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SUMMARY

Combined measurement of diverse molecular and anatomical traits that span multiple levels 

remains a major challenge in biology. Here, we introduce a simple method that enables proteomic 

imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human 

clinical samples. This method, termed SWITCH, uniformly secures tissue architecture, native 

biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation 

reaction. The heat- and chemical-resistant nature of the resulting framework permits multiple 

rounds (>20) of relabeling. We have performed 22 rounds of labeling of a single tissue with 

precise co-registration of multiple datasets. Furthermore, SWITCH synchronizes labeling 

reactions to improve probe penetration depth and uniformity of staining. With SWITCH, we 

performed combinatorial protein expression profiling of the human cortex and also interrogated 

the geometric structure of the fiber pathways in mouse brains. Such integrated high-dimensional 

information may accelerate our understanding of biological systems at multiple levels.

Graphical abstract

INTRODUCTION

Biological systems are comprised of vast numbers of molecules, cell types, and intricate 

tissue organizations (Alivisatos et al., 2013; Kasthuri et al., 2015; Yuste, 2015). 

Understanding the complex interactions of these components is essential for many fields of 

biology and often requires high-dimensional information across many scales. Although it is 

desirable to obtain such information from the same tissue due to large individual variations, 

combined measurement of many molecular and anatomical traits remains an unmet goal in 

biology despite the remarkable success of current pioneering methods, such as array 

tomography (Micheva et al., 2010; Rah et al., 2013).

Rapidly evolving tissue-clearing techniques may enable multiplexed labeling and imaging of 

intact samples using light microscopy (Chung et al., 2013; Chung and Deisseroth, 2013; 
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Renier et al., 2014; Richardson & Lichtman, 2015; Susaki et al., 2014). For instance, the 

CLARITY technique has demonstrated three rounds of immunostaining of mouse brain 

tissue (Chung et al., 2013). However, we have noticed that the polyacrylamide-based 

framework loses structural integrity upon repeated exposure to the elution condition. Recent 

reports also suggest that preservation of antigenicity in the CLARITY method may not be 

optimal (Renier et al., 2014). Furthermore, the necessary tissue-gel hybridization step 

requires delivery of charged thermal initiators with limited diffusivity and stability. This 

necessity imposes a limit on the tissue size that can be processed without the use of 

transcardial perfusion.

We set our goal to develop a simple, scalable, and generalizable tissue-processing method 

for proteomic imaging of intact biological systems. To achieve this, we created SWITCH 

(System-Wide control of Interaction Time and kinetics of CHemicals), which tightly 

controls a broad range of chemical reactions in tissue processing via a set of buffers: a 

SWITCH-On buffer that facilitates chemical reactions between exogenous chemicals and 

endogenous biomolecules, and a SWITCH-Off buffer that suppresses the reactions. 

SWITCH-mediated fixation transforms tissue into a heat- and chemical-resistant hybrid 

while preserving tissue architecture, native molecules, and their antigenicity to a degree 

suitable for multiplexed proteomic imaging. The hybrids can be rapidly cleared at high 

temperature without damage. The method does not require perfusion and is thus applicable 

to both animal and large human samples. In molecular labeling of the processed samples, 

SWITCH controls probe-target binding kinetics to improve probe penetration depth and the 

uniformity of molecular labeling. This method is simple, passive, and does not require any 

special equipment or reagents.

Using SWITCH, we demonstrated that a minimum of 22 rounds of molecular labeling of a 

banked postmortem human tissue with precise co-registration of multiple datasets at single-

cell resolution is possible. We also demonstrated extraction of a wide range of system 

variables, such as various cell types and microvasculature from a single sample. In summary, 

we have developed simple tissue processing methods and a volumetric co-registration 

algorithm that can be readily adopted by most laboratories for scalable proteomic imaging of 

intact biological systems.

RESULTS

Synchronizing Dialdehyde-tissue-gel Formation Enables Scalable Tissue Preservation

First, we sought to develop a way to transform animal and human samples into a 

mechanically and chemically stable form for multiplexed imaging. We hypothesized that 

small, non-ionic, multifunctional crosslinkers might satisfy two key requirements for such a 

transformation: (1) rapid penetration without the use of perfusion and (2) a high degree of 

molecular crosslinking to improve sample durability (Hopwood, 1972; Sung et al., 1996). 

Among many options, we chose to evaluate the following owing to their small size and high 

water solubility (Figure 1A): ethylene glycol diglycidyl ether (EGDGE), dipropylene glycol 

diglycidyl ether (GE23), 1,4-butanediol diglycidyl ether (GE21), glycerol polyglycidyl ether 

(EX-313), and glutaraldehyde (GA).
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We found that all of these chemicals except GE23 formed a solid gel upon incubation with 

15% bovine serum albumin (BSA), indicating the formation of a crosslinked network 

(Figure 1B). We examined the stability of the gels along with polyacrylamide (AA)-BSA 

gels by measuring the change in their volume after incubation in a 200 mM SDS solution 

heated to 80°C (elution condition). AA-BSA gels swelled and became fragile after exposure 

to the harsh condition (Figures 1B and 1C), whereas multi-functional fixative-BSA gels 

maintained their structural integrity. In particular, GA-BSA gels showed minimal volume 

change at a wide range of BSA and GA concentrations, whereas others only gelled at high 

protein concentrations (Figure 1C). This result indicates that multifunctional fixatives alone 

might be sufficient to form a stable matrix that can withstand the harsh elution condition. 

However, because the average protein content throughout mouse brain samples is around 

10% and may be lower within certain regions, we decided that GA is the crosslinker most 

likely to form a uniform framework throughout all regions of a sample.

Next, we asked whether GA can rapidly penetrate tissue to form a uniform tissue-gel 

without the use of perfusion, which is required for processing most human clinical samples. 

We incubated a non-fixed whole adult rat brain in PBS containing 1% GA for 2 days and 

characterized the GA penetration depth and gel formation. Although the small size of GA 

should make it highly mobile, only the outer layer of the brain was fixed (Figure 1F). When 

a coronal slice from the middle of the brain was exposed to the elution condition, the core of 

the tissue completely disintegrated, indicating that no gel matrix had formed in the center of 

the brain (Figure 1F). Limited GA penetration has significantly hampered its use in 

preserving large postmortem tissues (Hopwood, 1967). We suspect that rapid reaction of GA 

with native biomolecules within the outer layer of the brain may cause depletion of GA 

molecules before they can reach the core.

