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Abstract

We address the nature of unintentional changes in performance in two papers. This second paper 

tested hypotheses related to stability of task-specific performance variables estimated using the 

framework of the uncontrolled manifold (UCM) hypothesis. Our first hypothesis was that selective 

stability of performance variables would be observed even when the magnitudes of those variables 

drifted unintentionally because of the lack of visual feedback. Our second hypothesis was that 

stability of a variable would depend on the number of explicit task constraints. Subjects performed 

four-finger isometric pressing tasks that required the accurate production of a combination of total 

moment and total force with natural or modified finger involvement under full visual feedback, 

which was removed later for some or all of the salient variables. We used inter-trial analysis of 

variance and drifts in the space of finger forces within the UCM and within the orthogonal to the 

UCM space. The two variance components were used to estimate a synergy index stabilizing the 

force/moment combination, while the two drift components were used to estimate motor 

equivalent and non-motor equivalent force changes, respectively. Without visual feedback, both 

force and moment drifted toward lower absolute magnitudes. The non-motor equivalent 

component of motion in the finger force space was larger that the motor equivalent component for 

variables that stopped receiving visual feedback. In contrast, variables that continued to receive 

visual feedback showed larger motor equivalent component, compared to non-motor equivalent 

component, over the same time interval. These data falsified the first hypothesis; indeed, selective 

stabilization of a variable over the duration of a trial allows expecting comparably large motor 

equivalent components both with and without visual feedback. Adding a new constraint (presented 

as a target magnitude of middle finger force) resulted in a drop in the synergy index in support of 

the second hypothesis. We interpret the force drift as a natural relaxation process toward states 

with lower potential energy in the physical (physiological) system involved in the task. The results 

show that presenting sensory feedback on a performance variable makes synergies stabilizing that 

variable dependent on that particular sensory feedback.
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Introduction

In this paper, we address the famous problem of motor redundancy (Bernstein 1967): For all 

natural actions, the number of variables produced by elements involved in an action 

(elemental variables) is larger than the number of constraints. This results in an infinite 

number of possible solutions, and the problem has traditionally been formulated as: How 

does the central nervous system (CNS) select specific solutions for such tasks? Recently, this 

problem has been revisited based on the principle of abundance (Gelfand and Latash 1998; 

Latash 2012). According to this principle, the CNS does not select a specific solution, but 

instead families of solutions are facilitated equally able to solve the task. This results in 

different stability properties in different directions within the space of elemental variables. In 

this context, we use the term “stability” to imply ability of a system to return toward a steady 

state or a trajectory following a brief, small perturbation.

The related notion of task-specific stability introduced by Schöner (1995) suggests that the 

CNS acting in a multi-dimensional space of elemental variables can selectively stabilize 

processes in directions leading to changes in salient task-specific performance variables. For 

a given performance variable, the space of elemental variables may be viewed as composed 

of two sub-spaces, the uncontrolled manifold (UCM, Scholz and Schöner 1999) where the 

performance variable stays unchanged, and the orthogonal to the UCM (ORT) space where 

this variable changes. If the central nervous system stabilizes this performance variable, 

processes in the ORT space are expected to show relatively high stability while processes 

within the UCM are expected to show relatively low stability. Note that variations of the 

elemental variables (e.g., finger forces in multi-finger tasks) within the UCM do not affect 

the performance variables (e.g., total force and moment). Variations of elemental variables 

within the ORT do not compensate for each other and affect the performance variables.

The most direct method to assess stability quantitatively would be to apply an unexpected 

brief perturbation and quantify deviations of the system from the unperturbed state or 

trajectory. This method, however, is not always practical because the intact central nervous 

system reacts to perturbations with reflexes and reflex-like reactions (so-called, pre-

programmed reactions or long-loop reflexes, Hammond 1954; Tatton et al. 1978; Shemmel 

et al. 2010) as well as voluntary corrections that may be themselves viewed as additional 

perturbations and changes in the control process. Two indirect methods have been used to 

assess stability in different spaces within the abundant space of elemental variables. Both 

methods produce quantitative indices that may be viewed as proxies of stability. The first 

method quantifies inter-trial variance. It is based on the idea that trajectories tend to diverge 

in less stable directions and converge in more stable directions. Hence, if processes within 

the UCM are less stable than within ORT, VUCM > VORT is expected (each variance index, 

V, is computed per degree-of-freedom in the corresponding space). The notion of a synergy 

stabilizing a performance variable has been introduced, and a synergy index (ΔV) has been 

used reflecting the normalized difference between VUCM and VORT (reviewed in Latash et 

al. 2007; Latash 2008).

The second method is based on an observation that a quick action or reaction leads to motion 

of the system in both desired directions and undesired directions. For example, if you try to 
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compress quickly a typical spring from a pen between the thumb and index finger, the spring 

will likely buckle and jump away from the hand (e.g., Venkadesan et al. 2007). This happens 

because the spring is more stiff (and stable) along its main axis and is more compliant (less 

stable) orthogonal to this axis. In this situation, the quick desired action plays a role of an 

input into a physical system that shows large deviations in directions of low stability. During 

quick actions, different stability within the UCM and ORT sub-spaces is reflected in the 

phenomenon of motor equivalence, defined as motion within the UCM (Mattos et al. 2011; 

Scholz et al. 2011). Note that motion within the UCM by definition has no effect on the 

salient performance variable and is addressed as motor equivalent (ME). Motion within ORT 

changes the performance variable and is called non-motor equivalent (nME). Large amounts 

of ME motion have been documented in kinematic, kinetic, and electromyographic spaces in 

tasks that required quick corrections of performance variables in response to external 

perturbations (Mattos et al. 2011, 2013, 2015). These large ME motions have been 

interpreted as reflecting the relatively low stability of processes within the corresponding 

UCM as compared to processes in ORT, which is a reflection of selective stabilization of the 

salient performance variables. Note that the nME motion may be larger or smaller than ME 

motion depending on the task: If the task requires no change in the salient performance 

variable, nME is expected to be smaller; however, if the variable changes during the time of 

observation, nME may be equal to or even bigger than ME.

