had been added. Note that the main task was very simple, especially 

given that the {MTOT; FTOT} values were normalized with respect to the MVC. We did not 

have specific error requirements, but the subjects could place the cursor on the target with no 

visible deviations in both Phase-1 and Phase-2. As a result, the drifts in the two main task-

related variables, FTOT and MTOT, reflected final values since initial values were closely 

matched (in normalized units). Figure 3 shows the individual finger time series during a 

typical trial with an initial pronation moment, as well as the computed performance variables 

related to the task constraints, FTOT, MTOT, and FMID. During the early portion of the task 

(until Phase-1), the subject achieved a certain finger force combination that satisfied the 

{MTOT; FTOT} constraint. By Phase-2, the subject was able to reduce FMID by 50% (as 

required by the task) while still producing the same {MTOT; FTOT} combination. After the 

visual feedback on all three performance variables, FTOT, MTOT, and FMID, was turned off, 

the finger forces showed consistent drifts leading to a drop in FTOT, a drop in the magnitude 

of MTOT, and an increase in FMID (see Phase-3 in Figure 3).

Keeping visual feedback on some of the performance variables helped the subjects to avoid 

drift in those variables, while drifts in the variables without visual feedback persisted. Figure 

4 illustrates two typical trials with the initial moment into supination and into pronation. 

After Phase-2, visual feedback on FTOT only was preserved, while the feedback on MTOT 
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and FMID was turned off. The Figure shows a consistent level of FTOT throughout the trial, 

while the magnitude of MTOT drifts to lower absolute values and the magnitude of FMID 

drifts toward higher values.

Overall patterns of the drifts in the three task-related variables are illustrated in Figure 5. 

Panel A of Figure 5 shows the averaged across subjects magnitude of the drift in FTOT 

(ΔFTOT) from Phase-2 (full feedback) to Phase-3 (modified feedback) as a function of 

feedback condition. Note the very low drift magnitudes when FTOT feedback was present 

and large consistent drifts to lower FTOT values (negative ΔFTOT) when FTOT feedback was 

turned off. The drift in FTOT showed only minor changes with the initial MTOT magnitude, 

but it showed smaller values when MTOT feedback was present.

Two-way ANOVA, Moment × Feedback, on ΔFTOT over the time of modified feedback 

confirmed a significant effect of Feedback (F[2.574, 25.741] = 22.394, p < 0.001). Pairwise 

contrasts confirmed that the drop was larger in conditions without FTOT feedback (on 

average, 12.76 ± 1.68% of the target FTOT), compared to conditions when FTOT feedback 

was kept over the whole trial (on average, 0.19 ± 0.037% of the target FTOT, p < 0.001). It 

also confirmed larger magnitudes of ΔFTOT for the “None” and “FMID” condition (no 

feedback on FTOT and MTOT) compared to the “MTOT” and “MTOT+FMID” conditions (p < 

0.05).

The drift in MTOT depended strongly on both the initial MTOT value and feedback. As 

illustrated in panel B of Figure 5, this drift was very small and inconsistent when feedback 

on MTOT was available throughout the trial. The drift was large when MTOT feedback was 

unavailable for both initial PR (black bars) and SU (gray bars) MTOT values. The difference 

in the sign of ΔMTOT in the PR and SU conditions reflected the fact that MTOT drifted 

toward zero value. The average decrease in MTOT in the absence of visual feedback was 

11.84%±6.45%, 1.56%±0.59%, and 24.83%±4.84% of the original value in PR, ZERO, and 

SU moment condition, respectively. When the feedback was shown, these values decreased 

to 1.20%±0.69%, 0.15%±0.03%, and 2.63%±0.94% of the original value, respectively.

Two-way ANOVA, Moment × Feedback, on ΔMTOT confirmed a significant effect of 

Moment (F[1.324, 13,236] = 28.314 p < 0.001) and a significant Moment × Feedback 
interaction (F[3.668, 36.684] = 11.374, p < 0.001). The effect of Moment reflected 

significant differences within each pairs of the three levels, PR, SU and ZERO (p < 0.05). 

The interaction reflected the different magnitudes of the drift between conditions with and 

without MTOT feedback (p < 0.001). Effect of Feedback was not significant because of its 

opposite effects depending on the initial moment.