To overcome this issue, we sought to control the reaction kinetics of GA and biomolecules 

throughout the system using the SWITCH approach to achieve uniform tissue preservation. 

We noted that the GA reaction rate is pH-dependent (Hopwood, 1970). Indeed, when we 

titrated solutions of GA and BSA to pH 3, GA-BSA gel formation time increased by nearly 

200-fold (Figure 1D). Using this pH dependence, we were able to disperse GA uniformly 

throughout a sample by switching off the crosslinking reaction with a low-pH buffer (Figure 

1E, left). After 2 days of incubation at low pH, we switched on sample-wide GA-tissue 

crosslinking by shifting the pH of the sample to a neutral pH (Figure 1E, right). Using this 

passive buffer-switching approach, we were able to achieve complete GA penetration and 

uniform gel formation throughout the entire rat brain (Figure 1F).

Dialdehyde-tissue-gel Preserves Structural and Molecular Information Effectively

We next asked whether the GA-tissue-gel has mechanical and chemical properties desirable 

for multiplexing-based proteomic imaging. Proteomic imaging requires (1) high preservation 

of endogenous biomolecules and their antigenicity, (2) high structural integrity, and (3) 

minimal tissue damage during repeated cycles of destaining, labeling, and imaging 

processes.

We first tested whether endogenous biomolecules are well preserved by measuring protein 

loss after clearing (see supplemental methods). We found that control tissues lost an average 
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of 30–40% protein and AA-tissue-gel lost 10–20%, but GA-tissue-gel slices lost only 3–5% 

of their protein content (Figure 1G).

We next asked whether antigenicity of the retained biomolecules is well preserved. We 

tested 90 antibodies, targeting biomolecules of different sizes (single amino acid to proteins) 

and subcellular localizations (membrane bound, cytoplasm, nucleus, synapses). Surprisingly, 

86 of 90 antibodies were compatible with GA-tissue-gel (Figures 1H, 1I, and S1; Table S1). 

Note that even small molecules, such as dopamine, which are not typically compatible with 

PFA-fixation, were observable in GA-tissue-gel after the complete removal of lipid bilayers 

(Figure S1). These biomolecules were stable against heat and chemical treatment, and their 

antigenicity was well preserved after exposure to elution conditions.

Good structural preservation is essential for resolving protein location with high precision 

and for studying molecular interrelationships. To characterize the macroscale structural 

preservation of the samples, we cleared 1-mm-thick tissue blocks using the elution condition 

and visualized their structural deformation (Figure 1J). The PFA-only tissue completely 

disintegrated. Even the AA-tissue-gel exhibited large deformations overall. GA-tissue-gel, 

however, showed no signs of structural damage throughout the entirety of the sample.

We next examined structural preservation on a microscopic scale. We imaged green 

fluorescent protein (GFP)-expressing neurons in the cortex of a PFA-fixed 1-mm-thick thy1-

EGFP M line block (Figure 1K). We then SWITCH-processed the tissue, cleared it using the 

harsh elution condition, stained it against GFP, and imaged the same neurons. As shown in 

Figure 1K, the microscopic morphology of the neurons was well preserved throughout the 

entire process. These results show GA-tissue-gel may be ideal for highly multiplexed 

structural and molecular phenotyping.

SWITCH and Robust Computational Algorithms Enable Highly Multiplexed Imaging at 
Single-Cell Resolution

Interrogating the three-dimensional (3D) distribution of molecules, cells, and the overall 

tissue organization requires precise co-registration of multiple volume images. We first 

asked if simple manual overlay of two datasets allows precise co-registration. As a stringent 

test, we used datasets from multi-round imaging of a SWITCH-processed 100-μm-thick 

human brain slice (100 μm × 3,200 μm × 3,200 μm) (Figure 2A). The high aspect ratio of 

such tissues makes it more prone to physical warping, which renders co-registration 

particularly challenging. We first stained the tissue using DAPI and anti-parvalbumin (PV) 

antibody. The slice was then enclosed in a space larger than the tissue to exaggerate possible 

tissue deformation in the mounting process (Figure 2B). After imaging, the sample was 

exposed to the elution condition overnight (O/N) to completely remove imaged probes. We 

then restained the tissue using the same probes and repeated the imaging process. Note that 

only GA-tissue-gels could maintain their integrity against the elution treatment. Both AA-

tissue-gels and PFA-fixed samples deteriorated rapidly in the same condition.

As predicted, a large degree of tissue warping in the mounting process (Figure 2C) made 

manual overlay insufficient for the task of interrogating a tissue across multiple staining 

rounds. To achieve precise co-registration of volume images in the presence of such high-
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degree warping, we custom-designed a robust computational software based on a feature-

detection approach that was ideal for our experimental procedure (Figure 2D). Each staining 

round contained one fluorescence channel devoted to a lectin stain because the morphology 

of blood vessels creates distinctive keypoints that computer vision algorithms are well suited 

to identify. With the keypoints, the algorithm warps the tissue in a physically plausible 

manner into the correct position (see supplemental methods).

As a stringent test of the algorithm, we used the same SWITCH-processed human sample 

with the high aspect ratio (Figure 2A). For each round, the sample was stained with DAPI, 

lectin, and one antibody to label a target protein. Although at least three antibodies can be 

used for each round in addition to lectin and DAPI (Figure S2), we chose to use one 

antibody for each round to eliminate any possible cross-talk between channels. After 

acquiring images, we destained the sample and began the next round of labeling. We 

repeated the above procedure 22 times using markers for various cell types (Figure 2H; 

Table 1). Staining was not successful in every round due to the use of non-validated 

antibodies, sub-optimal staining conditions, or human error, all of which often occur in 

general laboratory settings and can result in the loss of important samples. However, a 

SWITCH-processed sample is free from this issue as the tissue can be washed and reused 

repeatedly.

We were able to successfully co-register all 9 datasets with successful staining (Figures 2E 

and 2H; Movie S1). We asked whether changes in the sample might be occurring between 

staining rounds. To test this, we repeated staining with anti-PV antibodies in rounds 7 and 19 

and co-registered the resulting datasets. Even when separated by 12 rounds of labeling, we 

were able to achieve single-cell accuracy of registration with 99% agreement between the 

two rounds (Figure 2G).