While the inequality VUCM > VORT and large amounts of ME motion have been documented 

in many studies (reviewed in Latash et al. 2007; Latash and Zatsiorsky 2016), there is no 

agreement on the origin of these phenomena. Within the computational approach to motor 

control, applications of the optimal feedback control theory have been able to account for 

such observations (Todorov and Jordan 2002; Diedrichsen et al. 2007). An alternative 

approach does not assume computations within the central nervous system but views motor 

behavior as a consequence of natural laws (Kugler and Turvey 1986; Latash 2010). Within 

the latter approach, the idea of control with referent body coordinates (RCs, produced by 

physiological variables, such as subthreshold depolarization of neuronal pools, reviewed in 

Feldman 2015) coupled with the idea of hierarchical control and central back-coupling loops 

(Latash et al. 2005; Latash 2010) has been able to account for features of synergic behaviors, 

such as VUCM > VORT and large ME motion. In this study, we accept this approach as the 

one based on physics and physiology.

In this study, we explored stability of performance variables during their unintentional drifts. 

So far, only one experiment with multi-joint positional tasks and external transient 

perturbations addressed this issue (Zhou et al. 2015). To the best of our knowledge, this is 

the first study to explore indices of performance stability during unintentional drifts in 

performance in steady-state tasks. Our first hypothesis was that selective stability of 

performance variables would be observed even when the magnitudes of those variables drift 

unintentionally. This hypothesis assumes hierarchical control of such actions with 

magnitudes of salient performance variables defined at a higher level of the hierarchy (e.g., 

via changes in the relevant RCs). Stability of those variables is assumed to be defined at a 

lower level, possibly via back-coupling projections (Martin et al. 2009). As a result, a drift 

of the RCs is expected to lead to a drift in the performance variables without changes in their 

stability properties. We tested this hypothesis with respect to variables that showed no drift 
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(because of the presence of visual feedback) and with respect to variables that drifted 

(because their visual feedback was turned off, Slifkin et al. 2000; Vaillancourt et al. 2002). 

In the experiments, the subjects were required to produce accurate total force and total 

moment of force {FTOT; MTOT} combinations and then to modify their preferred pattern of 

sharing the task among the four fingers by decreasing the middle finger force (FMID) by 

50% while producing the same {FTOT; MTOT} magnitudes. We used the ME and nME 

indices as quantitative proxies of stability; note that the more commonly used analysis of 

inter-trial variance was not possible given only a few trials per feedback condition.

We also explored whether stability of a variable depended on the number of explicit task 

constraints. This was a secondary goal of the study unrelated to the issue of unintentional 

drifts in performance. Earlier studies explored this issue indirectly by varying the number of 

explicitly involved elemental variables (e.g., Latash et al. 2001). They showed, in particular, 

that some performance variables showed higher stability indices (similar to ΔV) with an 

increase in the number of elemental variables. In our current study, no change in the number 

of elemental variables took place – the subjects always performed all tasks with four fingers 

of the right (dominant) hand. However, adding a constraint related to the required magnitude 

of FMID was expected to reduce the range of available solutions. Based on the 

aforementioned earlier studies, our second hypothesis was that indices of stability for {FTOT; 

MTOT} would drop after the subjects purposefully reduced FMID to 50% of its preferred 

value.

Methods

Subjects

Eleven subjects voluntarily participated in this study, five females and six males (age: 27.27 

± 5.44 years, mass: 74.18 ± 14.73 kg, height: 171.18 ± 8.30 m. All our subjects were right-

handed and healthy. Nine of the subjects completed the whole experiment. For technical 

reasons, data for two subjects were unavailable for one of the conditions. As a result, the 

number of subjects in different comparisons varied between nine and eleven. All subjects 

signed the consent form approved by the Office of Research Protections of The Pennsylvania 

State University.

Apparatus

The setup is described in more detail in the first paper of this two-part series (Parsa et al. 

2017; see Fig. 1). The subject sat in front of the monitor, which was used to provide visual 

feedback and define tasks. The four fingers of the right hand were placed comfortably on 

six-component force sensors (ATI), while the right lower arm was fixed comfortably to the 

wooden plate with two sets of Velcro straps (Fig 1A,C). The screen provided feedback on 

three variables (Fig. 1B): The total normal force produced by the fingers (FTOT, along the Y-

axis), the total moment (MTOT, along the X-axis) produced by the normal fingers forces with 

respect to a horizontal line in a sagittal plane passing in-between the middle and ring fingers, 

and the normal force produced by the middle finger (FMID, as the level in a tank-with-water 

graph; see Fig. 1B) located in such a way that it did not interfere with the first two feedback 

signals. The latter feedback was used at specific times only (described later).
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Twenty-four analog signals (4 sensors × 6 components) were digitized by a 12-bit analog-

digital converter (PCI-6031, National Instruments, Austin, TX) at 100 Hz. A Labview 

program was written for data acquisition and to provide visual feedback. All further data 

analyses were done using MATLAB 2014.

Experimental procedure

Subjects first placed their fingertips on the sensors and relaxed; then the sensor readings 

were set to zero; as a result only active downward forces were measured. The experiment 

consisted of three parts. The first two parts involved maximal force production trials (MVC) 

and trials with accurate production of various combinations {FTOT; MTOT} described in 

detail in the companion paper. The data presented and analyzed in this paper were collected 

in the third part.