Drifts in finger forces

The regularities in the drifts of FTOT and MTOT were reflected in drifts of the individual 

finger forces. Figure 6 illustrates the averaged across subjects values of individual finger 

forces in Phase-2 and Phase-3. Since we have been primarily interested in the finger force 

drifts during the time with no visual feedback, i.e., from the end of Phase-2 to the end of 

Phase-3, further analysis was applied to the force changes during that time interval 

expressed in normalized units (see Methods). Panel B of Figure 7 illustrates the drifts in the 
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middle finger force, FMID. In trials, when visual feedback on FMID was provided, no 

consistent drifts in FMID were observed. In contrast, when FMID feedback was unavailable, 

FMID showed a consistent tendency to increase. These effects were the strongest in the SU 

tasks (gray bars in Fig. 5B) and weakest in the PR tasks (black bars in Fig. 5B). In the 

absence of feedback on FMID, 20.89%±8.27%, 31.01%±4.73%, and 64.21%±12.17% 

increase in FMID was observed in the PR, ZERO, and SU conditions, respectively.

Two-way ANOVA, Moment × Feedback, on ΔFMID confirmed significant effects of both 

Moment (F[2, 20] = 11.028, p < 0.001) and Feedback (F[2.710, 27.102] = 13.582, p < 0.001). 

There was also a significant Moment × Feedback interaction (F[4.644, 46439] = 3.143, p < 

0.05). Pairwise comparisons confirmed the larger ΔFMID for SU compared to both PR and 

ZERO conditions (p < 0.05). The effect of Feedback reflected larger drift values for 

conditions without feedback on FMID compared to conditions with FMID feedback (p < 

0.05). The interaction reflected the smaller effects of Moment on ΔFMID for the “None” 

condition as compared to other conditions without FMID feedback (p < 0.05).

In contrast to the ΔFMID patterns, the forces produced by the other three fingers (index, ring, 

and little) typically showed drifts toward smaller values (panels A, C, and D of Fig. 7). 

These drifts were smaller for the trials under “All” and “FTOT+MTOT” visual feedback 

conditions and larger under the “None” and “FMID” conditions. These observations were 

supported by a significant effect of Feedback (F[3.624,144.962] = 15.910, p < 0.001). There 

was also a significant effect of Moment reflecting the tendency of more positive (less 

negative) values of force changes for the SU tasks (F[2, 80] = 7.964, p < 0.001), particularly 

pronounced for the index finger (Moment × Finger interaction, F[6, 80] = 6.880, p < 0.01). 

Other significant effects, including the three-way interaction Moment × Feedback × Finger 
(F[17.649, 235.316] = 2.895, p < 0.01) reflected the complex pattern of individual finger force 

adjustments. Since these effects were not directly related to the specific hypotheses and their 

discussion, we do not present these results.

Cost value drifts

To test the second hypothesis on the drift within the UCM toward a minimum of the cost 

function, we quantified the cost function, CANIO at the end of Phase-2 and Phase-3 (with 

modified visual feedback). These values are shown in panels A and B of Figure 8. Note that, 

under most conditions, CANIO values were lower at the end of Phase-3 compared to the end 

of Phase-2. This is illustrated in panel C of Figure 8 that shows the change in CANIO 

(ΔCANIO) over that time interval. Under most conditions, the cost function showed a drop as 

illustrated by the negative values in Figure 8C. The largest magnitudes of ΔCANIO were seen 

under the “FMID” and “None” conditions while the smallest changes, close to zero, were 

observed under the “All”, “FTOT+MTOT” and “FTOT+FMID” conditions. These patterns did 

not show any clear effects of initial moment value. These results were reflected in the 

significant effect of Feedback in the Moment × Feedback ANOVA (F[1.347, 13.474] = 5.550, p 

< 0.05). No other effects reached significance. Note that, while the plot in Figure 8C 

resembles the one for the changes in FTOT (Fig. 5A), there is a significant difference. In the 

FTOT feedback condition, ΔFTOT was close to zero while ΔCANIO was negative (p < 0.05).
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Discussion

The results of our study provide support for the main hypothesis formulated in the 

Introduction. We suggested that two factors contributed to the observed drift in finger forces 

in the absence of visual feedback. First, drift of the referent coordinate (RC) for a salient 

task-specific variable toward its actual coordinate was assumed (cf. Ambike et al. 2015). The 

experiments showed a drift of total force (FTOT) to lower values across conditions without 