We next performed joint statistical analysis of the integrated cross-talk–free dataset to 

extract diverse phenotypic information from human brain (Figure 3). We included lectin, 

GFAP, NeuN, SMI-32, and three calcium-binding protein channels—calbindin (CB), 

calretinin (CR), and PV—in the quantitative analysis. First, we used semi-automated 

algorithms to identify blood vessels and cells expressing the target antigens (Figures 3A and 

3B) and extract their spatial (x, y, z coordinates) and morphological (e.g., cell soma size) 

information. Density and size profiles of NeuN-positive cells (Figures 3C and 3D) enabled 

us to define the cortical layers (Figure 3A) according to established criteria (De Sousa et al., 

2010). NeuN+ density was high in cortical layers II and IV, with characteristic small cells 

(NeuN in Figures 3A, 3C, 3D, and 3H). Large NeuN+ neurons were concentrated in layers 

III and V. A portion of these were large pyramidal neurons positive for SMI-32 (Figures 3A, 

3E, and 3H). CB+, CR+, and PV+ cells also showed distinct distribution patterns along the 

cortical axis (Figures 3A and 3D), in agreement with previous studies (DeFelipe et al., 1999; 

Leuba et al., 1998).

We next performed unbiased combinatorial expression profiling with the 6 cell-type specific 

proteins (GFAP, NeuN, SMI-32, CB, CR, PV). Among 63 possible combinations, 16 were 

found (Table S2). We identified sub-populations of CB+/CR+ and CB+/PV+ cells, but no 

CR+/PV+ or CB+/CR+/PV+ cells (Figures 3F, 3H, and 3I), in agreement with a previous 
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report regarding mouse visual cortex (Gonchar et al., 2007). Interestingly, we observed that a 

significant portion of the CB, CR, and PV-positive neurons do not express detectable levels 

of NeuN, a widely used pan-neuronal marker (Figures 3J and 3K) (Mullen et al., 1992). In 

particular, a majority of CR+ cells showed very weak (Figure 3K, arrowhead) or no NeuN 

immunoreactivity (29.1%), whereas all SMI-32+ cells (Figures 3J and 3K) were NeuN-

positive. These results suggest that NeuN expression may be neuronal-type-specific in adult 

human visual association cortex. We also found a small number of CB+ cells and PV+ cells 

co-expressing SMI-32, a widely used pyramidal neuronal marker (Table S2) (Campbell and 

Morrison, 1989). Five CB+/PV+ cells were identified as quadruple-positive (NeuN+/

SMI-32+/CB+/PV+) cells (Figure 3G). All of the CB+ cells and PV+ cells co-expressing 

SMI-32 were localized in cortical layers III and IV. These results demonstrate the power of 

SWITCH as a tool for 3D proteomic profiling of intact biological samples at single cell 

resolution.

Structural relationships between vasculature and brain cells have been a topic of interest in a 

broad range of basic and clinical research. Many previous studies obtained the cell-to-vessel 

distance from 2D images or small tissue volumes, which may hinder precise measurement of 

such 3D properties. Moreover, in many studies, separate measurements from different 

tissues needed to be compared without considering individual variabilities in local 

vasculature geometry. There has been no direct comparison of 3D cell-to-vessel distance 

among diverse cell types within the same intact tissue.

Using the proteomic imaging capability of SWITCH, for the first time, we were able to 

directly measure cell-to-vessel distances for six different cell types within a single intact 

tissue (Figures 3L–3O). As expected (McCaslin et al., 2011), GFAP+ astrocytes had a 

shorter mean distance than NeuN+ neurons (Figure 3L). CB+ and PV+ cells were also more 

closely localized near blood vessels than NeuN+ cells, but the difference was relatively 

small. Figure 3M shows that vascular density is not uniform along the cortex. However, the 

extravascular pixel-to-vessel distance (Dp), which we defined as a reference parameter to 

reflect the effect of the 3D vascular geometry (Figure 3M, right), did not show an inverse 

relationship with vascular density. This result may suggest that 3D vessel geometry is an 

important parameter to be considered in understanding a given vascular environment. In fact, 

cell-to-vessel distance profiles of many cell types closely followed the Dp profile (GFAP+, 

DG, and NeuN+, DN, shown in Figure 3M). In particular, when Dp was subtracted from cell-

to-vessel distances (DX) to cancel the influence of vascular geometric variation, DX − Dp 

turns out to be very consistent throughout cortical depth (Figure 3N). We further examined 

the distance distribution profiles for all cell types (Figure 3O). All profiles showed similar 

characteristic curves, which can be seen when objects are randomly located in a 3D space 

(Manzo et al., 2014). We could not observe any cell-type-specific distribution profile or bi- 

or multi-modal distribution pattern in this sample. Together, these data demonstrate that 

SWITCH can be used for high-dimensional quantitative phenotyping of human clinical 

samples.
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SWITCH Enables Simple, Rapid, and Scalable Tissue-Clearing

To extend the multiplexed imaging capability of the SWITCH method to large systems, we 

developed a simple and rapid clearing method. We hypothesized that key steps in detergent-

mediated lipid removal, such as permeation of SDS through membranes, might be strongly 

enhanced by increasing temperature (Keller et al., 2006), and SWITCH-processed samples 

may endure prolonged incubation at elevated temperatures. Indeed, thermal energy 

drastically increased the passive clearing speed of SWITCH-processed samples without 

noticeable tissue damage (Figure 4A). We achieved passive clearing of a whole adult mouse 

brain within 4 days at 80°C (vs. 4 weeks at 37°C) (Figure 4C).

Upon prolonged exposure to high temperatures, however, samples developed a brownish hue 

(Friedman, 1996), which may interfere with imaging at certain wavelengths (Figures 4B–4D 

and 4F). We found that reducing agents, such as sodium sulfite and 1-thioglycerol, 

effectively mitigate tissue browning during thermal clearing (Figures 4B–4D). Using 

thermal clearing with the reducing agents, we successfully cleared intact adult rat brains (2 

weeks) as well as human (1 week) and marmoset samples (1 week), demonstrating the 

versatility and scalability of the method (Figures 4D and 4E). Clearing of various rodent 

organs was also demonstrated with lung, kidney, heart, liver, and spinal cord (Figure 4F). 

The efficacy of sodium sulfite as an anti-browning agent was seen across all tissues.

SWITCH Enables Visualization and Quantitative Analysis of Entire Myelinated Fiber Tracts

We also sought to apply SWITCH to characterizing myelinated fiber pathways in the brain. 