Each trial started with a {FTOT; MTOT} target shown on the screen (Fig. 1B). FTOT was 

always equal to 20% of the four-finger MVC, while MTOT could be 1.5PR, 0, or 1.5SU. A 

unit of the moment into pronation (PR) or supination (SU) was defined as in an earlier study 

(Park et al. 2010) as 7% of the index finger MVC multiplied by the index finger nominal 

lever arm (0.045 m). The subjects were given 5 s to match the {FTOT; MTOT} task 

combination.

Five seconds after the trial initiation, a third feedback on FMID appeared on the screen and 

subjects were instructed to adjust their middle finger force to match the level shown by the 

tank feedback without changing the {FTOT; MTOT} level. The target level for FMID was set 

at half of the average force this finger produced within the time interval 4.7–4.8 s from the 

trial initiation. The subjects were given 10 s to reach a new steady finger force combination 

that would satisfy the original {FTOT; MTOT} constraint and the new FMID constraint.

At that time (15 s into the trial), visual feedback was manipulated. We had eight main 

conditions: no feedback on any of the three variables (None), feedback on one of the three 

performanca variables (FTOT; MTOT, or FMID), feedback on two of the performance 

variables (FTOT&FMID, MTOT&FTOT, and MTOT&FMID), and all the feedback remaining on 

the screen until the end of the trial (All). Under each condition, three trials were performed 

in a row with 10-s intervals.

Data processing

Finger force data were low-pass filtered at 5 Hz using a zero lag, fourth-order Butterworth 

filter. We selected three phases in each trial for data analysis to represent three steady states: 

under the original set of constraints, {FTOT; MTOT}, under the combination of three 

constraints, {FTOT; MTOT} and FMID, and at the end of the time with modified visual 

feedback. Correspondingly, Phase-1 was defined as the time interval between 4.7 and 4.8 s; 

Phase-2 corresponded to the time interval between 14.7 and 14.8 s, and Phase-3 

corresponded to the time interval between 29.7 and 29.8 s.

Analysis of motor equivalence—The task constraints can be represented as a set of 

linear equations:
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(1)

(2)

(3)

where FI, FM, FR, and FL stand for index, middle, ring, and little finger forces; MTOT could 

be 1.5PR, 1.5SU, or Zero depending on the task; and FMID* is the middle finger force by the 

subjects at the end of Phase-1. The coefficients in Eq. (2) are the nominal moment arms of 

the finger forces. We can rewrite the task in a matrix form:

(4)

where C is the m × n constraint matrix defining the task, F is the n-dimensional vector of 

finger forces (elemental variables in our analysis), and P is the m-dimensional vector of 

performance variables. Changes in the elemental and performance variables:

(5)

where ΔF is the vector of changes in the finger force between two phases. It could be 

computed between Phase-2 and Phase-1 (ΔF21) and between Phase-3 and Phase-2 (ΔF32). 

Since Eqs (4–5) are linear, the Jacobian (J) of the system is the same as the C matrix.

Performance remains unchanged (ΔP = 0) if the changes in elemental variables occur in the 

null space of the J [e = null(J)]. Hence, the projection of ΔF onto the null-space was defined 

as the ME component, while the projection of ΔF orthogonal to the null-space was defined 

as the nME components. ME and nME components were normalized by the square root of 

the corresponding space dimensionality (cf. Mattos et al. 2011).

We also performed similar analyses with respect to subsets of performance variables that 

received (PVISION) and did not receive (PNO-VISION) visual feedback. These analyses used 

respectively changed Jacobians:

(6)

(7)
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where JVISION is k × n matrix where k is the number of performance variables that received 

visual feedback, and JNO-VISION is j × n matrix where j is the number of performance 

variables that did not receive visual feedback

Analysis of inter-trial variance—The UCM hypothesis (Scholz and Schöner 1999) 

allows partitioning the inter-trial variance within a redundant space of elemental variables 

into two components; one of them keeps salient performance variables unchanged (VUCM), 

while the other leads to changes in these variables (VORT). We analyzed the data across all 

trials in Phase-1 and Phase-2 because in those phases the visual feedback was always 

available for the task-specific performance variables. At each time sample, inter-trial 

variance was computed within the null-space of J (which is the UCM for tasks with linear 

constraints) and within its orthogonal complement (ORT space). Further, an index of 

synergy (ΔV) was defined as the normalized difference between VUCM and VORT:

(6)

where VTOT stands for total variance and n with subscripts stand for the dimensionality of 

the corresponding spaces. Since ΔV by its computation is bounded, for statistical analysis 

ΔV values were log-transformed using the modified Fisher’s z-transform (Solnik et al. 

2013).

Statistics—We present the data in the text and figures as means ± standard errors unless 

stated otherwise. All data sets were tested for normality and sphericity using the Mauchly 

criterion, and in cases of sphericity violations, the Greenhouse-Geisser correction was used. 

We set the critical p-value at 0.05 for all the analysis.

Changes in the ME and nME components under different feedback conditions were tested 

between Phase-3 and Phase-2 to address the first specific hypothesis. We computed the two 

components with respect to the Jacobian representing variables that received visual feedback 

(JVISION) as well as with respect to the Jacobian representing variables that stopped 

receiving visual feedback (JNO-VISION). Both analyses used three-way repeated-measures 

ANOVA with the factors Component (ME, nME), Moment (PR, Zero, SU), and Feedback 
(seven levels). The “All” condition was left out of the JNO-VISION analysis because J 
becomes empty, while the “None” feedback condition was left out of the JVISION analysis 

because J becomes empty.