FTOT feedback. They also showed a drift of the total moment of force (MTOT) towards lower 

absolute values when no MTOT related feedback was shown; the direction of the drift 

depended on the initial MTOT magnitude. The idea of control with RC implies, in particular, 

that active force is approximately proportional to the difference between the referent and 

actual fingertip coordinates, while active moment is proportional to the difference between 

the referent and actual hand orientations (Latash et al. 2010). Given that the actual finger 

position and configuration were always the same, our current observations support the 

assumed RC drift toward actual fingertip coordinates and hand orientation.

Second, we also assumed that a drift would happen within the uncontrolled manifold (UCM; 

Scholz and Schöner 1999) for the salient performance variables toward a state corresponding 

to minimum of a cost function defined in the space of elemental variables. The initial cost of 

the finger force combination computed based on the cost function reconstructed with 

analytical inverse optimization (ANIO, Terekhov et al. 2010) dropped across conditions 

including the condition when feedback was provided on FTOT and no changes in that 

variable took place. Moreover, we observed an atypical drift of the middle finger force 

(FMID) to higher values in trials when the subjects reduced FMID intentionally as compared 

to the preferred finger force combination. Note that all earlier studies reported downward 

drifts of finger forces after turning visual feedback off unless the initial forces were very low 

(Slifkin et al. 2000; Vaillancourt and Russell 2002; Ambike et al. 2015).

Some of the current findings are similar to those in a recent paper that studied the across-

trials structure of variance in force-moment production tasks performed without visual 

feedback (Parsa et al. 2016). That study involved many trials per condition and, 

consequently, it explored only two conditions. In this paper, we explored effects of changes 

in the initial sharing pattern (leading to changes in the cost function, CANIO) on the drifts. 

Due to the number of conditions, we could not possibly run the across-trials variance 

analysis. Hence, we limited ourselves to the analysis of motor equivalence and explored 

stability of force-moment under such enforced changes in the sharing pattern (covered in the 

companion paper).

Factors that define unintentional changes in performance

Unintentional motor performance has been known for many years. One of the classical 

examples is the so-called Kohnstamm phenomenon (Kohnstamm 1915; Ivanenko et al. 

2006): An unintentional motion of an extremity following a long-lasting strong isometric 

contraction. Unintentional changes in locomotion have been reported following walking on a 

rotating platform (the podokinetic effect, Weber et al. 1998; Scott et al. 2011) and under 

vibration applied to the leg muscles (Gurfinkel et al. 1998; Ivanenko et al. 2000).
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Recently, the phenomenon of unintentional finger force drop has been studied in 

experiments with accurate force production when the previously available visual feedback 

was turned off (Slifkin et al. 2000; Vaillancourt and Russell 2002; Shapkova et al. 2008). 

Similar effects have been observed in grasping studies following a slow transient change in 

the aperture (Ambike et al. 2014), while faster unintentional changes in arm position and 

finger forces were reported in experiments with transient perturbations applied to the 

effectors (Wilhelm et al. 2014; Zhou et al. 2014, 2015).

Some of the earlier studies invoked the notion of working memory limitations as the cause 

for the unintentional force drop (Vaillancourt et al. 2001; Vaillancourt and Russell 2002). 

Potential involvement of working memory in these phenomena was based on a body of 

literature describing connections between prefrontal and premotor cortices with the 

dorsolateral prefrontal cortex and posterior parietal cortex during tasks requiring memory in 

nonhuman primates (Goldman-Rakic 1988; Selemon and Goldman-Rakic 1988). It has also 

been supported by studies of cortical activation using MRI-based methods (Vaillancourt et 

al. 2003) as well as by EEG studies (Poon et al. 2012). On the other hand, involvement of 

working memory has been challenged in a recent study (Jo et al. 2016) based on an 

observation that resting during a comparable time interval led to no consistent force drift.