Visualizing and analyzing neural fibers with high-resolution light microscopy can provide 

valuable insights into many studies (Thomas et al., 2014; Wedeen et al., 2012; Zuccaro and 

Arlotta, 2013), such as validating diffusion tensor imaging (DTI) and understanding the 

organizing principles of brain connectivity. Furthermore, quantitative analysis of myelinated 

fibers in 3D may benefit clinical studies and development of novel treatments for many 

demyelinating diseases (Steinman, 1999), such as multiple sclerosis and transverse myelitis. 

However, current methods for myelinated fiber visualization require either genetic labeling 

or a large amount of costly antibodies, limiting their utility to animal tissues or small clinical 

samples (Wedeen et al., 2012).

We discovered that a subset of lipids preserved in SWITCH-processed tissues (Hopwood, 

1972; Roozemond, 1969) allows lipophilic dyes to selectively visualize lipid-rich 

membranes (Schlessinger et al., 1977). In particular, we found that long-chain 

dialkylcarbocyanines robustly stain myelinated axons (Figure 5A). However, when we 

attempted to label an intact tissue using conventional methods, we could not achieve dye 

penetration deeper than 100 μm because dye molecules were depleted as they rapidly 

associated with abundant targets in the outer layer (Figure 5C).

We hypothesized that SWITCH may enable rapid and uniform labeling of intact tissues by 

synchronizing the labeling reaction globally. We first screened a range of chemicals for 

controlling the binding kinetics of the lipophilic dye and discovered that 10 mM SDS 

effectively inhibits staining (Figure 5B). This result indicates that buffers containing 10 mM 

SDS might have a potential to be used as a “SWITCH-Off” buffer. Using an approach 
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analogous to SWITCH-mediated GA fixation, we thought it might be possible to allow dye 

molecules to disperse uniformly throughout a sample in the SWITCH-Off buffer and then 

activate global probe-target binding with the SWITCH-On buffer (Figure 5D).

To test this approach, we first incubated a 1-mm-thick mouse brain block in PBST 

containing 10 mM SDS and lipophilic dyes for 24 hr at 37°C (SWITCH-Off step). Then, we 

moved the tissue to PBST and incubated it for 3 hr at 37°C (SWITCH-On step). The result 

was strikingly uniform labeling of all the myelinated axons within the sample (Figure 5D). 

Myelinated fibers were clearly visible throughout the depth while the control tissue showed 

signal only from the surface (Figure 5C).

We leveraged this fiber visualization capability to investigate how fibers and fascicles are 

organized in a mouse brain. Previous research has shown that fibers may be organized in 3D 

grids (Wedeen et al., 2012). However, the structure of all of the individual fibers has not yet 

been studied at the microscopic resolutions and macroscopic scales necessary to visualize 

their 3D organization. To that end, we obtained a volume image of labeled myelinated fibers 

in a SWITCH-processed mouse brain coronal slice spanning from the cortex to the striatum 

(Figure 5E; Movies S2 and S3). This volume shows three main orientations of the fibers 

organized in a cubic grid: one radially projecting from the corpus callosum and two parallel 

to the corpus callosum. These three orientations are all orthogonal to one another (Figure 5F; 

Movie S3). The volume also shows fascicles that radiate from the striatum and diverge, 

almost at right angles, at the corpus callosum (Figure 5E; Movie S3). To quantify this 

finding in a non-biased manner, we determined the orientation of each of the fibers present 

in the volume and calculated the angles at which these fibers would intersect (Figure 5G). In 

all three dimensions, the fibers indeed oriented themselves approximately orthogonally to 

each other (Figure 5H). We used a similar approach to examine the fascicle orientations and 

found that they diverge almost orthogonally with respect to the corpus callosum in one of the 

axes (Figure 5I). These results are corroborated by the autocorrelation results (Figure S3). 

This finding was made possible by the high-resolution and large-volume visualization 

capability of our method. A low-resolution approach would overlook the individual fibers 

while a low-volume approach would be unable to capture the entire connectional anatomy.

We then tested whether this application of SWITCH could be scaled to larger tissues. We 

applied the SWITCH approach for labeling an intact mouse hemisphere, but with 4 days of 

incubation in PBST containing 10 mM SDS and lipophilic dyes (SWITCH-Off step) and 1 

day in PBST (SWITCH-On step). We imaged this larger volume using a custom-built, high-

speed light-sheet microscope (Tomer et al., 2012; Tomer et al., 2014) within 2 hours and 

observed uniform labeling of all myelinated fibers across the entire tissue (Figure 5J; Movie 

S4). As demonstrated, the SWITCH-labeling approach is scalable to organ-scale tissues. Just 

by scaling the incubation time with respect to the tissue size, we were able to label the whole 

tissue. The cost of the dye molecules used for labeling the hemisphere was less than one 

dollar. We also demonstrated that this approach can be used for visualizing myelinated fibers 

in spinal cords (Movie S5). These results show that the SWITCH-labeling method can be 

used to uniformly label tissues ranging from a 1-mm-thick block to an entire hemisphere for 

quantitative analysis.
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SWITCH Enables Scalable and Uniform Antibody Labeling

We then asked whether SWITCH-mediated labeling could be applied to the use of 

antibodies. We hypothesized that SDS could again be used as an effective inhibitor of 

antibody-antigen binding in small concentrations. Indeed, when we assayed for antibody 

labeling at various concentrations of SDS, we found that 0.5 to 1.0 mM was a high enough 

concentration to inhibit binding for many antibodies (Figure 6A).

Based on the results of our binding assay, we chose PBS containing 0.5 mM SDS as a 

SWITCH-Off buffer and PBST as a SWITCH-On buffer. We hypothesized that, because 

very little antibody-antigen binding is occurring in the SWITCH-Off condition, antibodies 

would effectively be able to diffuse to equilibrium throughout the sample more rapidly than 

in PBST, in which antibodies are rapidly depleted at the surface (Figure 6B). To test this, we 

attempted to label 1-mm-thick mouse brain blocks using anti-histone H3 antibodies. We 

labeled one sample using a 12-hr SWITCH-Off/12-hr SWITCH-On cycle and another using 

a standard immunohistochemistry protocol with 12 hr of primary antibody incubation in 

PBST followed by a 12 hr wash. For the SWITCH-On step, antibodies were not added to 

PBST. The result was a large increase in penetration depth and overall signal uniformity in 

the SWITCH sample relative to the control (Figures 6B and 6C; Movie S6).