To address the second specific hypothesis, we tested the effects of adding an additional 

constraint on the ME vs. nME indices and on the structure of inter-trial variance computed 

for the {FTOT; MTOT} task between Phase-2 (two constraints) and Phase-1 (three 

constraints). Note that full feedback was available in both phases. The analysis of motor 

equivalence used repeated-measures ANOVA with factors Component (ME, nME), Phase (1 

and 2), and Moment (PR, Zero, SU). The analysis of the z-transformed synergy index ΔVZ 

was done with a two-way ANOVA, Phase × Moment. We also explored the effects of adding 

the FMID constraint on the two variance components using an additional factor Variance 
(VUCM and VORT). The variance components and ΔVZ were also computed in Phase-2 with 
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respect to all three constraints: FTOT, MTOT, and FMID. Significant effects were further 

explored by pairwise comparisons with Bonferroni corrections.

Results

All the subjects were able to adjust their finger forces from Phase-1 to Phase-2 to 

accommodate the additional constraint (reduce FMID by 50%) while keeping the required 

magnitude of total force and total moment, {FTOT; MTOT}. This change in the finger forces 

was associated with a large ME motion and very small nME motion reflecting the fact that 

accuracy of performance with respect to the original set of constraints was nearly 

unchanged. Turning visual feedback off resulted in drifts in the variables without feedback: 

FTOT and MTOT typically drifted toward lower absolute magnitudes, while FMID typically 

drifted toward higher magnitudes. Variables with preserved feedback showed no visible 

drifts. These findings were reflected in the relative magnitudes of ME and nME motion.

Typical performance by a representative subject is illustrated in Figure 2 for the task 

involving pronation moment under two conditions, with feedback on FMID only (panel A) 

and with feedback on FTOT and MTOT (panel B). The lines in the top panels show averaged 

across three trials time series of FTOT, MTOT, and FMID. The two bottom panels show the 

corresponding time profiles of individual finger forces. Figure 3 presents the results of motor 

equivalence analysis (ME and nME) between Phase-1 and Phase-2 (ΔPhase12) and between 

Phase-2 and Phase-3 (ΔPhase23) in panel A, while panel B shows the results of the inter-trial 

variance analysis (VUCM and VORT) over Phase-1 and Phase-2. Details on the magnitudes of 

drifts are presented in the companion paper. Here we focus on changes in the ME and nME 

components and structure of variance.

Motor equivalence analysis

To address the first specific hypothesis, we explored the magnitudes of ME and nME 

components for variables that did and did not received visual feedback. The magnitudes of 

the ME and nME components computed with respect to the {FTOT; MTOT} set of constraints 

are shown in Figure 4. Averaged across subjects data with standard error bars are shown for 

the three tasks with different initial MTOT magnitudes, PR, Zero, and SU. The left side of 

each panel shows the results over the interval from Phase 1 to Phase 2 (ΔPhase12), while the 

right side shows the results over the interval from Phase 2 to Phase 3 (ΔPhase23). In all three 

panels, the magnitude of ME over ΔPhase12 (when visual feedback was available on all the 

main variables) is much larger than the magnitude of nME (effect of Component; F[1, 8] = 

37.33, p < 0.001). The difference between the two components was smaller for the Zero 

MTOT condition (Component × Moment interaction; F[2, 16] = 5.15, p < 0.05).

The relative magnitude of the ME and nME components differed depending on the available 

visual feedback over ΔPhase23 as illustrated in the right parts of Fig. 4. Under conditions 

with feedback on both FTOT and MTOT, the nME component remained very low, much lower 

than the ME component. A three-way ANOVA with repeated measures, Component × 

Moment × Feedback confirmed significant effects of Component (F[1, 10] =101.79, p < 

0.001) reflecting the overall larger ME magnitudes.
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The difference between the two components became smaller if only one of the two original 

constraints received visual feedback, and nME became significantly larger than ME if 

feedback on FMID only was available (Component × Feedback interaction; F[2.40, 23.96] = 

7.87, p < 0.01). These effects were consistent across MTOT conditions although the trials 

with MTOT = 0 were characterized by lower ME and nME magnitudes (Component × 

Moment interaction; F[2, 20] = 9.41, p < 0.001). The three-way ANOVA, Component × 

Moment × Feedback, also confirmed significant effects of Component (F[1, 10] =101.79, p < 

0.001) reflecting the overall larger ME magnitudes, and Feedback (F[2.12, 21.19] = 5.507, p < 

0.05) reflecting multiple pairwise differences that can be seen in Fig. 4.

Figure 5 shows clearly that ME > nME for variables with feedback (top row) while the 

inequality reverses, nME > ME, for variables without feedback (bottom row). This was due 

to both smaller ME magnitudes and larger nME magnitudes for the no-vision Jacobian 

analysis (in all comparable feedback and moment conditions). Note also the special set of 

data for the “All” condition in the top row: When all three variables remained specified 

throughout the trial, the subjects showed very small ME motion compared to all other 

conditions when at least one of the constraints was without the corresponding feedback.

A three-way repeated measures ANOVA, Jacobian (feedback, no-feedback) × Moment × 

Feedback was run on ME and nME components separately. ANOVA on ME showed 

significant effects of Moment (F[2, 20] = 5.26, p < 0.05), Feedback (F[5, 50] = 8.49, p < 

0.001), and Jacobian (F[1, 10] = 28.29, p < 0.001), and a significant interaction Moment × 

Jacobian (F[2, 20] = 15.11, p < 0.001). Pairwise contrast confirmed that the ME component 

was the largest when the feedback was provided on FMID only compared to conditions with 

feedback on other subsets of constraints (p < 0.05). It is obvious from Fig. 5 that the nME 

values were much larger for the No-Feedback Jacobian than for the Feedback Jacobian 

(F[1, 10] = 33.55, p < 0.001). ANOVA showed no significant effect of Feedback, while there 

was an effect of Moment (F[2, 20] = 7.29, p < 0.005) reflecting larger nME magnitudes for 

the Zero MTOT condition compared to the PR condition.