In a recent study, Ambike et al. (2015) also reported a force drift in the opposite direction, to 

higher values, but only in fingers that started the task with very low forces. These trends 

were weak (although statistically significant in some cases). While they remind the FMID 

drift to higher forces in our study, the initial FMID magnitudes in our experiment were 

typically higher (about 10% of the MVC force) than the values leading to finger force drift 

toward higher force reported by Ambike and colleagues (under 5% of that finger’s MVC 

force). Besides, the magnitude of the FMID drift in our study was of about the same 

magnitude as the more typical downward force drift in other fingers (Figure 5), while in the 

Ambike et al. study the upward force drift was an order of magnitude smaller than the 

typical downward drifts.

Several earlier studies (Ambike et al. 2014, 2015; Zhou et al. 2015) offered a conceptually 

different interpretation for the unintentional force drifts, which views these phenomena as 

specific examples of the well-known general tendency of all physical systems to move 

toward states with lower potential energy. The unintentional force drift has been interpreted 

within the hypothesis assuming that the neural control of movements is based on shifts of 

referent spatial coordinates for salient variables (the RC-hypothesis, reviewed in Feldman 

2015). Within the RC-hypothesis, force production in isometric conditions is associated with 

setting RC for the effector that differs from its actual coordinate (AC). The difference 

between AC and RC produces force via a scaling coefficient, apparent stiffness (cf. Pilon et 

al. 2007). An unintentional drop in force means that RC moves towards AC and/or the 

apparent stiffness decreases; for simplicity, we consider only the former mechanism. Note 

that when RC = AC, the system produces no force, and muscle activation is minimal for the 

given effector configuration. This state may be viewed as the state with minimal potential 

energy of the effector. A hypothesis has been suggested that, when the CNS does not 

implement sensory-based corrections, the physical/physiological system participating in the 

task relaxes toward a state with minimal potential energy, i.e., AC attracts RC leading to a 
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force drift toward smaller magnitudes. Our current results on the FTOT and MTOT drifts 

provide support for this idea.

A novel hypothesis offered in this study is that, when an abundant set of effectors 

participates in a task, a drift toward preferred solution is expected in the space of elemental 

variables. We estimated preferred solutions using the analytical inverse optimization (ANIO) 

method (Terekhov et al. 2010) and then used the computed cost functions to estimate the 

changes in cost associated with the changing finger force combinations. Asking the subjects 

to perform the {FTOT; MTOT} tasks with a reduced contribution from the middle finger 

forced them to deviate from the naturally preferred solution corresponding to a minimum of 

the cost function. The observed downward drift of the cost supports the idea that a drift took 

place in the space of finger forces leading to more natural finger force combinations (closer 

to the minimum of the cost function).

Taken together, our observations suggest superposition of two processes: a drift of RC 

toward AC and a drift in the space of finger forces directed at reducing the cost of the action. 

Figure 9 illustrates this idea for a two-finger task of producing a value of total force: F1 + F2 

= FTOT. Assume that the subject has a preferred pattern of sharing FTOT between the two 

fingers, e.g., 50:50 (the large black dot), corresponding to a minimum of the cost function 

(shown with parabolic dashed lines). Other solutions for the task are possible shown by the 

lines with negative slope – UCMs for this task. The initial force level corresponds to a 

certain distance between RC and AC. Imagine now that the subject was asked to perform 

this task with an unusual force combination, i.e. lower contribution of finger #1 (the open 

circle). This point corresponds to a higher cost of the action (see the dashed circle, a 

projection of the point on the cost function). After visual feedback on both FTOT and F1 has 

been turned off, two processes will take place. First, RC will drift towards AC illustrated by 

the drift of the solution space (UCM) toward smaller FTOT values (compare the thick and 

thinner UCM lines in Fig. 9). At the same time, a drift in the {F1; F2} space will take place 

moving the actual finger force values closer to the bottom of the cost function. The resultant 

drift is shown as the dashed line with the arrow. Our observations suggest that the two 

processes proceed at comparable time scales, but this issue requires further investigation. 

Note that unintentional drifts at two time scales have been reported so far, slow (typical 

times of 10–20 s; Vaillancourt and Russell 2002; Ambike et al. 2014, 2015) and fast (typical 

times of 1–2 s; Wilhelm et al. 2013; Zhou et al. 2014, 2015; Ambike et al. 2016).