DISCUSSION

We have developed SWITCH, a simple method that enables scalable proteomic imaging of 

intact systems without requiring any specialized equipment or reagents. SWITCH is 

complementary to many pioneering technologies, each of which has its own unique 

advantages. For example, matrix-assisted laser desorption ionization mass spectrometry 

(MALDI-MS) and laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-

MS) allow visualization of a large subset of proteins and other biomolecules without a priori 

knowledge of targets. Recent advances in imaging mass spectrometry combined with 

immunohistochemistry (IHC) have significantly improved resolution (Angelo et al., 2014; 

Giesen et al., 2014), which was limited in MALDI-MS and LA-ICP-MS. This approach 

remarkably demonstrated analysis of more than 100 targets at subcellular resolution.

Multiplexing strategies for IHC that rely on iterative staining and elution have been 

developed. Among several pioneering techniques is array tomography, which involves 

cutting a tissue sample into tens or hundreds of nanometer-thick sections for staining and 

imaging (Micheva et al., 2010). These sections can be repeatedly washed and stained for 

probing different proteins. This powerful method yields subcellular resolution images of a 

small volume of tissue with fairly high multiplexing capability. Although these advanced 

technologies enable new approaches in studying complex biological systems, these methods 

require specialized equipment and are, therefore, difficult to implement in most labs.

With the aim of developing a simple and scalable method for proteomic imaging of both 

large animal and human samples, we first needed to devise the SWITCH method for 

controlling a broad range of chemical reactions in tissue processing to achieve uniform 

sample treatment regardless of tissue size and type. SWITCH dynamically modulates 

chemical reaction kinetics to synchronize the reaction time between molecules throughout 
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the system. This strategy enables all endogenous molecular targets in a large intact tissue to 

experience similar reaction conditions (time and concentration). As a result, large tissues can 

be uniformly processed.

The SWITCH approach takes advantage of the way certain chemicals can be reversibly and 

rapidly changed by simply modulating their surrounding environment. For instance, in the 

GA-tissue-gelling step, we were able to decrease the rate of GA-biomolecule crosslinking by 

two orders of magnitude by using pH 3 buffer, because primary amine groups in endogenous 

biomolecules are protonated at low pH and the resulting charged amine cannot react with 

GA (Hopwood, 1972). This pH-dependent reactivity means that after uniformly dispersing 

GA in a tissue at low pH, we can “switch-on” inactivated amine groups by changing the 

amine’s surrounding environment to a neutral-pH buffer. At neutral pH, charged amine 

groups are rapidly deprotonated and become reactive. In the case of human samples or 

animal samples that were previously PFA-fixed for a different purpose, this simple strategy 

enables all the endogenous biomolecules in a large intact tissue to simultaneously experience 

a similar GA-fixation/gelling condition. PFA-fixed tissues can withstand treatment at low pH 

while GA molecules are introduced. In the case of non-fixed samples, we recommend that 

they first be fixed with PFA before exposure to acidic conditions. If perfusion is possible, it 

is the recommended method of sample preservation.

Uniform GA-tissue-gel formation is a crucial first step towards our goal. Fixation of large 

samples via traditional immersion is unlikely to uniformly preserve them because highly 

reactive GA molecules are depleted within the outer layers of a sample. This presents a 

significant problem for iterative staining-based methods that rely on the removal of imaged 

probes using harsh elution conditions, because non-uniform preservation results in non-

uniform loss of structure and molecules throughout the process. As demonstrated, our pH-

SWITCH strategy ensures exceptionally uniform preservation of biological tissues that 

cannot be perfused (e.g., banked human clinical samples), meeting the requirements of 

proteomic imaging and quantitative phenotyping.

It has been noted that fixation with GA results in an increase in broad spectrum 

autofluorescence. While this autofluorescence has been low enough to allow quantitative 

analysis, it could be problematic in visualizing targets with low copy number. We 

investigated the use of sodium borohydride as a method of reducing autofluorescence, but 

found that the tissue damage resulting from this incubation procedure offset any benefits 

obtained from the modest decrease in autofluorescence that we were able to observe (Figure 

S4).

The use of reducing agents has allowed us to eliminate the issue of tissue browning during 

high-temperature clearing, but we also observed that excessive use of these chemicals may 

cause gradual tissue weakening. This is likely due to the reduction of disulfide linkages that 

maintain the tertiary structure of proteins within a sample, resulting in increased protein 

denaturation. Protein denaturation may lead to reduced sample antigenicity, but we have not 

found this to be an issue when using conservative amounts of reducing agents. Additionally, 

due to the instability of mRNA at elevated temperatures, this method of rapid clearing is not 

compatible with methods that require the preservation of mRNA (Figure S5).
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Multiplexed imaging requires software to warp each experiment into a common coordinate 

system despite the subtle physical differences between each staining round. Variance can 

come in the form of rigid body changes (rotation, translation, and scale), illumination 

artifacts, stain quality, and tissue degradation. We observed that a feature-based algorithm 

gives maximum robustness across these sources of variance at the cost of increased 

computational requirements—a reasonable trade given the declining costs of such resources. 

To simplify the process, gross rigid alignments (i.e., rotating the tissue 180 degrees) are still 

best handled by human eye before the data is passed to the algorithm to achieve the cellular-

scale registration.

SWITCH can provide a reliable way to obtain integrated high-dimensional information from 

intact biological samples. Using the cross-talk–free dataset, we successfully performed non-

biased combinatorial expression analysis of a single human clinical tissue to unequivocally 

identify diverse cell-types based on their distinct protein expression patterns. Our 

quantitative analysis shows that CR+/PV+ cells do not exist within the examined volume of 

the human V2 cortex. The same finding was reported in mouse visual cortex (Gonchar et al., 

2007), but such co-expression patterns among calcium-binding proteins may differ among 

brain regions and between individuals and species (Anelli and Heckman, 2006; DeFelipe et 

al., 1999), which, therefore, calls for more comprehensive large-scale investigation.

We observed many NeuN-negative interneurons. NeuN, a neuron-specific RNA-binding 

protein known as Rbfox3 protein (Kim et al., 2009), has been widely used as a pan-neuronal 

marker for statistical analysis of many types of mature neurons (Baleriola et al., 2014; 

Pickrell et al., 2015). Only a few types of neurons are exceptions, such as cerebellar Purkinje 

cells, olfactory bulb mitral cells, and retinal photoreceptor cells (Mullen et al., 1992). 