Analysis of the structure of variance

This analysis could only be run over Phase-1 and Phase-2 because only three trials were 

available for any given feedback conditions between Phase-2 and Phase-3. Note also that the 

data for one of the subjects were over four standard deviations away from the mean; hence, 

we considered that subject as an outlier and performed statistical analysis on the data from 

ten subjects only. In both Phase-1 and Phase-2, strong synergies stabilizing the {FTOT; 

MTOT} combination were observed. These synergies were reflected in the much higher inter-

trial variance component leading to no changes in {FTOT; MTOT} compared to the variance 

component leading to changes in {FTOT; MTOT}, VUCM > VORT (effect of Variance; F[1, 9] = 

35.76; p < 0.005).

With respect to our second specific hypothesis, adding the new constraint (FMID) led to very 

small effects on VORT; in contrast, there was a consistent drop in the magnitude of VUCM 

(Phase × Variance interaction, F[1, 9] = 12.05; p < 0.01). These results are illustrated in 

Figure 6. Note the very small VORT magnitudes (white bars) compared to the VUCM (black 

bars) and a drop in VUCM from Phase-1 to Phase-2.
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These results were reflected in the synergy index ΔV values that were consistently positive 

across conditions and phases. The synergy indices were larger in Phase-1 (on average, z-

transformed values were 1.85 ± 0.074 for Phase-1, and 1.56 ± 0.071 for Phase-2, effect of 

Phase F[1, 9] = 12.53, p < 0.01). The synergy indices were the largest for MTOT = 0 (effect of 

Moment; F[2, 18] = 6.423, p<0.01), and the difference between the phases was the smallest 

for MTOT = 0 (Moment × Phase interaction, F[2,18] = 3.65, p < 0.05).

When the analysis in Phase-2 was run with respect to all three constraints (FTOT, MTOT, and 

FMID), both the VORT and VUCM values became significantly larger when normalized by 

dimensionality of the spaces (compare the data for “Phase-2” and “Phase-2*” in Fig. 6; the 

data with * refer to the analysis with respect to all three constraints; p < 0.05). Note that 

VTOT was the same for the two analyses. The difference between the phases was due to the 

fact that the UCM is two-dimensional for the analysis with respect to {FTOT; MTOT}, and it 

is one-dimensional with respect to the three constraints. So, the total VUCM was in fact 

smaller for the analysis with respect to the three constraints, but the normalized values were 

larger. These results were reflected in the significantly larger ΔVZ indices computed with 

respect to the two original constraints in Phase-2 as compared to the ΔVZ indices computed 

with respect to all three constraints (1.55±0.38 vs. 0.93±0.41; effect of Constraint F[1, 9] = 

22.2, p<0.001). As in the earlier analysis of ΔVZ data, there was a significant effect of 

Moment (F[2, 18] = 14.0, p<0.001) and a significant Moment × Jacobian interaction (F[2, 18] 

= 18.7, p<0.01) reflecting the largest values of ΔVZ for MTOT = 0 and the smallest difference 

between the two analyses for MTOT =0.

We also explored correlations between the indices of motor equivalence during the transition 

from Phase-1 to Phase-2 and the inter-trial variance indices available for Phase-2. This 

analysis was done across all subjects. The only consistently significant correlations were 

observed between the nME index and VORT (R2 ranged between 0.462 and 0.624; p < 0.05 

for all three moment conditions). There were no significant correlations between VUCM and 

ME and between ME/nME and ΔVZ indices.

Discussion

Our first hypothesis was that selective stability of performance variables would be observed 

even when the magnitudes of those variables drifted unintentionally. This hypothesis has 

been falsified in the analysis of motor equivalence (cf. Mattos et al. 2011, 2015). Indeed, 

under complete visual feedback (between Phase-1 and Phase-2 and also under the “All” 

condition between Phase-2 and Phase-3), the finger force deviations led to only very small 

changes in the directions that changed the magnitudes of performance variables related to 

the explicit task constraints (non-motor equivalent, nME). In contrast, finger force deviations 

were large in directions that led to no changes in those variables (motor equivalent, ME > 

nME). When the analysis was run for variables that stopped receiving visual feedback 

between Phase-2 and Phase-3, the ME deviations became smaller while the nME deviations 

increased leading to an inequality nME > ME. While quantitative analysis of the ME and 

nME indices has to be interpreted with care (cf. Scholz and Schöner 2014; also see later in 

the Discussion), the counter-directional changes in the two components suggest that visual 

feedback was crucial to ensure stability of the task-related variables. This general conclusion 
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is supported by results from earlier studies by Ranganathan and Newell (2008, 2009) as well 

as by a recent study exploring changes in the structure of inter-trial variance during 

unintentional drifts in performance (Parsa et al. 2016).

Our second hypothesis was related to changes in the structure of inter-trial variance after 

adding a new constraint to the ongoing task of producing a combination of total force and 

total moment, {FTOT; MTOT}. We hypothesized that the synergy index (reviewed in Latash 

et al. 2007) would drop after the subjects purposefully reduced FMID to 50% of its preferred 

value, and the results have supported this hypothesis. Indeed, while the inequality VUCM > 

VORT was present at both phases, during Phase-2, there was a significant drop in the synergy 

index (ΔV).

Further, we discuss implications of these results for stability of performance variables that 

are produced with or without appropriate visual feedback.