Hierarchical control with referent coordinates

Two approaches dominate the field of motor control. One of them is motivated by ideas from 

the field of control theory. This approach assumed that the central nervous system performs 

computational operations with neural variables reflecting specific sensory or mechanical 

variables, for example computing integrals of certain functions of those variables over 

movement time before movement initiation or in the process of movement. A typical 

example is the optimal feedback control schemes that are based on minimizing cost of action 

given the goal and current state of the effectors (Todorov and Jordan 2002; Diedrichsen et al. 

2010). These methods have been successful in describing certain non-trivial features of 

voluntary movements and their corrections. While assuming an appropriate computational 
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process within the central nervous system is probably able to account for all the data 

presented in our study, we are reluctant to accept the idea of neural computations based on 

both philosophical grounds (this topic is too broad to be covered here; for a recent review 

see Latash 2016) and the lack of direct demonstrations of such computations.

The alternative approach originates from physics, i.e., study of natural laws that describe 

behavior of any objects, animate and inanimate (reviewed in Latash 2012, 2014, 2016). This 

approach does not assume that the central nervous system performs computational 

operations but that it behaves according to laws of nature (some of these laws are unknown 

to us at this time). We use the physical approach, following established traditions of motor 

control (Bernstein 1947; Kugler and Turvey 1987; Feldman 2015). In particular, we accept 

the idea of control with referent coordinates that reflect changes in subthreshold 

depolarization of neuronal pools (reviewed in Feldman 2015).

The RC-hypothesis implies a hierarchical system of control with the RC for salient, task-

specific variables defined at the highest level of the hierarchy. Further, this low-dimensional 

set of RCs maps on RCs at lower levels of the control hierarchy, which are typically higher-

dimensional, and defines RCs for limbs, joints, digits, and muscles. Such transformations are 

associated with synergic adjustments among RCs within abundant sets at lower levels, 

possibly via back-coupling loops (Latash et al. 2005; Martin et al. 2009). This scheme 

predicts relatively consistent behavior in the space of salient task-specific variables 

combined with a relatively variable behavior at the level of elements (Schöner 1995).

This prediction has been tested in a number of studies within the UCM hypothesis (Scholz 

and Schöner 1999). Some of those studies (reviewed in Latash et al. 2007; Latash 2008) 

compared inter-trial variance within a space where salient variables do not change (within 

UCM, VUCM) and within a space where those variables change (orthogonal to the UCM, 

VORT). The inequality VUCM > VORT, where both indices are quantified per dimension in 

the corresponding spaces, has been used as a signature of a synergy stabilizing those salient 

variables. Another group of studies quantified deviations along the UCM and along the ORT 

space during quick corrective actions (Mattos et al. 2011, 2014). Note that deviations along 

the UCM by definition cannot correct deviations of salient variables. Nevertheless, large 

such deviations have been observed reflecting the lower stability of the system within the 

UCM as compared to the ORT directions.

In our study, we observed most consistent across subjects patterns of unintentional drifts in 

the task-related variables such as FTOT and MTOT when the corresponding feedback was 

turned off (Fig. 4). The drifts in some of the individual finger forces were less consistent 

(Fig. 5) suggesting that much of the finger force drifts took place within the UCM for FTOT 

and MTOT. This issue is analyzed in detail in the companion paper (Parsa et al. 2016).

Is optimization real?

The original formulation of the problem of motor redundancy (Bernstein 1935) stated 

explicitly that the main problem of motor control was the elimination of redundant degrees 

of freedom. This could be done by adding constraints to the system (for example, self-

imposed, intentional constraints, e.g. Hu and Newell 2011), or by using optimization 

Parsa et al. Page 14

Exp Brain Res. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approaches, i.e., looking for a solution from an infinite set that minimizes (or maximizes) a 

cost function. A number of cost functions have been explored (reviewed in Nelson 1984; 

Prilutsky and Zatsiorsky 2002), such as minimal time, minimal energy expenditure, minimal 

jerk, minimal fatigue, minimal discomfort, and many others. Researchers selected specific 

cost functions rather arbitrarily, typically reflecting their intuition and experience.

Two questions emerge. First, can arbitrary choice of cost functions be avoided and replaced 

with a computational, data based, method? Second, are optimization approaches useful for 

analysis of natural, biological movements?