However, even though we applied strict criteria to prevent weak NeuN+ cells from being 

identified as NeuN− cells, substantial portions of CB+, CR+, and PV+ neurons were still 

NeuN− while all SMI+ neurons were NeuN+. This result is supported by a recent report that 

some CR+ are not NeuN+, and CR and NeuN immunoreactivities have a negative correlation 

in the avian brainstem (Bloom et al., 2014). Likewise, in our experiments on human visual 

association cortex, cells with strong immunoreactivity against calcium-binding protein 

markers were frequently negative or very weakly positive for NeuN. These findings, together 

with a series of exceptional reports such as those on NeuN+ cultured astrocytes (Darlington 

et al., 2008) and GFAP+ neuron-like cells (Oka et al., 2015), indicate that classical cell-type 

markers, particularly NeuN, may need to be used more carefully in light of their selectivity 

and function.

The SWITCH method has the potential to modulate a wide range of probe-target binding 

reactions. Probe-target interactions are governed by a multiplicity of non-covalent bonds 

such as hydrogen bonds, electrostatic forces, van der Waals bonds, and hydrophobic 

interactions (Mian et al., 1991). These weak forces can be effectively controlled by changing 

the surrounding chemical environment (e.g., ionic strength, pH, chemical additive, and 

temperature) (Kamata et al., 1996). For instance, we discovered that the addition of SDS 

alone, in different concentrations, can completely inhibit lipophilic dye-target and antibody-

antigen binding reactions.
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The SWITCH method’s unique uniform-labeling capability enables quantitative analysis of 

large tissues that was previously only possible for thin tissue sections. Quantitative analysis 

relies heavily on signal intensity and SNR. Non-uniform or heterogeneous labeling would 

prohibit or, even worse, bias the analysis. While post hoc image processing methods could 

correct for small gradients in labeling (or imaging), large gradients caused by non-uniform 

labeling, where the surface of the tissue is saturated while the core is mostly unlabeled, 

would preclude image recovery. If the labeling is heterogeneous, the resulting data would be 

heavily biased, and no image processing methods could salvage such data in a fair way. This 

is why quantitative analysis of non-uniformly labeled tissues is a great challenge. However, 

tissues labeled using SWITCH exhibit uniform signal intensity and SNR throughout the 

tissue. Such a clear dataset lends itself well to quantitative analysis.

Although SWITCH enables processing of large samples, the speed of labeling is still 

fundamentally limited by passive diffusion. This is not of concern for smaller samples or 

even single-round investigation of large samples, but multiplexed imaging of large samples 

becomes impractical as a result, potentially taking months or years to collect the range of 

desired data. Recently developed methods of stochastic electrotransport (Kim et al., 2015) 

could potentially be combined with SWITCH to facilitate these experiments.

Together with its simplicity, scalability, and broad applicability, our data suggest that 

SWITCH provides access to high-dimensional multi-scale information that may help to 

understand health and disease from molecules to cells to entire systems.

EXPERIMENTAL PROCEDURES

Full experimental details can be found in the Supplemental Experimental Procedures.

Mice

Young adult male and female C57BL/6 and Thy1-eGFP-M mice were housed in a reverse 

12-hr light/dark cycle with unrestricted access to food and water. All experimental protocols 

were approved by the MIT Institutional Animal Care and Use Committee and Division of 

Comparative Medicine and were in accordance with guidelines from the National Institute of 

Health.

SWITCH-Mediated Tissue Preservation

PFA-fixed human samples were washed in a solution consisting of 50% PBS titrated to pH 3 

using HCl, 25% 0.1 M HCl, and 25% 0.1 M potassium hydrogen phthalate (KHP). This 

wash solution was then replaced with fresh solution with the addition of 4–10% GA. The 

samples were then incubated in this pH 3 solution at 4°C for 2 days with gentle shaking. The 

solution was then replaced with PBS with the addition of 1–4% GA and the sample was 

again allowed to incubate for 2 days at 4°C and 2–7 hr at 37°C with gentle shaking. The 

sample was then washed in PBS at room temperature (RT) for 1 day with gentle shaking. 

After washing, reactive GA within the sample was inactivated by incubation in a solution 

consisting of 4% glycine and 4% acetamide for 1 day at 37°C with gentle shaking. Finally, 

the sample was washed for 1 day in PBS at RT with gentle shaking.
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Passive Clearing with Thermal Energy

Aqueous clearing solution containing 200 mM SDS, 10 mM lithium hydroxide, 40 mM 

boric acid, and a variable amount of anti-browning agent (i.e., 0–50 mM sodium sulfite or 0–

0.5% [w/v] 1-thioglycerol) was titrated to pH 9 using sodium hydroxide before use. Samples 

were incubated at 60–80°C until clear using Easy-Passive (EP-1001; Live Cell Instrument) 

or a water bath.

Sample Delabeling

Imaged samples were delabeled in clearing solution at 60–80°C (elution condition) for 1–2 

days for large samples and O/N for thin samples.

SWITCH-Mediated Fluorescent Labeling

Samples were incubated in SWITCH-Off solution (0.5 or 10 mM SDS in PBS) O/N with 

gentle shaking at 37°C and transferred to a fresh volume of SWITCH-Off solution 

(containing molecular probes) just enough to cover the sample. Samples were incubated at 

37°C with gentle shaking and times were scaled with sample size. Samples were then 

transferred to a large volume of PBST (SWITCH-On) and incubated at 37°C with gentle 

shaking.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Synchronizing Dialdehyde-tissue-gel Formation Enables Scalable Tissue Preservation
(A) Chemical structures of various multifunctional fixatives. (B) Crosslinked protein gels 

before and after exposure to the elution condition. Scale bars, 10 mm. Polyacrylamide (AA) 

gel swelled and became fragile, whereas multifunctional fixative gels remained intact with 

minimal expansion. (C) Mass percent change of crosslinked protein gels after exposure to 

the harsh condition. EDGDE, GE21, and EX-313 were incapable of forming gels at low 

BSA concentration. Error bars show mean ± SD. (D) The gelation time for protein gels 

crosslinked with GA is nearly 200-fold higher at pH 3 than it is at neutral pH at 4°C. Error 
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bars show mean ± SD. (E) Schematic diagram illustrating the process of scalable and 

uniform tissue-gel formation without perfusion using SWITCH. GA molecules diffuse into 

an intact tissue without reacting with biomolecules in pH 3 buffer (SWITCH-Off step). 