Synergies and the number of constraints

Our understanding of synergies links this central concept in motor control (Babinski 1899; 

Bernstein 1947, 1967) to stability of performance (Schöner 1995). Stability is an absolutely 

crucial feature of functional movements because all such movements are performed in the 

presence of unpredictable and time-varying neural states in the unpredictable and time-

varying environment. This makes the current concept of synergy different from those used in 

clinical studies (DeWald et al. 1995) and in studies of motor behavior that imply under this 

term sets of performance variables produced by effectors that show parallel changes 

(d’Avella et al. 2003; Ivanenko et al. 2004; Ting and Mcpherson 2005).

In many earlier studies within the framework of the UCM hypothesis, inter-trial variance 

indices were used as proxies of stability (reviewed in Latash et al. 2002, 2007). To make the 

indices comparable between spaces with different dimensionalities, VUCM and VORT were 

normalized per dimension. We used the same method to compare variance indices between 

Phase-1 (when the subject performed the task under the two original constraints, FTOT and 

MTOT) and Phase-2 (when the third constraint related to FMID was added). Adding the third 

constraint forced the subjects to use a sub-space in the original UCM (in Phase-1) 

compatible with the required value of FMID. This naturally was expected to lead to a drop in 

VUCM, which was observed in the experiment, resulting in a drop in the synergy index ΔV.

Effects of changes in the number of task-related constraints were explored in several earlier 

studies. In one of the very first studies using the UCM-based approach, quick-draw shooting 

actions were analyzed with respect to performance variables of different dimensionality 

(Scholz et al. 2000). No effects of dimensionality were noticed. In a study of bimanual 

actions by Diedrichsen (2007), motion of two hands was correlated if the two hands 

controlled a single cursor (one constraint). The correlation disappeared when the two hands 

moved two different cursors (two constraints). Note, however, that the condition with two 

cursors differed from the condition with a single cursor not only in the number of constraints 

but also in the nature of the task that required either independent motion of the two arms or a 

synergic action. In another study, reaching to a spherical target (three constraints) and a 

cylindrical target (five constraints) was accompanied by similar indices of the structure of 
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variance (Mattos et al. 2011). Changing the number of constraints in the course of an action, 

to our knowledge, has never been explored.

Earlier studies with the production of accurate sine patterns of FTOT with 2, 3, and 4 fingers 

of a hand led to an unexpected result (Latash et al. 2001; Scholz et al. 2002): When the 

subjects performed the task with two fingers only, they showed a pattern of variance 

compatible with stabilization of MTOT although it was not specified as a performance 

variable, and the subjects had no visual feedback on MTOT. This led to lack of synergies 

stabilizing FTOT. Adding a third finger led to even stronger MTOT-stabilizing synergies 

without FTOT-stabilizing synergies. Only in the four-finger condition, the subjects showed 

stabilization of MTOT (stabilized over the whole cycle) and of FTOT (stabilized only within a 

narrow phase range corresponding to relatively high force magnitudes). Taken together, the 

results of those studies and of the current study confirm the idea that: (a) a new constraint is 

incorporated into the original solution space leading to a reduction in the size of the solution 

space used by the CNS; and (b) reducing the number of elements leads to shrinking the 

solution space, which primarily affects stability of less salient variables, even if they are 

prescribed by an explicit instruction.

The analysis with respect to all three constraints in Phase-2 (data shown as Phase-2* in Fig. 

6) showed a somewhat counter-intuitive picture: Both VUCM and VORT increased for the 

three-constraint analysis (as compared to the two-constraint analysis) while total variance 

remained unchanged. This was possible because of two factors, the different dimensionality 

of the UCM and ORT spaces in the two analyses and the very different magnitudes of the 

variance components (VUCM >> VORT). Indeed, VUCM dropped in the three-constraint 

analysis, while VORT increased by the same magnitude. Because of the normalization per 

dimension, the normalized magnitude of VUCM increased. On the other hand, the added 

variance to VORT was so much bigger as compared to its original magnitude that, even after 

normalization by the increased dimensionality of ORT, it remained significantly larger as 

compared to the two-constraint analysis. The data in Figure 6 show that comparing variance 

indices across tasks with different numbers of constraints may lead to seemingly 

controversial results.

Stability and its reflections in motor equivalence and structure of variance

The two methods of analysis used in this study, structure of variance and motor equivalence, 

have been used in earlier studies as proxies of stability with respect to task-specific, salient 

performance variables (reviewed in Scholz and Schöner 2014; Latash and Zatsiorsky 2016). 

The two indices (ME/nME and ΔV) are not 100% equivalent. This was shown in earlier 

studies that documented somewhat different behaviors of the two indices (Mattos et al. 2011, 

2014). The ΔV index reflects the structure of variance in the space of elemental variables; 

therefore, it is not sensitive to possible changes in mean values of these variables. In 

contrast, nME is expected to be very low if the action interval starts and ends with similar 

values of the task-related variables. It is expected to be much higher if the task-related 

variables change their values, either intentionally or unintentionally (as in our study). In 

general, reducing two indices to a single metric, such as VUCM and VORT to ΔV, and ME 

and nME to ME/nME, should be done with care (cf. Latash et al. 2010). While these 
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operations reduce the number of outcome variables, one has to keep in mind that differences 

in such metrics could reflect differences in one, the other, or both of the original variables. 

This happens, for example, during anticipatory synergy adjustments – changes in the 

synergy index observed during steady state in preparation to a quick action (Olafsdottir et al. 

2005; Latash and Huang 2015).

In our study, two inequalities (VUCM > VORT and ME > nME) were seen consistently for the 

data at Phase-1 and Phase-2 when the subjects had full feedback on all the relevant variables. 