An answer to the first question was offered by the ANIO method (Terekhov et al. 2010: 

Terekhov and Zatsiorsky 2011). This method allows computing a cost function based on 

experimental observations under certain assumptions, in particular that the cost function is 

additive with respect to outputs of the elements. A number of studies have shown that ANIO 

produces consistent cost functions that allow describing multi-finger tasks with better 

accuracy than typical cost functions used in the literature (Niu et al. 2012), and that this 

method is sensitive to fatigue, healthy aging, and neurological disorders (Park et al. 2010, 

2011b, 2012). Our current study makes another step in supporting applicability of ANIO to 

actions by abundant systems. As in the cited earlier studies, ANIO was able to reconstruct 

cost functions that generated solutions approximating the experimental data with good 

accuracy: The angle between the planes of actual solutions and ANIO-based solutions was, 

on average, about 5 degrees. Moreover, unintentional finger force changes after the visual 

feedback had been turned off led to a significant drop in the cost of the action based on the 

ANIO results.

ANIO is a method of fitting a data set based on a set of assumptions (described in detail in 

Terekhov et al. 2010). It produces a cost function that may or may not be able to describe the 

action in terms of optimization (for recent examples of ANIO failures see Xu et al. 2012; 

Parsa et al. 2016). In our tasks, however, ANIO was able to produce feasible cost functions 

(cf. Terekhov et al. 2010). In earlier studies, cost functions produced by ANIO were 

compared to other, more traditional, cost functions: ANIO-derived costs showed superior 

performance to most other functions and were not surpassed by any. Day-to-day changes in 

the ANIO-derived cost functions were also studied. Since these issues have been covered in 

earlier studies (Terekhov and Zatsiorsky 2011; Niu et al. 2012a,b), we have decided not to 

review them again but rather to accept ANIO as a viable method of finding cost functions for 

the studied tasks.

With respect to the second question, we view the drift of the cost (ΔCANIO; see Fig. 6) to 

lower values, as providing strong support for the idea that the CNS is indeed driven by some 

kind of an optimization process, i.e., it is naturally moved to solutions corresponding to 

minimum values of a cost function. The optimization process does not assume that the brain 

“computes” an optimal solution given a cost function, instead it may reflect intrinsic neural 

feedbacks, which attract the finger forces towards magnitudes corresponding to smaller 

values of the cost function (Martin et al 2013), similar to how gravity pulls a ball toward the 

local lowest point of a landscape. As a consequence, the optimization does not have to be 

absolute, just “good enough” (Simon 1956; Loeb 1999), corresponding to the relatively low 
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stability along the corresponding UCM. Our instruction to the subjects to drop FMID by 50% 

before the visual feedback was turned off (Phase 2) apparently took the subjects away from 

the “good enough” region. As a result, a drift leading to lower cost values was seen 

including, in particular, the non-trivial drift of FMID to higher values in contrast to the 

dominant downward trend in the other finger forces.

Note that the drift in CANIO potentially got contributions from two factors. First, CANIO 

dropped with FTOT as it could be expected given its functional form, Eq. (1). Second, when 

feedback was provided on FTOT (and, as a result, no drift in FTOT took place), CANIO still 

showed a drift toward smaller values (see the negative values of ΔCANIO in Fig. 8C). This 

allows drawing a conclusion that a drift within the UCM for FTOT likely took place directed 

toward states with smaller CANIO.

Concluding comments

The main results of our study include support for the hypothesis on two sources of the 

observed unintentional finger force drift: The drift of RC towards AC and the drift of cost 

toward lower values. The observed drifts were relatively slow, comparable to earlier reports 

on the force drift in the absence of visual feedback (Vaillancourt and Russell 2002; 

Shapkova et al. 2008; Ambike et al. 2015). It suggested processes within a subspace 

characterized by relatively low stability of its elements, i.e. primarily within the UCM for 

the task. Since the effects were observed in the salient performance variables, these 

observations also suggest a degree of coupling between the UCM and ORT spaces, a 

hypothesis (Ambike et al. 2015, 2016) that is still in need of more direct experimental 

confirmation.
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APPENDIX: ANALYTICAL INVERSE OPTIMIZATION (ANIO)

The purpose of this method it to use the data collected during an experiment to approximate 

a hypothetical objective function for the explored range of elemental variables (see Martin et 

al 2013). Mathematical proofs and computational details can be found in Terekhov et al. 