When GA is uniformly dispersed throughout the tissue, the sample is moved to pH 7 buffer 

(SWITCH-On step) to initiate global gelation/fixation and achieve uniform tissue 

preservation. (F) Coronal slices from the middle of whole rat brains passively fixed with 

(bottom) or without (top) SWITCH. After fixation, the middle coronal slices were cut and 

incubated in the elution condition for 1 hr. The core of the control slice completely 

disintegrated, whereas the SWITCH-processed slices remained intact. Scale bars, 6 mm. (G) 

Only ~3% of proteins are lost in SWITCH-processed brain tissues as opposed to ~10–30% 

with AA-based methods. Error bars show mean ± SD. (H and I) Antigenicity of proteins is 

well preserved throughout the clearing process in SWITCH. Of the antibodies tested, 86 of 

90 are compatible with SWITCH. (J and K) SWITCH-mediated fixation maximally 

preserves macroscopic (J) and microscopic (K) structures throughout the elution process. (J) 

Cross-sectional images of 1-mm-thick mouse coronal slices after exposure to the elution 

condition. The CLARITY-processed tissue shows significant tissue deformation and 

collapse, whereas the SWITCH-processed tissue is highly uniform with no signs of 

macroscopic deformation. Z-step size, 20 μm; 10×, 0.3 NA, water-immersion objective. 

Scale bars, 1 mm. (K) GFP-expressing neurons in the cortex of Thy-1-EGFP mouse brain 

before and after exposure to the elution condition and anti-GFP staining. 25×, 0.95 NA, 

water-immersion objective. Scale bars, 30 μm. See also Figures S1 and S4, and Table S1.
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Figure 2. SWITCH and Co-registration Algorithms Enable Highly Multiplexed Imaging at 
Single-cell Resolution
(A) The left image shows formalin-fixed postmortem human brain tissue (visual association 

cortex, Brodmann area 18). The right image shows a 100-μm section of this brain tissue after 

SWITCH processing. Scale bars, 5 mm (left), 300 μm (right). (B) Natural warping of the 

sample during imaging was enabled by mounting within a chamber space larger than the size 

of the sample. Representative cross-sections of the sample after several rounds of imaging 

are shown. Sample thickness, 100 μm. (C) Surface contour maps showing warping of the 

sample between imaging rounds. Attempted manual overlay of two PV datasets shows that 
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sample warping is too severe for single-cell registration without computational correction. 

Scale bars, 50 μm. (D) A flow diagram depicting the sequence of events for automated co-

registration of datasets. (E) Fully co-registered image showing an overlay of 9 rounds of 

immunostaining. A total of 22 rounds of staining of the same tissue was achieved. R#2 

(Iba1), R#3 (GFAP), R#4 (calbindin, CB), R#5 (calretinin, CR), R#7 (PV), R#8 

(Neuropeptide Y), R#9 (NeuN), R#18 (SMI-32), and R#19 (PV) were used for co-

registration and subsequent quantitative analysis (see Figure 3). The boxed regions indicate 

the ROI’s shown in panels (F–H). Scale bar, 300 μm. (F) Vasculature labeling from 9 rounds 

of staining after co-registration. Scale bar, 200 μm. (G) PV cell counts between rounds 7 and 

19. After 12 rounds of imaging, 99% of previously detected PV+ cells were again detected 

and shown to overlay after co-registration of the datasets. (H) Images of individual channels 

with corresponding vasculature labeling. Scale bar, 50 μm. See also Table 1, Figure S2, and 

Movie S1.
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Figure 3. SWITCH Enables Proteomic Imaging and High-Dimensional Quantitative 
Phenotyping of Human Clinical Samples
(A) ROI from Figure 2E showing semi-automatically detected locations and sizes of blood 

vessels (lectin) and diverse cell types (GFAP+, NeuN+, SMI-32+, CB+, CR+, PV+) in human 

visual cortex. The identified objects are overlaid on maximum intensity-projections of raw 

images of the corresponding channels (dark gray). Dashed lines divide cortical layers I–VI. 

(B) 3D rendering of the boxed region in (A) (200 μm wide × 200 μm high × 104 μm deep) 

showing identified cells and blood vessels. (C) A heat map of the soma size distribution of 

NeuN+ cells, showing bimodal peaks at cortical layers III and V. (D) Density profiles of 
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various cell types. (E) Comparison of cell sizes among different types of cells. One-way 

ANOVA was performed (***P < 0.001; N = 1,176, 7,835, 249, 1,044, 364 and 449 for each 

column). Post hoc tests were mostly P < 0.001 except for three non-significant (n.s.) cases. 

(F) Distribution of neurons expressing various subsets of calcium-binding proteins in the 

human visual cortex. Raw images in the middle columns show CB+/CR+ or CB+/PV+ 

neurons (arrows). (G) A representative NeuN+/SMI-32+/CB+/PV+ cell. (H) Cell counts and 

densities in different cortical layers. Cortical layers with the highest density for each 

neuronal channel are highlighted. (I) Cell densities for combinatorial co-expression of three 

interneuronal markers. (J) Statistics for NeuN− neurons. (K) Representative images showing 

NeuN−/CB+, NeuN−/CR+, and NeuN−/PV+ cells (arrows). The arrowhead indicates a CR+ 

cell with low NeuN immunoreactivity. (L) Comparison of cell-to-nearest vessel distances 

along cortical depth as measured from cell centroids to vascular boundaries. Post hoc tests 

following one-way ANOVA (P < 0.001; N = 935, 4,101, 210, 817, 265 and 331 for each 

column) were mostly n.s. except for three cases displayed. *P < 0.05. (M) Vascular density 

and distance-to-nearest vessel profiles of GFAP+ or NeuN+ cells along cortical depth. Mean 

distances from NeuN+ (DN) and GFAP+ (DG) cells and all extravascular pixels (Dp) are 

calculated and plotted. Diagrams illustrate the calculation of the three distances. (N) Cell-to-

nearest vessel distances from NeuN+ cells in two regions—a (N = 570) and b (N = 445) in 