The two inequalities are both consistent with the idea of selective stabilization of the two 

performance variables related to the original set of constraints, {FTOT; MTOT}. Correlation 

analysis, however, revealed significant correlations between VORT and nME only. In other 

words, subjects who showed larger nME deviations during the transition from the two-

constraint phase to the three-constraint phase were also the ones who showed larger VORT at 

the end of this transition. Large nME reflects larger violations of the original {FTOT; MTOT} 

constraints during the transition. These larger changes in {FTOT; MTOT} led to larger inter-

trial variance in those variables (VORT), possibly reflecting the so-called signal-dependent 

noise (Newell and Carlton 1993; Harris and Wolpert 1998).

The lack of correlation between ME and VUCM is non-trivial. Indeed, larger ME deviations 

imply larger changes of finger forces in directions that did not affect {FTOT; MTOT}. The 

idea of signal-dependent noise suggests that inter-trial variance in those directions should 

also be larger. This was not the fact, however: Correlations between VUCM and ME across 

MTOT conditions could be both positive and negative with the R2 values always under 0.11. 

So, signal-dependent noise seems to define variance in directions leading to changes in task-

related performance variables (i.e., in ORT) but not in directions that keep those variables 

unchanged (i.e., in UCM). This conclusion is consistent with the idea that changes in 

magnitudes of variables are defined at a higher level of a control hierarchy while stability of 

those variables in defined as a hierarchically lower level (see the Introduction and Latash et 

al. 2010). This general idea is consistent with recent observations of changes in the 

performance of motor tasks and synergic control in patients with cortical and subcortical 

disorders (Park et al. 2012; Jo et al. 2016; reviewed in Latash and Huang 2015).

The relations between the outcome variables of the ME and variance analyses remain 

unclear and have to be explored in future studies. While both sets of indices seem to reflect 

stability of relevant performance variables (cf. Mattos et al. 2011; Scholz and Schöner 

2014), they should be viewed as complementary rather than repetitive.

In conditions with visual feedback on only some of the performance variables, nME motion 

for the variables with feedback was expected to be low while nME motion was expected to 

be higher for the variables without feedback reflecting the drift in those variables. This 

prediction has been confirmed in the analysis of the ME and nME motion with respect to 

two Jacobians, JVISION and JNO-VISION (see Figure 5). Less expectedly, the differences in 

the ME component computed with respect to JVISION and JNO-VISION were also significant: 

ME was smaller for JNO-VISION. This result is consistent with earlier studies exploring the 

effects of manipulations of visual feedback (Ranganathan and Newell 2008, 2009) on sets of 

goal-equivalent solutions in two-finger force production tasks. Those earlier studies showed, 
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in particular, that error compensation between the two fingers (which may be seen as 

equivalent to ME motion) decreased without the visual feedback. Our current findings show 

counter-directional changes in the ME and nME motion components suggesting a 

redistribution of the relatively invariant total drift in the space of elemental variables 

between the two sub-spaces.

Stability during unintentional drift in performance

In the companion paper (Parsa et al. 2017), we present arguments in favor of a scheme that 

views unintentional drifts in performance as consequences of two processes. First, there is a 

drift of referent coordinates (RCs) for the salient task-specific variables toward their actual 

coordinates (ACs). This is a natural process expected in any physical system moving toward 

minimum of potential energy; it is expected within the hypothesis on the neural control of 

movements with changes in RCs for salient variables (Latash 2010, 2016; Feldman 2015). A 

recent study has provided direct experimental evidence confirming RC drift during 

unintentional force changes (Ambike et al. 2016). Second, there is a drift of an abundant 

system toward states with smaller values of a cost function as defined within the ideas of 

optimal control: If a system is forced to perform using non-optimal contributions of 

elemental variables, it is expected to show a drift toward configurations that are closer to the 

optimal one. We modeled this situation by asking the subjects to produce {FTOT; MTOT} 

values using finger force combinations that differed from the preferred ones, namely with 

the middle finger force reduced by 50%.

This scheme is an example of a general approach to the neural control of movement based 

on physics and physiology, not on assumed computational processes within the central 

nervous system (as, for example, in approaches based on optimal feedback control ideas, 

Todorov and Jordan 2002; Diedrichsen et al. 2010). While assuming relevant computations 

can potentially account for any experimental observation, this very fact makes this approach 

non-disprovable. Let us reiterate that there is a qualitative difference between discovering 

laws of nature acting in a system and using computational means to reproduce its behavior. 

In particular, some of the findings in our study suggest that no single optimization method 

can account for these phenomena. Indeed, the large magnitudes of ME motion are by 

definition wasteful: they are accompanied by muscle activations that do not move the system 

with respect to task-related variables. Within the physical approach, large ME motion is a 

natural consequence of the low stability of the system within the UCM.

Within this general scheme, both ME and nME drifts are expected. The consistent drifts in 

FTOT and MTOT in the absence of visual feedback (cf. Slifkin et al. 2000; Vaillancourt and 

Russell 2002; Parsa et al. 2016) are leading to nME deviations. The drifts within the UCM, 

directed toward preferred finger force combinations (modeled as those with smaller costs, 

Parsa et al. 2017), lead to ME deviations. A priori, we could not predict the relative 

magnitude of the two drifts. Based on earlier studies and on the general scheme of 

hierarchical control with RCs (Latash 2010; Ambike et al. 2015, 2016), we expected to see 

synergies stabilizing variables that showed consistent drifts after the relevant visual feedback 

had been turned off. The main result, however, falsified this hypothesis. Indeed, visual 

feedback manipulations led to the typical inequality ME > nME for the variables that 
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continued to receive feedback, while the inequality reversed, nME > ME, for the variables 

without visual feedback (Fig. 5). This was associated with counter-directional changes in 

both ME and nME: Overall, the ME components decreased after the removal of visual 

feedback, while the nME components increased.