2010; Terekhov and Zatsiorsky 2011. In this study we determined a cost function explaining 

the distribution of the normal finger forces in the force and moment production task, 

The constraints were the prescribed total force and total moment, {FTOT, MTOT} 

combination. Thus, the ANIO problem was defined in the following way:

(A1)

(A2)
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(A3)

where  is the vector of normal finger forces ( , i = 1,…,4); the 

numbers 1 to 4 stand for the index, middle, ring, and little finger, respectively, gi is an 

arbitrary continuously differentiable function (gi belongs to Cn with n ≥ 2 in the feasible 

region); r = [r1, r2, r3, r4]T is the vector of moment arms, which was [−0.045, −0.015, 0.015, 

0.045]T meters in this experiment. Pronation (PR) was considered as the negative moment. 

The equations can be written in matrix form:

(A4)

where,

(A5)

(A6)

First, we verified that the problem was not “splittable” (Terekhov et al. 2010), which means 

that our optimization problem could not be represented as a set of smaller optimization 

problems solved independently. Second, we tested whether the experimental data are 

distributed in a plane using PCA (see Methods) as it was observed in several earlier studies 

(Park et al. 2010; Niu et al. 2012a,b). If this was true, then the unknown cost function had to 

be a second-order polynomial (Terekhov et al. 2010; Martin et al. 2013).

The third step was computing the coefficients of the objective function within the class of 

second-order polynomials:

(A7)

where, Ja is the objective function reconstructed from the data, ki is the ith quadratic term 

coefficient, and wi is the ith linear term coefficient. Indices i = 1, 2, 3, and 4 refer to the 

index, middle, ring, and little finger, respectively.

Writing the Lagrange principle for the problem 〈Ja, C〉 in matrix form we get:

(A8)
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where,

(A9)

Ĉ is a matrix of rank 2, and  is a vector consisting of partial derivatives of Ja (gradient 

vector). Substituting equation A7 in A8 gives the plane of optimal solutions:

(A10)

where K is the diagonal matrix of quadratic coefficients, and w is the vector of linear 

coefficients. Rank of Ĉ is 2; therefore, equation 9 defines a plane in the four-dimensional 

space. ANIO finds the coefficients by minimizing the dihedral angle (D-angle) between the 

optimal plane defined by equation A10 and the experimental data plane determined by the 

first two PCs (see Martin et al. 2013). The objective functions were constructed for each 

participant separately. The “fmincon” function (“active-set” algorithm) from the Matlab 

optimization toolbox was used to minimize the D-angle. The coefficients of the objective 

function were normalized by the square root of the sum of squared quadratic coefficients (as 

in Terekhov and Zatsiorsky 2011; Martin et al. 2013).
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Figure 1. 
A: A schematic illustration of the notions of actual coordinate (AC), actual orientation (AO), 

referent coordinate (RC), and referent orientation (RO) for the task of four-finger force-

moment production. Note that total force (FTOT) is a linear function of (RC – AC), while 

total moment (MTOT) is a function of (RO – AO). B: A schematic illustration of the concept 

of RC-back-coupling. Direct process starts with a change in RC resulting in a change in 

force (F). A slower process leading to a change in RC (ΔRC) toward AC results in a force 

drop. The scheme on the right shows a potential field (dashed line) corresponding to a value 

of RC. Apparent stiffness and apparent rotational stiffness are shown as k and kR.
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Figure 2. 
The setup. A: The subject’s position. B: Visual feedback defined total force and total 

moment target, {FTOT, MTOT}, as the intersection of two lines. The “tank with water” in the 

middle of the screen presented the feedback on the middle finger force. C: Hand placement 

on the sensors.