(M)—before (DN) and after (DN − Dp) correction. (O) Distribution profile of extravascular 

pixel- or cell-to-nearest vessel distances showing similar patterns. Three interneuronal 

markers are plotted together. Error bars are shown with mean ± SEM. Scale bars, 200 μm 

(A), 50 μm (F, G, and K). See also Table S2.
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Figure 4. SWITCH Enables Simple, Rapid, and Scalable Tissue Clearing
(A) Images of 1-mm coronal blocks of an adult mouse brain hemisphere before and after 

clearing at 37°C for 24 hr or 80°C for 12 hr. The lipid-extracted tissues were refractive index 

(RI)-matched (see SI for details). Scale bars, 3 mm. (B) Images of mouse brain hemispheres 

lipid-extracted at 80°C for 10 days with 200 mM SDS containing 0–50 mM sodium sulfite 

(SS) as an anti-browning agent. Note that the tissues were not RI-matched. Scale bars, 6 

mm. (C) Images of intact adult mouse brains cleared at 37°C (top) and 60°C (middle) and 

80°C (bottom) with and without 1-thioglycerol (TG). Browning in high-temperature clearing 
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was effectively prevented by TG. Scale bars, 3 mm. (D) High-temperature (80°C) clearing of 

whole rat brain with and without TG. Scale bars, 6 mm. (E) Clearing of human and 

marmoset samples at 80°C. Scale bars, 6 mm. (F) Rapid clearing of various organs at 80°C 

with and without 50 mM SS. Cleared rat spinal cord is not RI-matched. Scale bars, 3 mm. 

See also Figure S5.

Murray et al. Page 24

Cell. Author manuscript; available in PMC 2017 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. SWITCH Enables Visualization and Quantitative Analysis of Entire Myelinated Fiber 
Tracts
(A) DiD and MBP staining on a SWITCH-processed mouse brain slice showing complete 

overlap between DiD and MBP. Scale bar, 10 μm. (B) DiD staining with PBST or with PBS 

+ 10 mM SDS buffer. DiD staining is completely inhibited in PBS + 10 mM SDS buffer. 

Green, syto16; red, DiD; scale bars, 100 μm (top, bottom), 10 μm (middle). (C) DiD staining 

of a 1-mm-thick mouse coronal block using PBST for 1.5 days at 37°C. Only tissue surface 

is labeled. Scale bar, 200 μm. (D) DiD staining of a 1-mm-thick mouse coronal block using 

SWITCH. The sample was first incubated in DiD, 10 mM SDS containing PBS buffer for 24 

Murray et al. Page 25

Cell. Author manuscript; available in PMC 2017 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hr, then moved to PBST and incubated for 0.5 day at 37°C. The whole sample is uniformly 

labeled. Scale bar, 200 μm. (E) Volume image of a 1-mm-thick mouse brain coronal slice 

stained with DiD to visualize myelinated tracts acquired using a confocal microscope. The 

volume contains both the striatum and the cortex. Scale bar, 200 μm. (F) Maximum intensity 

projection of the subvolume (illustrated in white in the volume image in [E]) shows fascicles 

from the striatum diverging at the corpus callosum and fibers near that area in the cortex 

forming a grid pattern. Scale bar, 200 μm. (G) Enlarged images of the selected regions of 

interest in (F) shows the fibers in the cortex arranged in a grid pattern. Fibers are colorized 

based on orientation. Scale bar, 100 μm. (H) Analysis of all the fibers in the entire volume 

shows that most fibers make an 89° intersection in xy and yz and an 88° intersection in xz. 

(I) Analysis of all the fascicles in the entire volume shows that they make an 87° turn in xy, a 

26° turn in yz, and a 30° turn in xz. (J) Volume image of a mouse brain hemisphere stained 

with DiD to visualize myelinated tracts acquired using a custom-built light-sheet 

microscope. Scale bar, 1 mm. (K) Representative images showing individual fibers and 

fascicles in three different brain regions in (J). Str, striatum; Hipp, hippocampus; TH, 

thalamus. Scale bars, 200 μm. See also Figure S3 and Movies S2–S5.
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Figure 6. SWITCH Increases Uniformity of Antibody Labeling in Thick Tissues
(A) Antibody staining of cleared 100-μm mouse brain sections in PBST and various 

concentrations of SDS in PBS. SDS effectively inhibits antibody-antigen binding in a 

concentration-dependent manner. Scale bar, 200 μm. (B and C) Histone H3 staining of 1-

mm-thick mouse cerebral cortex blocks in PBST (B) and using SWITCH (C). Control 

sample was incubated in antibody-containing PBST for 12 hr then washed for 12 hr. 

SWITCH sample was incubated in antibody-containing SWITCH-Off solution for 12 hr then 

washed in SWITCH-On solution for 12 hr. Sections from the top, middle, and bottom of the 
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blocks are shown. 3D renderings were generated from the ROIs shown. SWITCH sample 

showed vast increase in uniformity of labeling compared to control. Scale bars, 150 μm (B, 

left), 200 μm (others). See also Movie S6.
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Table 1

Multiplexed Imaging Rounds.

Round
Excitation wavelength (nm)

405 488 647a

1 DAPI Lectin Iba1

2 DAPI Lectin Iba1

3 DAPI Lectin GFAP

4 DAPI Lectin Calbindin

5 DAPI Lectin Calretinin

6 DAPI Lectin Fluoromyelin

7 DAPI Lectin Parvalbumin

8 DAPI Lectin Neuropeptide Y

9 DAPI Lectin NeuN

10 DAPI Lectin DiI D7777

11 DAPI Lectin SOM

12 DAPI Lectin Cholecystokinin

13 DAPI Lectin NMDAR1

14 DAPI Lectin NC3βT

15 DAPI Lectin GAD67

16 DAPI Lectin Npas4

17 DAPI Lectin NAChR

18 DAPI Lectin SMI-32P

19 DAPI Lectin Parvalbumin

20 DAPI Lectin Iba1

21 DAPI Lectin GFAP

22 DAPI Lectin SMI-312

a
iba1, ionized calcium-binding adapter molecule 1; GFAP, glial fibrillary acidic protein; SOM, somatostatin; NMDAR1, N-methyl-D-aspartate 

receptor 1; NC3βT, neuronal class III β-tubulin; GAD67, glutamic acid decarboxylase 67; Npas4, neuronal PAS domain protein 4; NAChR, 
nicotinic acetylcholine receptor.
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