Skip to main content
. 2017 Jan 15;2017:3640901. doi: 10.1155/2017/3640901

Table 1.

State-of-the-art diagnostic schemes for the screening mammography classification.

Authors Year Data sources Technique/classifier Classes Number of images Classification accuracy
Mazurowski et al. [3] 2011 DDMS Random mutation hill climbing 2 1,852 49%–83%
Lesniak et al. [4] 2011 Private SVM radial Kernel 2 10,397 66%-67%
Wei et al. [5] 2011 DDSM SVM radial Kernel 2 2,563 72%–74%
Abirami et al. [7] 2016 MIAS Wavelet features 2 322 93%
Tagliafico et al. [34] 2009 Private Thresholding 4 160 80%–90%
Subashini et al. [35] 2010 Private SVM radial Kernel 3 43 95%
Elter and Halmeyer [8] 2008 DDSM Euclidean metric 2 360 86%
Deserno et al. [13] 2011 IRMA SVM Gaussian Kernel 12 2796 80%
Tao et al. [6] 2011 Private Local linear embedding metric 2 476 80%
Curvature scale space 415 75%
Ge et al. [19] 2006 Private CNN and LDA 2 196
MIAS CNN and LDA 216
Jamieson et al. [21] 2012 FFDM ADN and SVM 2 739
Ultrasound ADN and SVM 2393
Arevalo et al. [22] 2015 BCDR-F03 CNN and SVM 2 736 79.9%–86%
Mert et al. [23] 2015 WBDC ICA and RBFNN 2 569 90%
Dheeba et al. [25] 2015 Private PSOWNN 2 216 93.6%
Abdel-Zaher and Eldeib [26] 2015 WBCD DBN 2 690 99.6%
Vani et al. [10] 2010 MIAS ELM
Jasmine et al. [11] 2009 MIAS Wavelet & ANN 2 322 87%
Xu et al. [12] 2008 MLPNN 120 98%
Uppal and Naseem [27] 2016 MIAS Fusion of cosine transform 3 322 96.97%