Parsa et al. Page 23

Exp Brain Res. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A typical example of total force (FTOT) time series during the task with no feedback after 

Phase-2. The three phases are shown by gray vertical columns. Phase-1 corresponded to the 

time interval between 4.7 and 4.8 s (performance under the original task, {FTOT, MTOT}); 

Phase-2 corresponded to the time interval between 14.7 and 14.8 s (performance under the 

added constraint on the middle finger force), and Phase-3 corresponded to the time interval 

between 29.7 and 29.8 s (the end of the trial).
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Figure 4. 
Typical performance under the FTOT feedback condition (no feedback on total moment and 

middle finger force). A: Total force, FTOT did not drift. B: Total moment, MTOT magnitude 

decreased. C: Middle finger force, FMID increased over the time interval with modified 

visual feedback. Note that MTOT drifted in opposite directions under the initial pronation 

(PR) and initial supination (SU) conditions. Solid lines – performance under the initial PR 

conditions; dashed lines – performance under the initial SU conditions. Averages over 3 

trials in each condition for a representative subject are shown.
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Figure 5. 
Across-subjects means and standard errors for the change in total force (A, ΔFTOT) and in 

the total moment, (B, ΔMTOT) between Phase-2 and Phase-3. The data are shown separately 

for the three initial MTOT condition, pronation (PR, black bars), supination (SU, gray bars) 

and zero initial moment (ZERO, white bars) and the different feedback conditions (X axis). 

FMID stands for the middle finger force. Note the consistent FTOT drop under conditions 

without FTOT feedback, and different directions of MTOT change under conditions without 

MTOT feedback for the initial PR and SU conditions.
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Figure 6. 
Across-subjects means and standard errors for the index finger force (A), middle finger force 

(B), ring finger force (C), and little finger force (D) in Phase-2 (solid bars) and Phase-3 

(empty bars) for the different feedback conditions (X axis). The data have been averaged 

over the three initial MTOT conditions. FMID stands for the middle finger force. Note the 

consistent FMID increase in Phase-3 under conditions without FMID feedback.
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Figure 7. 
Across-subjects means and standard errors for the change in the index finger force (A), 

middle finger force (B), ring finger force (C), and little finger force (D) between Phase-2 and 

Phase-3. The data are shown separately for the three initial MTOT condition, pronation (PR, 

black bars), supination (SU, gray bars) and zero initial moment (ZERO, white bars) and the 

different feedback conditions (X axis). FMID stands for the middle finger force. Note the 

consistent FMID increase under conditions without FMID feedback.
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Figure 8. 
Across-subjects means and standard errors for the magnitude of the cost function, CANIO, at 

the end of Phase-2 (panel A) and at the end of Phase-3 (panel B). The changes in CANIO 

(ΔCANIO) between Phase-2 and Phase-3 are shown in panel C. The data are shown 

separately for the three initial MTOT condition, pronation (PR, black bars), supination (SU, 

gray bars) and zero initial moment (ZERO, white bars) and the different feedback conditions 

(X axis). FMID stands for the middle finger force. Note the mostly negative ΔCANIO values.
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Figure 9. 
An illustration of the two components of the unintentional finger force changes using a two-

finger task of producing a value of total force: F1 + F2 = FTOT. The solution space is shown 

as a line with negative slope, UCM1. The preferred sharing of FTOT between the two fingers 

is shown with the large black dot; it is assumed to correspond to a minimum of the cost 

function (the parabolic dashed line). If the subject performs this task with an unusual force 

combination (the open circle), the cost is higher (the dashed circle). After visual feedback 

has been turned off, (F1 + F2) will drift to lower values due to the assumed referent 

coordinate (RC) drift resulting in new solution spaces shown by thinned lines (UCM2 and 

UCM3). At the same time, a drift along UCM toward the bottom of the cost function will 

take place. The resultant drift is shown as the dashed line with the arrow.
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Table 1

Summary of the results of ANIO

Subject Quadratic coefficients (ki) D–angle (deg) % Variance

1 [0.53 0.26 0.44 0.67] 1.82 89.89

2 [0.81 0.26 0.26 0.45] 5.06 89.75

3 [0.83 0.15 0.22 0.49] 6.08 93.93

4 [0.45 0.08 0.41 0.79] 12.89 77.21

5 [0.68 0.27 0.36 0.58] 2.86 85.08

6 [0.94 0.17 0.14 0.25] 11.24 88.23

7 [0.97 0.13 0.06 0.21] 1.66 85.88

8 [0.16 0.31 0.29 0.89] 8.56 83.08

9 [0.77 0.53 0.31 0.53] 0.01 86.60

10 [0.45 0.34 0.64 0.53] 2.96 93.77

11 [0.85 0.32 0.31 0.28] 7.30 87.99

The coefficients at quadratic terms computed for individual subjects, D-angle, and the percent of total variance accounted for by the first two PC 
vectors.
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