Unfortunately, because of the large number of feedback conditions, we could not collect 

enough trials per condition to perform the analysis of the structure of inter-trial variance in 

Phase-3. This was done in another study using only a few conditions and multiple trials per 

condition (Parsa et al. 2016). So, in this study, we have only ME data reflecting stability of 

the variables that continued to receive visual feedback vs. those that stopped receiving this 

feedback. The contrast between the two is striking. It suggests that visual feedback plays a 

very important role in ensuring stability of performance variables. While this result 

corroborates findings in several earlier studies (Ranganathan and Newell 2008, 2009) and is 

compatible with several hypotheses on the origin of synergies (Todorov and Jordan 2003; 

Latash et al. 2005; Martin et al. 2009), it suggests that the central back-coupling loops by 

themselves were unable to bring about stability of variables without the help of visual 

feedback. It is possible that the formulation of the task biased the subjects toward relying on 

visual feedback to ensure stable performance in our experiment. We plan to explore this 

possibility by using similar tasks performed primarily under somatosensory control and/or 

based on memory.

For example, if the unintentional drift in performance is a consequence of a slow drift of the 

referent coordinate of the effector (RC) toward its actual coordinate (AC) without 

contribution from memory and/or computational processes, we would expect this drift to be 

much smaller or disappear if the subject is asked to memorize a magnitude of a performance 

variable and reproduce it after a comparable time interval of rest. We also expect the drift to 

disappear if the subject is asked to perform intentional changes in the performance variable 

rather than keeping it constant: The system may be expected to re-set after each episode of a 

change in performance such that no consistent drift is accumulated. An even stronger 

prediction can be made if a person is asked to produce a magnitude of a performance 

variable (e.g., finger force) without visual feedback, based on somatosensory feedback only. 

Since the feedback would be available throughout the trial, we expect corrections of the 

hypothesized RC drift, possibly even overcorrections (a drift toward higher forces) given 

that force-sensitive receptors may show adaptation and require higher forces to produce 

comparable perceptions. We cannot see how similar predictions could be drawn based on 

alternative ideas such as memory deficiency or computational processes. Performing these 

experiments is in our immediate plans.

Concluding comments

To summarize, we learned the following main lessons from the results presented in this 

series of two papers. Unintentional changes in performance can be seen in different 

performance variables – individual finger forces, total force, and total moment of force – 

following removal of the visual feedback. The variables showing the drift fail to show 

stabilization by the adjusted contributions of individual fingers, while variables that continue 

to receive visual feedback show signatures of selective stability. We interpret the main 
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finding within the introduced hierarchical scheme of the neural control of movement based 

on physics and physiology: Motor actions are controlled by parameters (such as RCs for the 

involved effectors) defined at various levels of a hypothetical hierarchy. At the higher level 

of the hierarchy, this control process is relatively low-dimensional, reflecting task-related 

variables. At lower levels, the number of parameters (RCs) is increased, the system becomes 

abundant, and RCs show synergic co-variation that stabilizes task-specific parameters. 

Within this scheme, unintentional performance drifts reflect two processes: (a) a drift of the 

referent coordinate of a variable toward its actual coordinate; and (b) a drift in the abundant 

space of elements toward configurations with lower magnitude of a cost function. This 

scheme allows accounting for the phenomena of unintentional changes in performance 

without invoking cognitive and/or computational processes.
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Figure 1. 
The setup. A: The subject’s position. B: Visual feedback defined total force and total 

moment target values, {FTOT, MTOT}, as the intersection of two lines. The “tank with water” 

in the middle of the screen presented the feedback on the middle finger force. C: Hand 

placement on the sensors.
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Figure 2. 
Typical example of FTOt (top black lines), MTOT (middle gray lines), and FMID (bottom 

lines) time profiles for two feedback conditions: (a) only on the middle finger force - FMID; 

(b) on the combination of total force and total moment - FToT+MToT. Each of the three 

performance variables was normalized by their value at Phase-1. Averages over three trials 

by a representative subject are shown for the initial MTOT into pronation. Panels (c) and (d) 

show the corresponding time profiles of individual finger forces in absolute values 

(newtons).
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Figure 3. 
A: the motor equivalent (ME) and non-motor equivalent (nME) components computed for 

two time intervals (ΔPhase12 and ΔPhase23). B: The two inter-trial variance components 

(VUCM and VORT) in Phase-1 and Phase-2 computed with respect to the {FTOT; MTOT} task. 

The values are presented for the data illustrated in Fig. 2.
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Figure 4. 
Motor equivalent (ME) and non-motor equivalent (nME) components averaged across 

subjects with standard error bars for ΔPhase12 and ΔPhase23 for different moment and 

feedback conditions. The two components were computed with respect to the {FToT; MTOT} 

task.
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Figure 5. 
The ME and nME components for ΔPhase23 averaged across subjects with standard error 

bars and shown for the three moment conditions, PR - pronation, Zero, and SU - supination. 

Top: With respect to the Jacobian reflecting constraints with the feedback that remained on 

the screen throughout the trial (JVISION). Bottom: With respect to the Jacobian reflecting 

constraints without feedback (JNO-VISION) between Phase-2 and Phase-3. Note that ME > 

nME in the top panels and nME > ME in the bottom panels.
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Figure 6. 
The two inter-trial variance components (VUCM and VORT) for Phase-1 and Phase-2 

computed with respect to the {FTOT; MTOT} Jacobian for the three moment conditions, PR – 

pronation, Zero, and SU - supination. The data labeled Phase-2* show the variance 

components for Phase-2 computed with respect to the Jacobian reflecting all three 

constraints: {FTOT; MTOT} and FMID.
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